Impact of the Hydroponic Cropping System on Growth, Yield, and Nutrition of a Greek Sweet Onion (Allium cepa L.) Landrace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systems, Plant Material, Vegetative Growth and Treatments
2.2. Plant Sampling, Water Use Efficiency, Harvest Indices, Macronutrients and Uptake Concentrations
2.3. Statistics
3. Results
3.1. Conditions
3.2. Vegetative Development
3.3. Bulbing and Plant Features during the Bulbing Phase
3.4. Bulb Characteristics
3.5. Plant Fresh Weight and % Dry Matter
3.6. Yield and Quality Features
3.7. NS Consumption—WUE
3.8. Macronutrients—Uptake Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 2 March 2021).
- Dritsas, P. Kremmydi Thespion. Available online: https://www.ecpgr.cgiar.org/in-situ-landraces-best-practice-evidence-based-database/landrace?landraceUid=13272 (accessed on 21 March 2021).
- Siracusa, L.; Avola, G.; Patanè, C.; Riggi, E.; Ruberto, G. Re-evaluation of traditional mediterranean foods. the local landraces of “cipolla di giarratana” (Allium Cepa l.) and long-storage tomato (Lycopersicon Esculentum l.): Quality traits and polyphenol content. J. Sci. Food Agric. 2013, 93, 3512–3519. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.C.; Bautista, J.; Gunawan, G.; Bateman, A.; Riner, C.M. Sweet onion (Allium cepa L.) as influenced by organic fertilization rate: 1. plant growth, and leaf and bulb mineral composition. HortScience 2018, 53, 451–458. [Google Scholar] [CrossRef] [Green Version]
- USDA. United States Standards for Grades of Bermuda-Granex-Grano Type Onions; USDA: Washington, DC, USA, 2014; p. 11.
- Cherry, K. Allium Root Rot. Available online: https://projects.ncsu.edu/cals/course/pp728/sclerotium_cepivorum/Sclerotium_cepivorum.html (accessed on 6 March 2021).
- Frye, J. Pink Root of Onion. Available online: https://projects.ncsu.edu/cals/course/pp728/Phoma/Phoma_terrestris.html (accessed on 6 March 2021).
- Gruda, N. Do soilless culture systems have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 82, 141–147. [Google Scholar] [CrossRef]
- Savvas, D.; Gianquinto, G.; Tuzel, Y.; Gruda, N. Soilless culture. In Good Agricultural Practices for Greenhouse Vegetable Crops—Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., De Pascale, S., Eds.; FAO: Rome, Italy, 2013; pp. 303–354. ISBN 978-92-5-107649-1. [Google Scholar]
- Monteiro, J.; Teiel, M.; Baeza, E.; Lopez, J.C.; Karica, M. Greenhouse design and covering materials. In Good Agricultural Practices for Greenhouse Vegetable Crops—Principles for Mediterranean Climate Areas; FAO: Rome, Italy, 2013; pp. 35–62. ISBN 978-92-5-107649-1. [Google Scholar]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Hydroponic Systems. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Kozai, T., Niu, G., Tagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 213–221. ISBN 978-0-12-801775-3. [Google Scholar]
- Lommen, W.J.M. The canon of potato science: 27. Hydroponics. Potato Res. 2007, 50, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Alshrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27, 247–255. [Google Scholar]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Tunio, M.H.; Gao, J.; Shaikh, S.A.; Lakhiar, I.A.; Qureshi, W.A.; Solangi, K.A.; Chandio, F.A. Potato production in aeroponics: An emerging food growing system in sustainable agriculture for food security. Chil. J. Agric. Res. 2020, 80, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Salachas, G.; Savvas, D.; Argyropoulou, K.; Tarantillis, P.A.; Kapotis, G. Yield and nutritional quality of aeroponically cultivated basil as affected by the available root-zone volume. Emirates J. Food Agric. 2015, 27, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the lights for leafy greens in indoor vertical farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Tüzel, Y.; Gül, A.; Tüzel, I.H.; Öztekin, G.B. Different Soilless Culture Systems and Their Management. J. Agric. Food Environ. Sci. 2019, 73, 7–12. [Google Scholar]
- Walters, K.J.; Currey, C.J. Hydroponic greenhouse basil production: Comparing systems and cultivars. Horttechnology 2015, 25, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; De Pascale, S.; Kyratzis, A.; Rouphael, Y. Microgreens as a Component of Space Life Support Systems: A Cornucopia of Functional Food. Front. Plant Sci. 2017, 8, 1–4. [Google Scholar] [CrossRef]
- Domingues, D.S.; Takahashi, H.W.; Camara, C.A.P.; Nixdorf, S.L. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput. Electron. Agric. 2012, 84, 53–61. [Google Scholar] [CrossRef]
- Hochmuth, R.C.; Cantliffe, D. Greenhouse Cucumber Production—Florida Greenhouse Vegetable Production Handbook; University of Florida: Gainesville, FL, USA, 2018; Volume 3. [Google Scholar]
- Burrage, S.W. The nutrient film technique (NFT) for crop production in the mediterranean region. Acta Hortic. 1999, 491, 301–305. [Google Scholar] [CrossRef]
- Alsmairat, N.G.; Al-Ajlouni, M.G.; Ayad, J.Y.; Othman, Y.A.; Hilaire, R.S. Composition of soilless substrates affect the physiology and fruit quality of two strawberry (Fragaria × ananassa Duch.) cultivars. J. Plant Nutr. 2018, 41, 2356–2364. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Saha, U.K.; Raviv, M.; Tuller, M. Inorganic and synthetic organic components of soilless culture and potting mixtures. In Soilless Culture: Theory and Practice Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2019; pp. 259–301. ISBN 9780444636966. [Google Scholar]
- Benton, J.J.J. Hydroponics A Practical Guide for the Soilless Grower, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2004. [Google Scholar]
- Rodríguez-Ortega, W.M.; Martínez, V.; Nieves, M.; Simón, I.; Lidón, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Cámara-Zapata, J.M.; García-Sánchez, F. Agricultural and Physiological Responses of Tomato Plants Grown in Different Soilless Culture Systems with Saline Water under Greenhouse Conditions. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Tabatabaei, S.J. Effects of cultivation systems on the growth, and essential oil content and composition of valerian. J. Herbs Spices Med. Plants 2008, 14, 54–67. [Google Scholar] [CrossRef]
- Blok, C.; Jackson, B.E.; Guo, X.; De Visser, P.H.B.; Marcelis, L.F.M. Maximum plant uptakes for water, nutrients, and oxygen are not always met by irrigation rate and distribution in water-based cultivation systems. Front. Plant Sci. 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, B.M.; Manzoni, L.R.; Graham, C.A.; Rodgers, B.; Farmer, J.R.; Dodd, A.N. Getting to the roots of aeroponic indoor farming. New Phytol. 2020, 228, 1183–1192. [Google Scholar] [CrossRef]
- Tzerakis, C.; Savvas, D.; Sigrimis, N. Responses of cucumber grown in recirculating nutrient solution to gradual Mn and Zn accumulation in the root zone owing to excessive supply via the irrigation water. J. Plant Nutr. Soil Sci. 2012, 175, 125–134. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. Effect of different macronutrient cation ratios on macronutrient and water uptake by melon (Cucumis melo) grown in recirculating nutrient solution. J. Plant Nutr. Soil Sci. 2015, 178, 320–332. [Google Scholar] [CrossRef]
- Ropokis, A.; Ntatsi, G.; Kittas, C.; Katsoulas, N.; Savvas, D. Impact of cultivar and grafting on nutrient and water uptake by sweet pepper (capsicum annuum l.) grown hydroponically under mediterranean climatic conditions. Front. Plant Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ropokis, A.; Ntatsi, G.; Rouphael, Y.; Kotsiras, A.; Kittas, C.; Katsoulas, N.; Savvas, D. Responses of sweet pepper (Capsicum annum L.) cultivated in a closed hydroponic system to variable calcium concentrations in the nutrient solution. J. Sci. Food Agric. 2021, 101, 4342–4349. [Google Scholar] [CrossRef] [PubMed]
- Inal, A.; Tarakcioglu, C. Effects of nitrogen forms on growth, nitrate accumulation, membrane permeability, and nitrogen use efficiency of hydroponically grown bunch onion under boron deficiency and toxicity. J. Plant Nutr. 2001, 24, 1521–1534. [Google Scholar] [CrossRef]
- Kane, C.D.; Jasoni, R.L.; Peffley, E.P.; Thompson, L.D.; Green, C.J.; Pare, P.; Tissue, D. Nutrient solution and solution pH influences on onion growth and mineral content. J. Plant Nutr. 2006, 29, 375–390. [Google Scholar] [CrossRef]
- Gamiely, S.; Randle, W.M.; Mills, H.A.; Smittle, D.A.; Banna, G.I. Onion Plant Growth, Bulb Quality, and Water Uptake following Ammonium and Nitrate Nutrition. HortScience 1991, 26, 1061–1063. [Google Scholar] [CrossRef] [Green Version]
- Güneş, A.; Inal, A.; Aktaş, M. Reducing nitrate content of NFT grown winter onion plants (Allium cepa L.) by partial replacement of NO3 with amino acid in nutrient solution. Sci. Hortic. 1996, 65, 203–208. [Google Scholar] [CrossRef]
- De Kreij, C.; Voogt, W.; Baas, R. Nutrient Solutions and Water Quality for Soilless Cultures; Applied Plant Research, Division Glasshouse: London, UK, 1999. [Google Scholar]
- Brewster, J.L. (Ed.) Onions and Other Vegetable Alliums, 2nd ed; Cab International: Wellesbourne, UK, 2008; ISBN 978-1-84593-399-9. [Google Scholar]
- Amer Essa, A.H.; Gamea, G.R. Physical and Mechanical Properties of Bulb Onions. Misr J. Agric. Eng. 2003, 20, 661–676. [Google Scholar] [CrossRef]
- Bosekeng, G. Response of Onion (Allium cepa L.) to Swing Date and Plant Population. Ph.D. Thesis, University of the Free State Bloemfontein, Bloemfontein, South Africa, 2012. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials: Structure, Physical Characteristics and Mechanical Properties, 2nd ed.Gordon and Breach Science Publishers: London, UK, 1986. [Google Scholar]
- Stroshine, R. Physical Properties of Agricultural Materials and Food Products; R. Stroshine: West Lafayette, IN, USA, 2004. [Google Scholar]
- Nabi, G.; Rab, A.; Sajid, M.; Ullah, F.; Abbas, S.J.; Ali, I. Influence of curing methods and storage conditions on the post-harvest quality of onion bulbs. Pakistan J. Bot. 2013, 45, 455–460. [Google Scholar]
- Abdissa, Y.; Tekalign, T.; Pant, L.M. Growth, bulb yield and quality of onion (Allium cepa L.) as influenced by nitrogen and phosphorus fertilization on vertisol I. growth attributes, biomass production and bulb yield. African J. Agric. Res. 2011, 6, 3252–3258. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Cardarelli, M.; Fanasca, S.; Salerno, A.; Rivera, C.M.; Rea, E.; Karam, F. Water use efficiency of greenhouse summer squash in relation to the method of culture: Soil vs. Soilless. Acta Hortic. 2005, 697, 81–86. [Google Scholar] [CrossRef]
- Horneck, D.; Miller, R. Determination of total nitrogen in plant tissue. In Methods for Plant Analysis—Tissue Tests—Let Plants Speak; Kalra, Y.P., Ed.; CRC Press Taylor & Francis Group: Boca Ratoon, FL, USA, 1998; p. 291. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. A Simple Turbidimetric Method of Determining Total Sulfur in Plant Materials. Agron. J. 1970, 62, 805–806. [Google Scholar] [CrossRef]
- Tzerakis, C.; Savvas, D.; Sigrimis, N.; Mavrogiannopoulos, G. Uptake of Mn and Zn by cucumber grown in closed hydroponic systems as influenced by the Mn and Zn concentrations in the supplied nutrient solution. HortScience 2013, 48, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Addai, I.K.; Anning, D.K. Response of onion (Allium cepa L.) to bulb size at planting and NPK 15:15:15 fertilizer application rate in the Guinea savannah agroecology of Ghana. J. Agron. 2015, 14, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Backes, C.; Bôas, R.L.V.; De Godoy, L.J.G.; Vargas, P.F.; Santos, A.J.M. Determination of growth and nutrient accumulation in bella vista onion. Rev. Caatinga 2018, 31, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Nobel, P.S. Chapter 7—Temperature and Energy Budgets. In Physicochemical and Environmental Plant Physiology, 4th ed.; Academic Press: San Diego, CA, USA, 2009; pp. 318–363. ISBN 978-0-12-374143-1. [Google Scholar]
- Coolong, T.; Williams, M.A. Overwintering potential of onion in Kentucky. Horttechnology 2014, 24, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Van Os, E.; Gieling, T.H.; Lieth, J.H. Technical equipment in soilless production systems. In Soilless Culture: Theory and Practice Theory and Practice; Raviv, M., Lieth, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 157–207. [Google Scholar]
- Pérez Ortolá, M.; Knox, J.W. Water Relations and Irrigation Requirements of Onion (Allium Cepa L.): A Review of Yield and Quality Impacts. Exp. Agric. 2015, 51, 210–231. [Google Scholar] [CrossRef]
- Schmautz, Z.; Loeu, F.; Liebisch, F.; Graber, A.; Mathis, A.; Bulc, T.G.; Junge, R. Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water 2016, 8, 533. [Google Scholar] [CrossRef] [Green Version]
- Suhl, J.; Oppedijk, B.; Baganz, D.; Kloas, W.; Duijn, B. Van Oxygen consumption in recirculating nutrient film technique in aquaponics. Sci. Hortic. 2019, 255, 281–291. [Google Scholar] [CrossRef]
- Khokhar, K.M. Environmental and genotypic effects on bulb development in onion—A review. J. Hortic. Sci. Biotechnol. 2017, 92, 448–454. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Hao, X. Interactions between nutrition and environmental conditions in hydroponics. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H.C., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 413–445. [Google Scholar]
- Qiansheng, L.; Xiaoqiang, L.; Tang, B.; Mengmeng, G. Growth responses and root characteristics of lettuce grown in Aeroponics, Hydroponics, and Substrate Culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Rubatzky, V.; Yamaguchi, M. World Vegetables: Principles, Production, and Nutritive Values, 2nd ed.; Springer: Dordrecht, The Netherlands, 1997; ISBN 978-1-4615-6015-9. [Google Scholar]
- Bosch Serra, A.D.; Torrens, M.B.; Olivé, F.D.; Melines Pagès, M.A. Root growth of three onion cultivars. Dev. Crop Sci. 1997, 25, 123–133. [Google Scholar] [CrossRef]
- Forde, B.; Lorenzo, H. The nutritional control of root development. Plant Soil 2001, 232, 51–68. [Google Scholar] [CrossRef]
- Kadayifci, A.; Tuylu, G.I.; Ucar, Y.; Cakmak, B. Crop water use of onion (Allium cepa L.) in Turkey. Agric. Water Manag. 2005, 72, 59–68. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Rabinowitch, H.D. Physiology of Domesticated Alliums: Onions, Garlic, Leek, and Minor Crops, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 3, ISBN 9780123948083. [Google Scholar]
- Nasreen, S.; Haque, M.M.; Hossain, M.A. Nitrogen and Sulphur Fertilization. Bangladesh J. Agric. Res. 2007, 32, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Shultz, S. Commodity of the quarter onions. J. Agric. Food Inf. 2010, 11, 8–15. [Google Scholar] [CrossRef]
- Ko, S.S.; Chang, W.N.; Wang, J.F.; Cherng, S.J.; Shanmugasundaram, S. Storage variability among short-day onion cultivars under high temperature and high relative humidity, and its relationship with disease incidence and bulb characteristics. J. Am. Soc. Hortic. Sci. 2002, 127, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Pérez, J.C.; Bautista, J.; Bateman, A.; Gunawati, G.; Riner, C. Sweet onion (Allium cepa) plant growth and bulb yield and quality as affected by potassium and sulfur fertilization rates. HortScience 2016, 51, 1592–1595. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.R.; Merkt, N.; Zikeli, S.; Zörb, C. Quality aspects in open-pollinated onion varieties from Western Europe. J. Appl. Bot. Food Qual. 2018, 91, 69–78. [Google Scholar] [CrossRef]
- Thangasamy, A. Quantification of Dry-Matter Accumulation and Nutrient Uptake Pattern of Short Day Onion (Allium cepa L.). Commun. Soil Sci. Plant Anal. 2016, 47, 246–254. [Google Scholar] [CrossRef]
- Gonçalves, F.A.R.; De Aquino, P.M.; Duarte, L.O.; De Aquino, R.F.B.A.; Dos Reis, M.R.; De Aquino, L.A. Macronutrient extraction curves of the onion crop. Semin. Agrar. 2019, 40, 2497–2512. [Google Scholar] [CrossRef]
- Son, Y.J.; Park, J.E.; Kim, J.; Yoo, G.; Nho, C.W. The changes in growth parameters, qualities, and chemical constituents of lemon balm (Melissa officinalis L.) cultivated in three different hydroponic systems. Ind. Crops Prod. 2021, 163, 113313. [Google Scholar] [CrossRef]
- World’s Leading Onion Producing Countries. Available online: https://www.atlasbig.com/en-ca/countries-by-onion-production (accessed on 15 March 2021).
- Vavrina, C.S.; Smittle, D.A. Evaluating Sweet Onion Cultivars for Sugar Concentrations and Pungency. HortScience 1993, 28, 804–806. [Google Scholar] [CrossRef]
- Russo, V.M. Nutrient content and yield in relation to top breakover in onion developed from greenhouse-grown transplants. J. Sci. Food Agric. 2009, 89, 815–820. [Google Scholar] [CrossRef]
- Cooper, J.; Scherer, H. Nitrogen Fixation. In Marschner’ s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 389–408. [Google Scholar]
- Kassa, A. Evaluation of Yield and Yield Components of Onion (Allium Cepa L.) Under Hatseva Condition, Israel AWOKE. Int. J. Agric. Innov. Res. 2018, 7, 50–58. [Google Scholar]
- Kumara, B.R.; Mansur, C.P.; Chander, G.; Wani, S.P.; Alloli, T.B.; Jagadeesh, S.L.; Mesta, R.K.; Satish, D.; Meti, S.; Reddy, S.G. Effect of Potassium Levels, Sources and Time of Application on Storage Life of Onion (Allium cepa L.). Int. J. Pure Appl. Biosci. 2018, 6, 540–549. [Google Scholar] [CrossRef]
- Bettoni, M.M.; Mogor, Á.F.; Pauletti, V.; Goicoechea, N.; Aranjuelo, I.; Garmendia, I. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Compos. Anal. 2016, 51, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, M. Advanced Series in Agricultural Sciences 24 Soilless Culture Management; McNeal, B.L., Tardieu, F., Van Keulen, H., Van Vleck, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 978-3-642-79095-9. [Google Scholar]
- Petropoulos, S.A.; Ntatsi, G.; Ferreira, I.C.F.R. Long-term storage of onion and the factors that affect its quality: A critical review. Food Rev. Int. 2017, 33, 62–83. [Google Scholar] [CrossRef]
- Maw, B.W.; Mullinix, B.G. Moisture loss of sweet onions during curing. Postharvest Biol. Technol. 2005, 35, 223–227. [Google Scholar] [CrossRef]
- Opara, L. Onion Post-Harvest Operations; FAO: Rome, Italy, 2003. [Google Scholar]
- El-Desuki, M.; Mahmoud, A.R.; Hafiz, M.M. Response of Onion Plants to Minerals and Bio-fertilizers Application. Res. J. Agric. Biol. Sci. 2006, 2, 292–298. [Google Scholar]
- Sonneveld, C. Composition of nutrient solutions. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 179–210. [Google Scholar]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Berlin/Heidelberg, Germany, 2009; Volume 53, ISBN 978-85-781-107-96. [Google Scholar]
- Barker, A.V.; Bryson, G.M. Nitrogen. In Handbook of Plant Nutrition; Barker, A., Pilbeam, D.J., Eds.; Taylor & Francis Group, LLC: Boca Ratoon, FL, USA, 2007; pp. 22–50. [Google Scholar]
- Okada, H.; Abedin, T.; Yamamoto, A.; Hayashi, T.; Hosokawa, M. Production of low-potassium onions based on mineral absorption patterns during growth and development. Sci. Hortic. 2020, 267, 109252. [Google Scholar] [CrossRef]
- Antoniadis, V.; Petropoulos, S.A.; Golia, E.; Koliniati, R. Effect of phosphorus addition on onion plants grown in 13 soils of varying degree of weathering. J. Plant Nutr. 2017, 40, 2054–2062. [Google Scholar] [CrossRef]
- Engels, C.; Kirkby, E.; White, P.J. Mineral Nutrition, Yield and Source–Sink Relationships. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 89–133. [Google Scholar]
- Zhang, C.; Zhang, H.; Zhan, Z.; Liu, B.; Chen, Z.; Liang, Y. Transcriptome analysis of sucrose metabolism during bulb swelling and development in onion (Allium cepa L.). Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madakadze, R.M.; Kwaramba, J. Effect of Preharvest Factors on the Quality of Vegetables Produced in the Tropics—Vegetables: Growing Environment and the Quality of Produce. In Production Practices and Quality Assessment of Food Crops Volume 1 Preharvest Practice; Dri, R., Jain, S.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 1–36. ISBN 1-4020-2533-5. [Google Scholar]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, S.I.; Philip, W. Functions of Macronutrients. In Marschner’ s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 135–189. [Google Scholar]
- Abbès, C.; Parent, L.E.; Karam, A.; Isfan, D. Effect of NH4+:NO3- ratios on growth and nitrogen uptake by onions. Plant Soil 1995, 171, 289–296. [Google Scholar] [CrossRef]
- Khokhar, K.M. Mineral nutrient management for onion bulb crops—A review. J. Hortic. Sci. Biotechnol. 2019, 94, 703–717. [Google Scholar] [CrossRef]
- Savvas, D.; Ntatsi, G.; Passam, H.C. The European Journal of Plant Science and Biotechnology Plant Nutrition and Physiological Disorders in Greenhouse Grown Tomato, Pepper and Eggplant. Eur. J. Plant Sci. Biotechnol. 2008, 2, 45–61. [Google Scholar]
- Asao, T. (Ed.) Hydroponics—A Standard Methodology for Plant Biological Researches; InTech: London, UK, 2012; ISBN 9789535103868. [Google Scholar]
- Boyhan, G. Sulfur, its role in onion production and related Alliums. In Sulfur: A Missing Link between Soils, Crops and Nutrition; Jez, J., Ed.; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA, 2008; pp. 183–196. [Google Scholar]
AER | FL | NFT | AG | |
---|---|---|---|---|
Pump | Pedrollo JCR 15H, Italy | DAB Euroinox 30/30 T, Italy | Eheim 1001.220, Germany | Pedrollo JCR 10H, Italy |
Application of GNS | Netafim coolnet Pro 65 microns (4.0 bar) | Perforated pipes at the bottom of the basin | 5 mm tubes | 8 L h−1 |
Irrigation | Daily 1 min 3 min−1 | System worked 2–3 h day−1 aiming at O2 levels between 5–6 ppm | Daily 0.15 m 3 h−1 per channel | 4–9 irrigation events day−1 based on solar radiation integrator, for a target leaching fraction of 0.4 |
Parameter | Tap Water | SNS | GNS |
---|---|---|---|
pH | 7.78 | 5.6 | 5.6 |
EC | 0.70 | 2.00 | 2.60 |
[Ca2+] | 2.30 | 3.50 | 4.50 |
[K+] | 0.07 | 7.00 | 10.00 |
[Mg2+] | 1.28 | 1.30 | 1.50 |
[Na+] | 1.09 | 1.09 | 1.09 |
[NH4+] | 0.00 | 1.10 | 1.25 |
[SO42−] | 1.08 | 1.32 | 1.50 |
[NO3−] | 0.01 | 12.00 | 17.00 |
[H2PO4−] | 0.00 | 1.80 | 2.00 |
[HCO3−] | 4.60 | 0.79 | 1.59 |
[Cl−] | 1.55 | 1.55 | 1.55 |
[Fe] | 0.00 | 40.00 | 40.00 |
Mn2+ | 0.00 | 5.00 | 5.00 |
Zn2+ | 1.07 | 4.00 | 4.00 |
Cu2+ | 0.00 | 0.80 | 0.80 |
B | 0.00 | 30.00 | 30.00 |
Mo | 0.00 | 0.50 | 0.50 |
TI | Tair | RHair | VPD |
---|---|---|---|
1–15 | 18.70 ± 0.57 | 68.36 ± 1.36 | 0.84 ± 0.05 |
16–30 | 20.81 ± 0.51 | 65.13 ± 1.59 | 1.06 ± 0.09 |
31–45 | 22.44 ± 0.63 | 60.64 ± 1.77 | 1.31 ± 0.10 |
46–60 | 23.59 ± 0.34 | 63.99 ± 1.77 | 1.22 ± 0.07 |
61–75 | 26.17 ± 0.44 | 61.90 ± 2.75 | 1.54 ± 0.16 |
76–90 | 26.77 ± 0.22 | 59.86 ± 1.70 | 1.61 ± 0.08 |
91–105 | 27.18 ± 0.34 | 65.65 ± 1.57 | 1.42 ± 0.08 |
Soilless Culture Systems | FW (g) | DM (%) | ||||
---|---|---|---|---|---|---|
(I) | (II) | (III) | (I) | (II) | (III) | |
AER. | 192.76 b | 475.25 b | 617.91 b | 6.04 a | 6.92 a | 8.22 b |
FL. | 214.96 a | 598.73 a | 816.04 a | 5.36 b | 5.98 b | 7.85 c |
N.F.T. | 177.19 b | 343.92 c | 523.04 c | 6,13 a | 6.98 a | 8.73 a |
AG. | 176.19 b | 583.75 a | 793.99 a | 6.17 a | 7.06 a | 8.44 ab |
Statistical Significance | ||||||
SYSTEM | ** | *** | *** | ** | * | *** |
Soilless Culture Systems | PWC (%) | Y (kg m−2) | BDM (%) | HI | NMB (%) | SS (Brix) |
---|---|---|---|---|---|---|
AER | 23.53 a | 6.22 b | 8.03 b | 0.7018 a | 5.56 b | 8.13 a |
FL | 25.17 a | 7.87 a | 7.94 b | 0.711 a | 5.56 b | 8.28 a |
NFT | 24.49 a | 5.20 c | 8.16 ab | 0.678 b | 16.67 a | 8.12 a |
AG | 24.80 a | 7.57 a | 8.56 a | 0.706 ab | 0.00 c | 8.36 a |
Statistical significance | ||||||
SYSTEM | N.S. | *** | * | * | * | N.S. |
Soilless Culture Systems | CNS | TCNS | WUE | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(I) | (II) | (III) | (I) | (II) | (III) | FP | FB | DP | ||
L plant−1 | g L−1 | |||||||||
AER. | 3.57 a | 7.23 a | 6.93 a | 17.73 a | 2.96 a | 2.95 bc | 2.60 b | 34.09 b | 25.36 b | 2.87 c |
FL. | 3.75 a | 7.23 a | 7.04 a | 18.02 a | 2.80 a | 3.38 b | 4.03 a | 44.65 a | 31.74 a | 3.57 b |
N.F.T. | 3.13 a | 5.58 b | 6.38 a | 15.09 b | 3.15 a | 2.36 c | 3.39 ab | 33.74 b | 24.86 b | 3.03 c |
AG. | 3.02 a | 7.03 a | 6.6 a | 16.65 a | 3.32 a | 4.33 a | 3.91 a | 46.86 a | 32.95 a | 4.03 a |
Statistical significance | ||||||||||
SYSTEM | N.S. | *** | N.S. | ** | N.S. | ** | * | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouroutoglou, C.; Kotsiras, A.; Ntatsi, G.; Savvas, D. Impact of the Hydroponic Cropping System on Growth, Yield, and Nutrition of a Greek Sweet Onion (Allium cepa L.) Landrace. Horticulturae 2021, 7, 432. https://doi.org/10.3390/horticulturae7110432
Mouroutoglou C, Kotsiras A, Ntatsi G, Savvas D. Impact of the Hydroponic Cropping System on Growth, Yield, and Nutrition of a Greek Sweet Onion (Allium cepa L.) Landrace. Horticulturae. 2021; 7(11):432. https://doi.org/10.3390/horticulturae7110432
Chicago/Turabian StyleMouroutoglou, Christos, Anastasios Kotsiras, Georgia Ntatsi, and Dimitrios Savvas. 2021. "Impact of the Hydroponic Cropping System on Growth, Yield, and Nutrition of a Greek Sweet Onion (Allium cepa L.) Landrace" Horticulturae 7, no. 11: 432. https://doi.org/10.3390/horticulturae7110432
APA StyleMouroutoglou, C., Kotsiras, A., Ntatsi, G., & Savvas, D. (2021). Impact of the Hydroponic Cropping System on Growth, Yield, and Nutrition of a Greek Sweet Onion (Allium cepa L.) Landrace. Horticulturae, 7(11), 432. https://doi.org/10.3390/horticulturae7110432