Bokashi, Boiled Manure and Penergetic Applications Increased Agronomic Production Variables and May Enhance Powdery Mildew Severity of Organic Tomato Plants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Plant Production and Quality Variables
3.2. Powdery Mildew Severity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Musa, C.I.; Weber, B.; Gonzatti, H.C.; Barbosa, L.N.; Galina, J.; Lagemann, C.A.; Souza, C.F.V.; Oliveira, E.C. Organic culture in substrate: A new experience in strawberry culture, in Bom Princípio, Rio Grande do Sul, Brazil. InterfacEHS 2015, 10, 38–46. [Google Scholar]
- Hata, F.T.; Ventura, M.U.; Sousa, V.; Fregonezi, G.A.F. Low-cost organic fertilizations and bioactivator for arugula-radish intercropping. Emir. J. Food Agric. 2019, 31, 773–778. [Google Scholar] [CrossRef]
- Quiroz, M.; Céspedes, C. Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A Review. J. Soil Sci. Plant Nutr. 2019, 19, 237–248. [Google Scholar] [CrossRef]
- Olle, M. Review: Bokashi technology as a promising technology for crop production in Europe. J. Hortic. Sci. Biotechnol. 2020. online first. [Google Scholar] [CrossRef]
- França, F.C.T.; da Silva, E.C.; Pedrosa, M.W.; de Almeida Carlos, L. Adubos orgânicos no cultivo e nutrição mineral de tomateiro. Ambiência 2017, 13, 235–244. [Google Scholar]
- França, F.C.T.; da Silva, E.C.; Pedrosa, M.W.; de Almeida Carlos, L.; Maciel, G.M. Tomato yield and quality under various combinations of organic compost. Biosci. J. 2016, 32, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Hata, F.T.; Spagnuolo, F.A.; Paula, M.T.; Moreira, A.A.; Ventura, M.U.; Fregonezi, G.A.F.; Oliveira, A.L.M. Bokashi compost and biofertilizer increase lettuce agronomic variables in protected cultivation and indicates substrate microbiological changes. Emir. J. Food Agric. 2020, 32, 640–646. [Google Scholar]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosys. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Artyszak, A.; Gozdowski, D. Is it possible to replace part of the mineral nitrogen dose in maize for grain by using growth activators and plant growth-promoting rhizobacteria? Agronomy 2020, 10, 1647. [Google Scholar] [CrossRef]
- Artyszak, A.; Gozdowski, D. The effect of growth activators and Plant Growth-Promoting Rhizobacteria (PGPR) on the soil properties, root yield, and technological quality of sugar beet. Agronomy 2020, 10, 1262. [Google Scholar] [CrossRef]
- Chai, R.; Ye, X.; Ma, C.; Wang, Q.; Tu, R.; Zhang, L.; Gao, H. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag. 2019, 14, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Li, X.; Jiang, Y. Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production. Sustainability 2019, 11, 1513. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, M.; Mur, L.A.J.; Shen, Q.; Guo, S. Unravelling the roles of nitrogen nutrition in plant disease defences. Int. J. Mol. Sci. 2020, 21, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filgueira, F.A.R. Novo Manual de Olericultura. Agrotecnologia Moderna na Produção e Comercialização de Hortaliças, 3rd ed.; UFV: Abbotsford, BC, Canada, 2008; p. 411. [Google Scholar]
- Fondevilla, S.; Rubiales, D. Powdery mildew control in pea. A review. Agron. Sustain. Dev. 2012, 32, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Abuley, I.K.; Nielsen, B.J.; Hansen, H.H. The influence of timing the application of nitrogen fertilizer on early blight (Alternaria solani). Pest Manag. Sci. 2019, 75, 1150–1158. [Google Scholar] [CrossRef]
- Hu, X.F.; Cheng, C.; Luo, F.; Chang, Y.Y.; Teng, Q.; Men, D.Y.; Liu, L.; Yang, M.Y. Effects of different fertilization practices on the incidence of rice pests and diseases: A three-year case study in Shanghai, in subtropical southeastern China. Field Crops Res. 2016, 196, 33–50. [Google Scholar] [CrossRef]
- Alyokhin, A.; Nault, B.; Brown, B. Soil conservation practices for insect pest management in highly disturbed agroecosystems–a review. Entomol. Exp. Appl. 2020, 168, 7–27. [Google Scholar] [CrossRef]
- Yermiyahu, U.; Halpern, M.; Shtienberg, D. NH4 fertilization increases susceptibility of sweet basil (Ocimum basilicum L.) to grey mould (Botrytis cinerea) due to decrease in Ca uptake. Phytoparasitica 2020, 48, 685–697. [Google Scholar] [CrossRef]
- Claro, S.A. Leitos e Substratos para Produção Orgânica de Hortaliças—Controle da Murcha Bacteriana; Editora Agrolivros: Santa Rita, Brazil, 2013; p. 280. [Google Scholar]
- Sepúlveda-Chavera, G.; Salvatierra-Martínez, R.; Andía-Guardia, R. Control alternativo del complejo cenicilla (Leveillula taurica and Erysiphe sp.) en tomate en el valle de Azapa, Chile. Cienc. Investig. Agrar. 2013, 40, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Ayres, M. BioEstat 5.0: Aplicações Estatísticas nas Áreas das Ciências Biológicas e Médicas, 5th ed.; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Sociedade Civil Mamirauá: Belem, Brazil, 2007. [Google Scholar]
- Canteri, M.G.; Althaus, R.A.; Virgens Filho, J.S.; Giglioti, E.A.; Godoy, C.V. SASM—Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scott—Knott. Tukey e Duncan. Rev. Bras. Agrocomputação 2001, 1, 18–24. [Google Scholar]
- Peralta-Antonio, N.; de Freitas, G.B.; Watthier, M.; Santos, R.H.S. Compost, bokashi y microorganismos eficientes: Sus beneficios en cultivos sucesivos de brócolis. Idesia 2019, 37, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Xavier, M.C.G.; dos Santos, C.A.; Costa, E.S.P.; Carmo, M.G.F. Produtividade de repolho em função de doses de bokashi. Rev. Agric. Neotrop. 2019, 6, 17–22. [Google Scholar] [CrossRef]
- Yamada, K.; Xu, H.L. Properties and applications of an organic fertilizer inoculated with effective microorganisms. J. Crop Prod. 2001, 3, 255–268. [Google Scholar] [CrossRef]
- Tsavkelova, E.A.; Klimova, S.Y.; Cherdyntseva, T.A.; Netrusov, A.I. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 2006, 42, 117–126. [Google Scholar] [CrossRef]
- Wardle, D.A.; Ghani, A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 1995, 27, 1601–1610. [Google Scholar] [CrossRef]
- Kandel, D.R.; Marconi, T.G.; Badillo-Vargas, I.E.; Enciso, J.; Zapata, S.D.; Lazcano, C.A.; Crosby, K.; Avila, C.A. Yield and fruit quality of high-tunnel tomato cultivars produced during the off-season in South Texas. Sci. Hortic. 2020, 272, 109582. [Google Scholar] [CrossRef]
- Nicot, P.C.; Fabre, R.; Lebkara, T.; Ozayou, S.; Abro, M.A.; Duffaud, M.; Lecompte, F.; Jeannequin, B. Manipulating nitrogen fertilization for the management of diseases in the tomato greenhouse: What perspectives for IPM. IOBC WPRS Bull. 2012, 80, 333–338. [Google Scholar]
- Hoffland, E.; Jeger, M.J.; van Beusichem, M.L. Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil 2000, 218, 239–247. [Google Scholar] [CrossRef]
- Bulluck, L.R., III; Ristaino, J.B. Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes. Phytopathology 2002, 92, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yardım, E.N.; Edwards, C.A. Effects of organic and synthetic fertilizer sources on pest and predatory insects associated with tomatoes. Phytoparasitica 2003, 31, 324–329. [Google Scholar] [CrossRef]
Treatments | NF z | MFM | FP | FDI | FLE | TSS |
---|---|---|---|---|---|---|
Control | 6.40 a y | 90.94 c | 572.80 c | 48.31 d | 65.13 cd | 4.30 c |
BM 2.5% | 5.60 a | 101.75 bc | 547.60 c | 50.02 bcd | 64.25 d | 4.53 bc |
BM 5.0% | 6.80 a | 96.24 bc | 650.80 bc | 48.73 cd | 65.64 bcd | 4.27 c |
BM 7.5% | 8.00 a | 114.83 bc | 891.20 ab | 54.74 ab | 70.14 ab | 4.90 ab |
BM 10.0% | 8.20 a | 103.71 bc | 936.00 a | 51.51 bcd | 69.60 abc | 4.87 ab |
Penergetic | 7.20 a | 127.48 ab | 910.00 a | 56.93 a | 72.60 a | 4.60 abc |
Bokashi | 6.80 a | 137.37 a | 1001.60 a | 53.49 abc | 73.31 a | 5.03 a |
CV x | 24.98 | 14.42 | 16.27 | 4.62 | 3.52 | 3.85 |
F w | 1.33 | 5.72 | 10.97 | 9.00 | 2.44 | 2.85 |
Treatments | NF z | MFM | FP | FDI | FLE | TSS |
---|---|---|---|---|---|---|
Control | 12.50 b y | 75.15 a | 904.50 c | 45.86 b | 72.40 ab | 3.57 bc |
BM 2.5% | 13.80 b | 78.42 a | 1085.83 bc | 48.40 ab | 74.03 ab | 3.59 bc |
BM 5.0% | 13.40 b | 86.88 a | 1161.33 bc | 48.94 ab | 69.87 b | 3.88 ab |
BM 7.5% | 14.50 b | 78.68 a | 1123.50 bc | 47.14 ab | 71.37 ab | 3.50 c |
BM 10.0% | 19.67 a | 86.65 a | 1699.17 a | 48.05 ab | 76.35 a | 3.76 abc |
Penergetic | 14.33 b | 83.26 a | 1190.67 b | 47.78 ab | 74.05 ab | 4.01 a |
Bokashi | 20.50 a | 92.43 a | 1888.83 a | 49.55 a | 74.43 ab | 3.66 bc |
CV x | 13.05 | 19.53 | 12.01 | 3.89 | 4.15 | 4.78 |
F w | 14.36 | 0.83 | 31.92 | 2.32 | 2.81 | 6.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hata, F.T.; Ventura, M.U.; de Freitas Fregonezi, G.A.; de Lima, R.F. Bokashi, Boiled Manure and Penergetic Applications Increased Agronomic Production Variables and May Enhance Powdery Mildew Severity of Organic Tomato Plants. Horticulturae 2021, 7, 27. https://doi.org/10.3390/horticulturae7020027
Hata FT, Ventura MU, de Freitas Fregonezi GA, de Lima RF. Bokashi, Boiled Manure and Penergetic Applications Increased Agronomic Production Variables and May Enhance Powdery Mildew Severity of Organic Tomato Plants. Horticulturae. 2021; 7(2):27. https://doi.org/10.3390/horticulturae7020027
Chicago/Turabian StyleHata, Fernando Teruhiko, Mauricio Ursi Ventura, Gustavo Adolfo de Freitas Fregonezi, and Romário Fortunato de Lima. 2021. "Bokashi, Boiled Manure and Penergetic Applications Increased Agronomic Production Variables and May Enhance Powdery Mildew Severity of Organic Tomato Plants" Horticulturae 7, no. 2: 27. https://doi.org/10.3390/horticulturae7020027
APA StyleHata, F. T., Ventura, M. U., de Freitas Fregonezi, G. A., & de Lima, R. F. (2021). Bokashi, Boiled Manure and Penergetic Applications Increased Agronomic Production Variables and May Enhance Powdery Mildew Severity of Organic Tomato Plants. Horticulturae, 7(2), 27. https://doi.org/10.3390/horticulturae7020027