In Vitro Propagation of Aconitum chasmanthum Stapf Ex Holmes: An Endemic and Critically Endangered Plant Species of the Western Himalaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Collection
2.2. Chemicals
2.3. Seed Germination
2.4. Explant Preparation and Establishment of In Vitro Shoot Cultures
2.5. In Vitro Rooting
2.6. In Vitro Rhizome Formation
2.7. Germination of Rhizome: Hardening and Acclimatization of Germinated Plantlets
2.8. Experimental Design and Statistical Analysis
3. Results
3.1. Seed Germination
3.2. Multiple Shoot Induction
3.3. In Vitro Rooting
3.4. In Vitro Rhizome Formation
3.5. Acclimatization and Hardening of Plantlets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Ayurvedic Pharmacopoeia of India—Part I, 1st ed.; Ministry of Health and Family Planning, Government of India: New Delhi, India, 2000; pp. 180–182.
- Ved, D.; Saha, D.; Ravikumar, K.; Haridasan, K. Aconitum Chasmanthum; The IUCN Red List of Threatened Species: E.T50126558A79578539; iucnredlist.org 2015. Available online: https://www.iucnredlist.org/species/50126558/79578539 (accessed on 18 October 2021).
- Chopra, R.N.; Badhwara, R.L.; Ghosh, S. Poisonous Plants of India; Manager of Publications: Delhi, India, 1949; p. 104. [Google Scholar]
- Anwar, S.; Ahmad, B.; Subhan, M.; Gul, W.; Nazar-ul-Islam. Biological and pharmacological properties of Aconitum chasmanthum. J. Biol. Sci. 2003, 3, 989–993. [Google Scholar]
- Dhar, U.; Kachroo, P. Alpine Flora of Kashmir Himalaya; Scientific Publishers: Jodhpur, India, 1983; p. 280. [Google Scholar]
- Jabeen, N.; Kozgar, M.I.; Dar, G.H.; Shawl, A.S.; Khan, S. Distribution and Taxonomy of Genus Aconitum in Kashmir: Potent Medicinal Resource of Himalayan Valley. Chiang Mai J. Sci. 2013, 40, 173–186. [Google Scholar]
- Dubey, N.; Dubey, N.; Mehta, R.; Saluja, A. Selective Determination of Aconitine in Polyherbal Oils Containing Aconitum chasmanthum Using High-Performance Thin-Layer Chromatography. J. AOAC Int. 2009, 92, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Parvez, M.; Gul, W.; Anwar, S. Chasmanthinine. Acta Crystallogr. Sect C Cryst. Struct. Commun. 1998, 54, 125–126. [Google Scholar] [CrossRef] [Green Version]
- Achmatowicz, O., Jr.; Tsuda, Y.; Marion, L.; Okamoto, T.; Natsume, M.; Chang, H.H.; Kajima, K. Chasmanine and its structure. Can. J. Chem. 1965, 43, 825–839. [Google Scholar] [CrossRef]
- Parvez, M.; Gul, W.; Anwar, S.; Miana, G.A.; Choudhary, M.I. Indaconitine 0.5-acetonitrile solvate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1999, 55, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Uslu, B.; Lingeman, H.; Ozkan, S.A.; Palit, M.; Dogan-Topal, B. Analytical method development and validation of pharmaceutical analysis using chromatographic techniques. Chromatogr. Res. Int. 2012, 2012, 948129. [Google Scholar] [CrossRef] [Green Version]
- Dubey, N.; Dubey, N.; Mehta, R. Development and Validation of Selective High-Performance Liquid Chromatographic Method Using Photodiode Array Detection for Estimation of Aconitine in Polyherbal Ayurvedic Taila Preparations. Chromatogr. Res. Int. 2012, 2012, 157916. [Google Scholar] [CrossRef] [Green Version]
- Dar, B.A.; Lone, A.M.; Khan, R.A.; Qurishi, M.A. Studies on Structure Elucidation of Aconitum Alkaloids Using LC-ESI-MS Technique. Am. J. Ethnomed. 2015, 2, 2348–9502. [Google Scholar]
- Gujree, G.M.; Nawchoo, I.A.; Wafai, B.A. Meiotic System and Pollination Mechanisms of the Critically Endangered Aconitum chasmanthum Stapf ex Holmes—A Novel Species Endemic to Kashmir Himalayan Region. Int. J. Plant Rep. Biol. 2009, 1, 153–162. [Google Scholar]
- Rasool, G. Medicinal Plants of the Northern Areas of Pakistan; SAAD Printo Pack: Rawalpindi, Pakistan, 1998; pp. 13–15. [Google Scholar]
- Shyaula, S.L.; Phytochemicals, T.U. Processing of Aconitum Species in Nepal. Nepal J. Sci. Technol. 2011, 12, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Gujree, G.M. Studies on Reproductive Biology to Develop Conservationn Strategies for Picrorhlza kurrooa Royle ex Benth. and Aconitum chasmanthum Stapf ex Holmes. Ph.D. Thesis, Department of Botany, University of Kashmir, Srinagar, India, 2007. [Google Scholar]
- Shinwari, Z.K.; Watanabe, T.; Rehman, M.; Yoshikawa, T. A Pictorial Guide to Medicinal Plants of Pakistan; Kohat University of Science and Technology: Kohat, Pakistan, 2006; Volume 1, pp. 969–8870. [Google Scholar]
- Shrikumar, S.; Ravi, T.K. Approaches towards development and promotion of herbal drugs. Pharmacogn. Rev. 2007, 1, 180–184. [Google Scholar]
- Khare, C.P. Indian Medicinal Plants; Springer: Berlin, Germany, 2007. [Google Scholar]
- Mir, A.H.; Tyub, S.; Kamili, A.N. Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. Saudi J. Biol. Sci. 2020, 27, 2380–2389. [Google Scholar] [CrossRef]
- Nadeem, M.; Kumar, A.; Nandi, S.K.; Palni, L.M.S. Tissue culture of medicinal plants with particular reference to Kumaun Himalaya. In Proceedings of the Workshop on Himalayan Medicinal Plants Potential and Prospects, Almora, India, 5–7 November 1998. [Google Scholar]
- Pandey, H.; Nandi, S.K.; Kumar, A.; Palni, U.T.; Chandra, B.; Palni, L.M.S. In vitro propagation of Aconitum balfourii Stapf; an important aconite of Himalayan alpine. J. Hort. Sci. Biotechnol. 2004, 21, 69–84. [Google Scholar] [CrossRef]
- Gondval, M.; Chaturvedi, P.; Gaur, A.K. Thidiazuron-induced high frequency establishment of callus cultures and plantlet regeneration in Aconitum balfourii Stapf.: An Endangered Medicinal Herb of North-West Himalayas. Indian J. Biotechnol. 2016, 15, 251–255. [Google Scholar]
- Hatano, K.; Kamura, K.; Shoyama, Y.; Nishioka, I. Clonal multiplication of Aconitum carmichaeli Debx. by tip tissue culture and alkaloid contents of clonally propagated plants. Planta Med. 1988, 54, 152–154. [Google Scholar] [CrossRef]
- Giri, A.; Ahuja, P.S.; Kumar, P.V.A. Somatic embryogenesis and plant regeneration from callus culture of Aconitum heterophyllum Wall. Plant Cell Tissue Organ Cult. 1993, 32, 213–218. [Google Scholar] [CrossRef]
- Sharma, E.; Gaur, K.; Punetha, H.; Gaur, A.K. In vitro regeneration of Aconitum balfourii stapf: A rare medicinal herb from Himalayan alpine through root explant. Res. J. Med. Plant. 2012, 6, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, R.; Kapoor, N.; Singh, I. Effect of Growth Regulators on In vitro Cultures of Aconitum heterophyllum: An Endangered Medicinal Plant. Int. J. Pure Appl. Biosci. 2015, 3, 50–55. [Google Scholar] [CrossRef]
- Belwal, N.S.; Kamal, B.; Sharma, V.; Gupta, S.; Dobriyal, A.K.; Jadon, V.S. Production of genetically uniform plant from shoot tips of Aconitum heterophyllum Wall. a critically endangerd medicinal herb. J. Hort. Sci. Biotechnol. 2016, 91, 529–535. [Google Scholar] [CrossRef]
- Cervelli, R. In vitro propagation of Aconitum noveboracense and Aconitum napellus. Hort. Sci. 1987, 22, 304–305. [Google Scholar]
- Deb, C.R.; Langhu, T. Development of in vitro propagation protocol of Aconitum nagarum Stapf. Plant Cell Biotechnol. Mol. Biol. 2017, 18, 324. [Google Scholar]
- Rawat, J.M.; Agnihotri, R.K.; Nautiyal, S.; Rawat, B.; Chandra, A. In vitro propagation, genetic and secondary metabolite analysis of Aconitum violaceum Jacq.: A threatened medicinal herb. Acta Physiol. Plant 2013, 35, 2589–2599. [Google Scholar] [CrossRef]
- Chandra, B. Studies on Propagation, Agrotechnology and Phytochemical Evaluation of Some Alpine Medicinal Plants of Himalayan Region. Ph.D. Thesis, Kumaun University, Nainital, India, 2003; p. 148. [Google Scholar]
- Singh, M.; Chettri, A.; Pandey, A.; Sinha, S.; Singh, K.K.; Badola, H.K. In vitro propagation and phytochemical assessment of Aconitum ferox wall: A threatened medicinal plant of Sikkim Himalaya. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2019, 90, 313–321. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Darrudi, R.; Hassandokht, M.R.; Nazeri, V. Effects of KNO3 and CaCl2 on seed germination of Rheum khorasanicum B. Baradaran & A. Jafari. J. Appl. Sci. Res. 2014, 10, 171–175. [Google Scholar]
- Nidhi, S.; Vikas, S.; Barkha, K.; Dobriyal, A.K.; Jadon, V.S. Advancement in research on Aconitum sp. (Ranunculaceae) under different area: A review. Biotechnology 2010, 9, 411–427. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.K.; Sharma, S.; Sharma, S.S. Seed germination behaviour of some medicinal plants of Lahaul and Spiti cold desert (Himachal Pradesh): Implications for conservation and cultivation. Cur. Sci. 2006, 90, 1113–1118. [Google Scholar]
- Pandey, H.; Nandi, S.K.; Nadeem, M.; Palni, L.M.S. Chemical stimulation of seed germination in Aconitum heterophyllum Wall and A. balfourii Stapf.: Important Himalayan species of medicinal value. Seed Sci Technol. 2000, 28, 39–48. [Google Scholar]
- Nautiyal., B.P.; Nautiyal, M.C.; Khanduri, V.P.; Rawat, N. Floral biology of Aconitum heterophyllum wall: A critically endangered alpine medicinal plant of Himalaya, India. Turk. J. Bot. 2009, 33, 13–20. [Google Scholar]
- Frost, C. Embryo development in ripe seeds of Eranthis hiemalis and its relation to giberrallic acid. Physiol. Plant. 1974, 30, 200–205. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Deep complex morphophysiological dormancy in seeds of the mesic woodland herb Delphinium tricorne (Ranunculaceae). Int. J. Plant Sci. 1994, 155, 738–743. [Google Scholar] [CrossRef]
- Walck, J.L.; Baskin, C.C.; Baskin, J.M. Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of non-deep simple morphophysiological dormancy. Can. J. Bot. 1999, 77, 1769–1776. [Google Scholar] [CrossRef]
- Forbis, T.A.; Floyd, S.K.; DeQueiroz, A. The evolution of embryo size in angiosperms and other seed plants: Implications for the evolution of seed dormancy. Evolution 2002, 56, 2112–2125. [Google Scholar] [CrossRef]
- Beigh, S.Y.; Nawchoo, I.A.; Iqbal, M. Cultivation and Conservation of Aconitum heterophyllum: A Critically Endangered Medicinal Herb of the Northwest Himalayas. J. Herbs Spices Med. Plants 2005, 1, 47–56. [Google Scholar]
- Dosmann, M.S. Stratification improves and is likely required for germination of Aconitum sinomontanum. Hort. Technol. 2002, 12, 423–425. [Google Scholar] [CrossRef]
- Vandelook, F.; Lenaerts, J.; Jozef, A.V.A. The role of temperature in post-dispersal embryo growth and dormancy break in seeds of Aconitum lycoctonum L. Flora—Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 536–542. [Google Scholar] [CrossRef]
- Paramanick, D.; Panday, R.; Shukla, S.S.; Sharma, V. Primary pharmacological and other important findings on the medicinal plant “Aconitum heterophyllum” (aruna). J. Pharmacopunct. 2017, 20, 89. [Google Scholar]
- Bhadula, S.K.; Singh, A.; Lata, H.; Kuniyal, C.P.; Purohit, A.N. Distribution Pattern, Population Diversity and Propagation of Some High-Altitude Medicinal Herbs from Garhwal Himalaya: Problems and Prospects for Conservation. High Altitudes of the Himalaya II (Biodiversity, Ecology, and Environment); Pangtey, Y.P.S., Ed.; Gyanodaya Prakashan: Nainital, Pakistan, 2002; pp. 389–413. [Google Scholar]
- Nautiyal, M.C.; Rawat, A.S.; Bhadula, S.K. Germination in two Aconitum species. Seed Res. 1985, 14, 133–139. [Google Scholar]
- Murch, S.J.; KrishnaRaj, S.; Saxena, P.K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep. 2000, 19, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, N.; Shawl, A.S.; Dar, G.H.; Jan, A.; Sultan, P. Callus induction and organogenesis from explants of Aconitum heterophyllum medicinal plant. Biotechnology 2006, 5, 287–291. [Google Scholar]
- Watad, A.A.; Kochba, M.; Nissima, A.; Gaba, V. Improvement of Aconitum napellus micropropagation by liquid culture on floating membrane rafts. Plant Cell Rep. 1995, 14, 345–348. [Google Scholar] [CrossRef]
- Doğan, M. In vitro rapid propagation of an aquatic plant Pogostemon erectus (Dalzell) Kuntze. Anatol. J. Bot. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Sandhya, H.; Srinath, R. Role of growth regulators on in vitro callus induction and direct regeneration in Physalis minima Linn. Int. Lett. Nat. Sci. 2015, 44, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Hesami, M.; Daneshvar, M.H. In vitro adventitious shoot regeneration through direct and indirect organogenesis from seedling-derived hypocotyl segments of Ficus religiosa L.: An important medicinal plant. Hort. Sci. 2018, 53, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Naaz, A.; Shahzad, A.; Anis, M. Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L.—A multipurpose tree. App. Biochem. Biotech. 2014, 173, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, P.; van Staden, J. Rapid in vitro micropropagation of Agapanthus praecox. S. Afr. J. Bot. 2013, 86, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Qadir, J.; Singh, S.; Kour, S.; Kaloo, Z.A.; Ganai, B.A. In vitro Propagation of Polygonatum verticillatum All. A Threatened Medicinal Herb through Seed Explant. J. Sci. Res. 2020, 64, 111–117. [Google Scholar] [CrossRef]
- Roy, J.; Banerjee, N. Rhizome and shoot development during in vitro propagation of Geodorum densiflorum (Lam.) Schltr. Sci. Hortic. 2002, 94, 181–192. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Liu, Y. In vitro plant regeneration from the immature seeds of Cymbidium faberi. Plant Cell Tissue Organ Cult. 2005, 81, 247–251. [Google Scholar] [CrossRef]
Chilling Treatment (Temp.) | Chilling Treatment (Days) | Germinating Medium | Mean Germination Time (Days, Mean ± SEM) | Percentage Germination |
---|---|---|---|---|
Control MS | - | MS Basal | 12.76 ± 0.34 c | 10.32 ± 0.29 a |
−4 °C | 10 | MS Basal | 10.78 ± 0.21 a | 47.59 ± 0.53 h |
−4 °C | 20 | MS Basal | 12.41 ± 0.49 b | 42.35 ± 0.49 g |
−4 °C | 30 | MS Basal | 15.15 ± 0.37 d | 37.55 ± 0.71 f |
−4 °C | 40 | MS Basal | 15.92 ± 0.27 e | 35.94 ± 0.38 e |
−20 °C | 10 | MS Basal | 13.97 ± 0.62 bc | 34.74 ± 0.85 f |
−20 °C | 20 | MS Basal | 14.84 ± 0.26 bc | 31.33 ± 0.27 d |
−20 °C | 30 | MS Basal | 15.25 ± 0.19 d | 28.22 ± 0.45 c |
−20 °C | 40 | MS Basal | 15.91 ± 0.32 e | 24.57 ± 0.46 b |
Soil control | - | Garden soil | 14.50 ± 0.44 c | 10.05 ± 0.25 a |
−4 °C | 10 | Garden soil | 11.88 ± 0.15 a | 24.04 ± 0.24 h |
−4 °C | 20 | Garden soil | 13.29 ± 0.36 b | 20.80 ± 0.26 g |
−4 °C | 30 | Garden soil | 15.16 ± 0.45 d | 18.48 ± 0.51 f |
−4 °C | 40 | Garden soil | 16.29 ± 0.23 e | 14.91 ± 0.37 e |
−20 °C | 10 | Garden soil | 11.94 ± 0.2 bc | 20.12 ± 0.14 f |
−20 °C | 20 | Garden soil | 12.25 ± 0.21 bc | 17.55 ± 0.58 d |
−20 °C | 30 | Garden soil | 15.78 ± 0.26 d | 14.00 ± 0.3 c |
−20 °C | 40 | Garden soil | 17.05 ± 0.2 e | 12.10 ± 0.26 b |
PGR (mg/L) | Response Time (Days, Mean ± SEM) | Shoot Length (cm, Mean ± SEM) | Shoot Number (Mean ± SEM) | Percentage Response (Mean ± SEM) | ||
---|---|---|---|---|---|---|
BAP | 2,4-D | AdS | ||||
- | - | - | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
0.5 | - | - | 10.41 ± 0.51 b | 5.51 ± 0.26 c | 7.0 ± 0.36 e | 77.77 ± 2.77 d |
1.0 | - | - | 12.13 ± 0.46 c | 5.1 ± 0.76 c | 5.8 ± 0.41 d | 69.44 ± 2.78 cd |
1.5 | - | - | 13.49 ± 0.46 cd | 4.3 ± 0.16 b | 4.8 ± 0.29 c | 61.1 ± 2.77 cd |
2.0 | - | - | 14.36 ± 0.51 d | 3.87 ± 0.15 b | 4.2 ± 0.32 b | 50 ± 4.81 b |
2.5 | - | - | 17.18 ± 0.3 e | 3.86 ± 0.18 b | 3.6 ± 0.33 b | 44.44 ± 2.78 b |
- | 0.5 | - | 14.58 ± 0.33 b | 5.25 ± 0.14 c | 4.2 ± 0.2 d | 72.22 ± 2.78 c |
- | 1.0 | - | 17.54 ± 0.36 c | 4.93 ± 0.07 b | 3.7 ± 0.21 cd | 66.66 ± 4.81 c |
- | 1.5 | - | 21.72 ± 0.27 e | 4.37 ± 0.2 b | 3.3 ± 0.22 bc | 61.1 ± 2.77 c |
- | 2.0 | - | 20.12 ± 0.18 d | 4.27 ± 0.22 b | 3.0 ± 0.21 b | 47.21 ± 5.55 b |
- | 2.5 | - | 20.87 ± 0.23 de | 4.22 ± 0.14 b | 2.9 ± 0.23 b | 38.88 ± 2.77 b |
- | - | 5.0 | 18.84 ± 0.25 b | 7.93 ± 0.39 c | 3.0 ± 0.21 c | 58.33 ± 4.8 c |
- | - | 10 | 20.78 ± 0.27 c | 8.11 ± 0.42 c | 3.6 ± 0.16 c | 69.44 ± 2.78 d |
- | - | 15 | 22.18 ± 0.42 cd | 6.1 ± 0.22 b | 2.8 ± 0.24 bc | 55.33 ± 4.8 c |
- | - | 20 | 23.25 ± 0.55 d | 6.6 ± 0.33 b | 2.6 ± 0.22 bc | 41.55 ± 4.81 b |
- | - | 25 | 25.86 ± 0.64 e | 6.09 ± 0.14 b | 2.3 ± 0.15 b | 35.88 ± 2.72 b |
BAP (mg/L) | Response Time (days, Mean ± SEM) | Percentage Response | |
---|---|---|---|
MS Basal | - | 43.75 ± 0.50 a | 36.66 ± 3.33 b |
MS | 0.5 | 50.5 ± 0.74 b | 33.33 ± 3.33 ab |
MS | 1.0 | 55.91 ± 0.59 c | 26.66 ± 3.33 ab |
MS | 1.5 | 63.66 ± 0.66 d | 23.33 ± 3.33 a |
WEEK | NUMBER OF LEAVES (MEAN ± SEM) | HEIGHT OF PLANTS (CM, MEAN ± SEM) |
---|---|---|
1ST | 1.83 ± 0.30 a | 2.66 ± 0.33 a |
2ND | 2.83 ± 0.30 ab | 7.83 ± 0.65 b |
3RD | 3.5 ± 0.22 b | 14.16 ± 0.74 c |
4TH | 6.16 ± 0.70 c | 17.66 ± 0.76 d |
5TH | 9.33 ± 0.84 d | 22.83 ± 0.74 e |
6TH | 11.16 ± 0.65 e | 26.66 ± 0.49 f |
7TH | 13.66 ± 0.66 f | 28.5 ± 0.76 fg |
8TH | 14.33 ± 0.33 f | 30.33 ± 0.66 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafiq, S.; Wagay, N.A.; Bhat, I.A.; Kaloo, Z.A.; Rashid, S.; Lin, F.; El-Abedin, T.K.Z.; Wani, S.H.; Mahmoud, E.A.; Almutairi, K.F.; et al. In Vitro Propagation of Aconitum chasmanthum Stapf Ex Holmes: An Endemic and Critically Endangered Plant Species of the Western Himalaya. Horticulturae 2021, 7, 586. https://doi.org/10.3390/horticulturae7120586
Rafiq S, Wagay NA, Bhat IA, Kaloo ZA, Rashid S, Lin F, El-Abedin TKZ, Wani SH, Mahmoud EA, Almutairi KF, et al. In Vitro Propagation of Aconitum chasmanthum Stapf Ex Holmes: An Endemic and Critically Endangered Plant Species of the Western Himalaya. Horticulturae. 2021; 7(12):586. https://doi.org/10.3390/horticulturae7120586
Chicago/Turabian StyleRafiq, Shah, Nasir Aziz Wagay, Irshad Ahmad Bhat, Zahoor Ahmad Kaloo, Sumaira Rashid, Feng Lin, Tarek K Zin El-Abedin, Shabir Hussain Wani, Eman A. Mahmoud, Khalid F. Almutairi, and et al. 2021. "In Vitro Propagation of Aconitum chasmanthum Stapf Ex Holmes: An Endemic and Critically Endangered Plant Species of the Western Himalaya" Horticulturae 7, no. 12: 586. https://doi.org/10.3390/horticulturae7120586
APA StyleRafiq, S., Wagay, N. A., Bhat, I. A., Kaloo, Z. A., Rashid, S., Lin, F., El-Abedin, T. K. Z., Wani, S. H., Mahmoud, E. A., Almutairi, K. F., & Elansary, H. O. (2021). In Vitro Propagation of Aconitum chasmanthum Stapf Ex Holmes: An Endemic and Critically Endangered Plant Species of the Western Himalaya. Horticulturae, 7(12), 586. https://doi.org/10.3390/horticulturae7120586