The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and the Growth of Plants
2.2. Plant Growth and Fruit Properties
2.3. Biochemical Parameters
3. Results
Leaf Mineral Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhao, G.M.; Han, Y.; Sun, X.; Li, S.H.; Shi, Q.M.; Wang, C.H. Salinity increases secondary metabolites and enzyme activity in safflower. Ind. Crop. Prod. 2015, 64, 175–181. [Google Scholar]
- Zhou, Y.; Tang, N.; Huang, L.; Zhao, Y.; Tang, X.; Wang, K. Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq. Int. J. Mol. Sci. 2018, 19, 252. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhowmik, P.C.; Hossain, M.A.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential use of halophytes to remediate saline soils. BioMed Res. Int. 2014, 2014, 589341. [Google Scholar] [CrossRef] [PubMed]
- Menason, E.; Betty, T.; Vijayan, K.K.; Anbudurai, P.R. Modification of fatty acid composition in salt adopted Synechocystis 6803 cells. Ann. Biol. Res. 2015, 6, 4–9. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.A.; Lindberg, S. March Cytosolic calcium and pH signaling in plants under salinity. Plant. Signal. Behav. 2010, 5, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.D.; Inafuku, M.; Iwasaki, H.; Taira, N.; Mostofa, M.G.; Oku, H. Differential enzymatic defense mechanisms in leaves and root of two true mangrove species under long-term salt. Aquat. Bot. 2017, 142, 32–40. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Cheeseman, J. The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol. 2014, 206. [Google Scholar] [CrossRef]
- Meng, X.; Sui, J.Z.N. Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sci. 2018, 13, 149–154. [Google Scholar] [CrossRef]
- Aslam, R.; Bostan, N.; Amen, N.; Maria, M.; Safdar, W. A critical review on halophytes: Salt tolerant plants. J. Med. Plants Res. 2011, 5, 7108–7118. [Google Scholar]
- Flowers, T.J.; Galal, H.K.; Bromham, L. Evolution of halophytes: Multiple originsof salt tolerance in land plants. Funct. Plant. Biol. 2010, 37, 604–612. [Google Scholar] [CrossRef]
- Qadir, M.; Qureshi, R.H.; Ahmad, N. Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use Manag. 2002, 18, 381–385. [Google Scholar] [CrossRef]
- Dikilitas, M.; Karakas, S. Salt as potential environmental Pollutants, their types, effects on plants, and approaches for their phytoremediation. In Plant Adaptation and Phytoremediation; Ashraf, M., Ozturk, M., Ahmad, M.S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 357–383. [Google Scholar]
- Xing, J.C.; Dong, J.; Wang, M.V.; Liu, C.; Zhao, B.Q.; Wen, Z.G.; Zhu, X.M.; Ding, H.R.; Zhao, X.H.; Hong, L.Z. Effects of NaCl stress on growth of Portulaca oleracea and underlying mechanisms. Braz. J. Bot. 2019, 42, 217–226. [Google Scholar] [CrossRef]
- Karakas, S.; Dikilitas, M.; Tıpırdamaz, R. Phytoremediation of Salt-Affected Soils Using Halophytes. In: Grigore MN. (eds) Handbook of Halophytes. Springercham 2020, 1–18. [Google Scholar] [CrossRef]
- De Lacerda, L.P.; Lange, L.C.; Costa França, M.G.; Diniz Leão, M.M. Growth and differential salinity reduction between Portulaca oleracea and Eichhornia crassipes in experimental hydroponic units. Env. Technol. 2018, 22, 1–9. [Google Scholar] [CrossRef]
- Grieve, C.M.; Suarez, D.L. Purslane (Portulaca oleracea L.): A halophytic crop for drainage water reuse systems. Plant. Soil 1997, 192, 277–283. [Google Scholar] [CrossRef]
- Karakas, S.; Çullu, M.A.; Dikilitas, M. In Vitro kosullarda halofit bitkilerden Salsola soda ve Portulaca oleracea’ nın NaCl stresine karşı çimlenme ve gelisim durumları. Harran Tarım Ve Gıda Bilimleri Derg. 2015, 19, 66–74. [Google Scholar]
- Folta, K.M.; Davis, T.M. Strawberry genes and genomics. Crit. Rev. Plant. Sci. 2006, 25, 399–415. [Google Scholar] [CrossRef]
- Shulaev, V.; Korban, S.S.; Sosinski, B.; Abbott, A.G.; Aldwinckle, H.S.; Folta, K.M.; Iezzoni, A.; Main, D.; Arús, P.; Dandekar, A.M.; et al. Multiple models for rosaceae genomics. Plant. Physiol. 2008, 147, 985–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neocleous, D.; Vasilakakis, M. Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’). Sci. Hortic. 2007, 112, 282–289. [Google Scholar] [CrossRef]
- Keutgen, A.; Pawelzik, E. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem. 2008, 107, 1413–1420. [Google Scholar] [CrossRef]
- Jamalian, S.; Gholami, M.; Esna-Ashari, M. Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theor. Exp. Plant. Physiol. 2013, 25, 291–299. [Google Scholar]
- Garriga, M.; Muñoz, C.A.; Caligari, P.D.; Retamales, J.B. Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Sci. Hortic. 2015, 195, 37–47. [Google Scholar] [CrossRef]
- Bohlin, C.; Holmberg, P. Peat dominating growing medium in Swedish horticulture. Acta Hortic. 2004, 644, 177–181. [Google Scholar] [CrossRef]
- Bin Mohamad, H.; Zainorabidin, A.; Razali, S.; Zolkefle, S. Assessment for applicability of microwave oven in rapid determination of moisture content in peat soil. J. Eng. Sci. Technol. 2020, 15, 2110–2118. [Google Scholar]
- Catania, P.; Comparetti, A.; De Pasquale, C.; Morello, G.; Vallone, M. Effects of the Extraction Technology on Pomegranate Juice Quality. Agronomy 2020, 10, 1483. [Google Scholar] [CrossRef]
- Barrett, D.M.; Anthon, G. Lycopene content of calıfornıa-grown tomato varıetıes. Acta Hortic. 2001, 542, 165–174. [Google Scholar] [CrossRef]
- Karakas, S. Development of Tomato Growing in Soil Differing in Salt Levels and Effects of Companion Plants on Same Physiological Parameters and Soil Remediation. Ph.D. Thesis, University of Harran, Sanlıurfa, Turkey, 2013. [Google Scholar]
- Oz, A.T. Effects of two differrent temperatures on l-ascorbic acid content (Vıtamın C), lenght of storage time and fruit quality. Bahce 2002, 31, 51–57. [Google Scholar]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Karlidag, H.; Yildirim, E.; Turan, M. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Sci. Hortic. 2011, 130, 133–140. [Google Scholar] [CrossRef]
- Arnon, D.L. A copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant. Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant. Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid raintreated bean plants: Protective role of exogenous polyamines. Plant. Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Karakas, S.; Dikilitas, M.; Tıpırdamaz, R. Biochemical and molecular tolerance of Carpobrotus acinaciformis L. halophyte plants exposed to high level of NaCl stress. Harran J. Agric. Food Sci. 2019, 23, 99–107. [Google Scholar]
- Sairam, R.K.; Sexena, D. Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J. Agron. Crop. Sci. 2000, 184, 55–61. [Google Scholar] [CrossRef]
- Milosevic, N.; Slusarenko, A.J. Active Oxygen Metabolism and Lignifications in The Hypersensitive Response in Bean. Physiol. Mol. Plant. Pathol. 1996, 49, 143–158. [Google Scholar] [CrossRef]
- Cvikrova, M.; Hrubcova, M.; Vagner, M.; Machackova, I.; Eder, J. Phenolic acids and peroxidase activity in Alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Plant. Physiol. 1994, 91, 226–233. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants, and Waters; University of California, Division of Agricultural Sciences: Riverside, CA, USA, 1961. [Google Scholar]
- Saidimoradi, D.; Ghaderi, N.; Javadi, T. Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Sci. Hortic. 2019, 256, 594. [Google Scholar] [CrossRef]
- Yaghubi, K.; Ghaderi, N.; Vafaee, Y.; Javadi, T. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Sci. Hortic. 2016, 213, 87–95. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugraha, M.I.; Annisa, W.; Syaufina, L.; Anwar, S. Capillary water rise ın peat soil as affected by various groundwater levels. Indones. J. Agric. Sci. 2016, 17, 75–83. [Google Scholar] [CrossRef]
- Farina, E.; Allera, C.; Paterniani, T.; Palagi, M. Mulching as a technique to reduce salt accumulation in soilless culture. Acta Hortic. 2003, 609, 459–466. [Google Scholar] [CrossRef]
- Mozafari, A.A.; Dedejani, S.; Ghaderi, N. Positive responses of strawberry (Fragaria×ananassa Duch.) explants to salicylic an iron nanoparticle application undersalinity conditions. Plant. Celltissue Organ. Cult. 2018, 134, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Saied, A.S.; Keutgen, A.J.; Noga, G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’and ‘Korona’. Sci. Hortic. 2005, 103, 289–303. [Google Scholar] [CrossRef]
- Joseph, B.; Jini, D.; Sujatha, S. Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian J. Crop. Sci. 2010, 2, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Karakas, S.; Cullu, M.A.; Kaya, C.; Dikilitas, M. Halophytic companion plants improve growth and physiological parameters of tomato plants grown under salinity. Pak. J. Bot. 2016, 48, 21–28. [Google Scholar]
- Grafienberg, A.; Botrini, L.; Giustiniani, L.; Filippi, F.; Curadi, M. Tomato growing in saline conditions with biodesalinating plants: Salsola soda and Portulaca oleracea. Acta Hortic. 2003, 609, 301–305. [Google Scholar] [CrossRef]
- Jamalian, S.; Tehranifar, A.; Tafazoli, E.; Eshghi, S.; Davarynejad, G.H. Paclobutrazol application ameliorates the negative effect of salt stress on reproductive growth, yield, and fruit quality of strawberry plants. Hortic. Environ. Biotechnol. 2008, 49, 1–6. [Google Scholar]
- Singh, R.; Flowers, T. Physiology and molecular biology of the effects of salinity on rice. Handb. Plant. Crop. Stress 2010, 901–942. [Google Scholar]
- Ashraf, M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 2009, 27, 84. [Google Scholar] [CrossRef] [PubMed]
Treatments | Crown Fwt (g Plant−1) | Crown Dwt (g Plant−1) | EL (%) | SC (mmol m−2 s−1) |
---|---|---|---|---|
S0 | 85.32 ± 4.17 a | 18.39 ± 0.70 a | 11.90 ± 0.77 e | 241.98 ± 4.29 a |
S30 | 55.16 ± 5.30 b | 12.71 ± 1.40 b | 15.61 ± 0.57 c | 183.26 ± 8.19 c |
S60 | 37.62 ± 2.70 d | 10.00 ± 1.07 d | 21.84 ± 1.06 b | 127.64 ± 8.39 d |
S90 | 35.16 ± 1.90 d | 9.39 ± 0.69 d | 25.34 ± 0.92 a | 94.10 ± 3.83 e |
SP0 | 85.57 ± 4.46 a | 19.09 ± 0.91 a | 11.07 ± 0.45 e | 260.38 ± 8.81 a |
SP30 | 64.38 ± 5.01 b | 14.77 ± 1.08 b | 11.10 ± 0.95 e | 230.80 ± 5.48 b |
SP60 | 44.76 ± 1.67 c | 11.23 ± 0.22 c | 13.84 ± 1.04 d | 181.60 ± 4.65 c |
SP90 | 44.49 ± 2.69 c | 11.16 ± 0.59 c | 15.32 ± 1.03 c | 131.08 ± 5.51 c |
Treatments | Average Fruit Weight (g Plant−1) | Yield (g Plant−1) | Lycopene (mg kg−1 Fwt) | Vitamin C (mg kg−1 Fwt) | TSS (%) |
---|---|---|---|---|---|
S0 | 18.53 ± 0.24 a | 214.76 ± 25.26 a | 37.98 ± 1.61 a | 49.87 ± 2.48 a | 8.80 ± 0.22 a |
S30 | 14.96 ± 0.58 c | 132.85 ± 19.44 c | 35.27 ± 1.29 a | 45.07 ± 2.55 c | 6.80 ± 0.25 b |
S60 | 9.80 ± 1.25 e | 83.76 ± 15.20 d | 27.52 ± 1.13 b | 36.79 ± 1.30 d | 5.80 ± 0.24 d |
S90 | 5.60 ± 0.58 f | 31.53 ± 5.40 e | 16.56 ± 1.61 c | 32.53 ± 0.81 e | 5.20 ± 0.25 e |
SP0 | 19.09 ± 0.52 a | 229.40 ± 17.46 a | 37.20 ± 1.45 a | 51.88 ± 1.89 a | 9.00 ± 0.20 a |
SP30 | 16.94 ± 0.54 b | 164.80 ± 23.99 b | 34.87 ± 1.95 a | 47.19 ± 1.04 a | 7.40 ± 0.17 b |
SP60 | 15.74 ± 0.53 c | 147.57 ± 25.67 c | 33.93 ± 1.82 a | 41.36 ± 1.70 c | 5.90 ± 0.20 c |
SP90 | 12.65 ± 0.73 d | 94.00 ± 8.91 d | 28.55 ± 1.31 b | 43.12 ± 2.51 c | 5.60 ± 0.19 c |
Treatments | K+ (%) | Ca2+ (%) | Mg2+ (%) | Na+ (%) | Cl− (%) |
---|---|---|---|---|---|
S0 | 2.32 ± 0.10 a | 2.39 ± 0.13 a | 0.32 ± 0.03 a | 0.17 ± 0.04 e | 0.35 ± 0.01 d |
S30 | 1.82 ± 0.08 b | 1.97 ± 0.11 a | 0.28 ± 0.03 a | 0.32 ± 0.02 d | 0.67 ± 0.03 d |
S60 | 1.41 ± 0.06 c | 1.86 ± 0.04 b | 0.29 ± 0.02 a | 0.69 ± 0.05 b | 2.09 ± 0.29 b |
S90 | 1.02 ± 0.05 e | 1.72 ± 0.03 b | 0.28 ± 0.03 a | 1.09 ± 0.03 a | 3.69 ± 0.23 a |
SP0 | 2.42 ± 0.11 a | 2.25 ± 0.06 a | 0.35 ± 0.02 a | 0.09 ± 0.01 e | 0.25 ± 0.05 d |
SP30 | 2.27 ± 0.06 a | 2.15 ± 0.13 a | 0.33 ± 0.03 a | 0.19 ± 0.03 e | 0.46 ± 0.03 d |
SP60 | 1.78 ± 0.15 b | 2.15 ± 0.25 a | 0.34 ± 0.03 a | 0.31 ± 0.05 d | 1.16 ± 0.10 c |
SP90 | 1.66 ± 0.09 b | 2.14 ± 0.11 a | 0.31 ± 0.02 a | 0.49 ± 0.08 c | 1.29 ± 0.06 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakas, S.; Bolat, I.; Dikilitas, M. The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress. Horticulturae 2021, 7, 63. https://doi.org/10.3390/horticulturae7040063
Karakas S, Bolat I, Dikilitas M. The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress. Horticulturae. 2021; 7(4):63. https://doi.org/10.3390/horticulturae7040063
Chicago/Turabian StyleKarakas, Sema, Ibrahim Bolat, and Murat Dikilitas. 2021. "The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress" Horticulturae 7, no. 4: 63. https://doi.org/10.3390/horticulturae7040063
APA StyleKarakas, S., Bolat, I., & Dikilitas, M. (2021). The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress. Horticulturae, 7(4), 63. https://doi.org/10.3390/horticulturae7040063