Setting Up a Lab-Scale Pilot Plant to Study the New Growing System (NGS®) for Leafy Vegetable and Culinary Herb Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the NGS®-LSPP
2.1.1. Greenhouse Setting
2.1.2. Mobile System and Frame
2.1.3. Multi-Channel Film and Drainage Funnel
2.1.4. Gutter and Closed-Recirculating System
2.1.5. Measurements
2.2. Plant Growth
2.3. Statistical Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pignata, G.; Casale, M.; Nicola, S.; Gaino, W. Nutrient supply in horticultural crops grown in soilless culture: Resource efficiency in dynamic and intensive systems. In Advances in Research on Fertilization Management of Vegetable Crops; Tei, F., Nicola, S., Benincasa, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 183–219. ISBN 978-3-319-53626-2. [Google Scholar]
- Scuderi, D.; Restuccia, C.; Chisari, M.; Barbagallo, R.N.; Caggia, C.; Giuffrida, F. Salinity of nutrient solution influences the shelf-life of fresh-cut lettuce grown in floating system. Postharvest Biol. Technol. 2011, 59, 132–137. [Google Scholar] [CrossRef]
- Cecatto, A.P.; Calvete, E.O.; Nienow, A.A.; da Costa, R.C.; Mendonça, H.F.C.; Pazzinato, A.C. Culture systems in the production and quality of strawberry cultivars. Acta Sci. Agron. 2013, 35, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Urrestarazu, M.; Mazuela, P.C.; Boukhalfa, A.; Arán, A.; Salas, M.D.C. Oxygen content and its diurnal variation in a new recirculanting water soilless culture for horticultural crops. HortScience 2005, 40, 1729–1730. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, M.J.; López, J.G.; Collados Luján, J.F.; Ortiz, F.L.; Pereznieto, H.B.; Toresano, F.; Camacho, F. Effect of genetic and phenotypic factors on the composition of commercial marmande type tomatoes studied through HRMAS NMR spectroscopy. Food Chem. 2014, 142, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Luna, M.C.; Martínez-Sánchez, A.; Tudela, J.A.; Beltrán, D.; Baixauli, C.; Gil, M.I. Sensory quality, bioactive constituents and microbiological quality of green and red fresh-cut lettuces (Lactuca sativa L.) are influenced by soil and soilless agricultural production systems. Postharvest Biol. Technol. 2012, 63, 16–24. [Google Scholar] [CrossRef]
- Nicola, S.; Pignata, G.; Tibaldi, G. The floating growing system can assure a low microbial contamination of baby leaf vegetables at harvest. Acta Hortic. 2018, 57–64. [Google Scholar] [CrossRef]
- Nicola, S.; Pignata, G.; Casale, M.; Lo Turco, P.E.; Gaino, W. Overview of a lab-scale pilot plant for studying baby leaf vegetables grown in soilless culture. Hortic. J. 2016, 85. [Google Scholar] [CrossRef]
- Niñirola, D.; Egea-Gilabert, C.; Martínez, J.A.; Conesa, E.; Gutiérrez, L.; Fernández, J.A. Efecto de la aireación de la solución nutritiva sobre el crecimiento y la calidad de canónigos cultivados en bandejas flotantes. ACTAS Hortic. 2011, 58, 94–97. [Google Scholar]
- Nicola, S.; Egea-Gilabert, C.; Niñirola, D.; Conesa, E.; Pignata, G.; Fontana, E.; Fernández, J.A. Nitrogen and aeration levels of the nutrient solution in soilless cultivation systems as important growing conditions affecting inherent quality of baby leaf vegetables: A review. Acta Hortic. 2015, 1099, 167–178. [Google Scholar] [CrossRef]
- Marfà, O.; Cáceres, R.; Guri, S. Oxyfertigation: A new technique for soilless culture under mediterranean conditions. Acta Hortic. 2005, 697, 65–72. [Google Scholar] [CrossRef]
- De Rijck, G.; Schrevens, E. Comparison of the mineral composition of twelve standard nutrient solutions. J. Plant Nutr. 1998, 21, 2115–2125. [Google Scholar] [CrossRef]
- Amiri, M.; Sattary, N. Mineral precipitation in solution culture. Acta Hortic. 2004, 644, 469–471. [Google Scholar] [CrossRef]
- Fontana, E.; Nicola, S. Producing garden cress (Lepidium sativum L.) for the fresh-cut chain using a soilless culture system. J. Hortic. Sci. Biotechnol. 2008, 83, 23–32. [Google Scholar] [CrossRef]
- Pignata, G.; Niñirola, D.; Casale, M.; Lo Turco, P.E.; Egea-Gilabert, C.; Fernández, J.A.; Nicola, S. Inherent quality and safety of watercress grown in a floating system using. Bacillus Subtilis. Hortic. J. 2016, 85, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Putra, P.A.; Yuliando, H. Soilless culture system to support water use efficiency and product quality: A review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Van Ruijven, J.; van Os, E.; Beerling, E.; Blok, C.; Janse, J. Towards zero-liquid discharge in hydroponic cultivation. Acta Hortic. 2019, 1242, 863–871. [Google Scholar] [CrossRef]
- Nicola, S.; Hoeberechts, J.; Fontana, E. Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Hortic. 2005, 697, 549–555. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Nicola, S.; Savvas, D.; Voogt, W. Editorial: Soilless cultivation through an intensive crop production scheme. management strategies, challenges and future directions. Front. Plant. Sci. 2020, 11, 10–12. [Google Scholar] [CrossRef]
- Jensen, M.H. Deep flow hydroponics: Past present and future. Proc. Natl. Agric. Plast. Congr. 2002, 30, 40–46. [Google Scholar]
- Morgan, L. Fresh Culinary Herb Production: A Technical Guide to the Hydroponic and Organic Production of Commercial Fresh Gourmet Herb Crops, 8th ed.; John Wiley & Sons: Milton, Australia, 2005; ISBN 0473081075 9780473081072. [Google Scholar]
- Fenneman, D.; Sweat, M.; Hochmuth, G.; Hochmuth, R. Production systems—Florida greenhouse vegetable production handbook, vol 3 1 lay-flat bag and nursery popular media choices for lay-flat. Univ. Fla. Inst. Food Agric. Sci. Ext. 2012, 3, 1–8. [Google Scholar]
- Hochmuth, R.; Cantliffe, D. Alternative greenhouse crops Florida greenhouse production handbook. Univ. Fla. Inst. Food Agric. Sci. Ext. 2014, 3. [Google Scholar]
- Maucieri, C.; Nicoletto, C.; van Os, E.; Anseeuw, D.; van Havermaet, R.; Junge, R. Hydroponic Technologies. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 77–110. ISBN 978-3-030-15943-6. [Google Scholar]
- Kumar, R.R.; Cho, J.Y. Reuse of hydroponic waste solution. Environ. Sci. Pollut. Res. 2014, 21, 9569–9577. [Google Scholar] [CrossRef] [PubMed]
- Diver, S.; National Centre of Appropriate Technology, Department of Agriculture’s Rural Bussiness Cooperative Service. Aquaponic-Integration Hydroponic with Aquaculture. 2006. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.541&rep=rep1&type=pdf (accessed on 15 April 2021).
- Walters, K.J.; Currey, C.J. Hydroponic greenhouse basil production: Comparing systems and cultivars. HortTechnology 2015, 25, 645–650. [Google Scholar] [CrossRef] [Green Version]
Species | PD M-C | GD | LFW | LDG | Yield | DM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (days) | (g/plant) | (g/plant/d) | (g m−2) | (%) | |||||||||
Lettuce ‘Lozano’ z-I sampling | 0.20 | 42 | 35.62 | ± | 1.61 | 0.72 | ± | 0.04 | 712.49 | ± | 32.16 | 6.36 | ± | 0.26 |
Lettuce ‘Lozano’ z-II sampling | 0.20 | 48 | 42.89 | ± | 2.01 | 0.79 | ± | 0.04 | 857.74 | ± | 40.14 | 8.11 | ± | 0.18 |
Lettuce ‘Lozano’ z-III sampling | 0.20 | 55 | 57.35 | ± | 2.41 | 0.95 | ± | 0.06 | 1147.03 | ± | 48.27 | 7.62 | ± | 0.10 |
Basil y-I harvest | 0.10 | 48 | 15.98 | ± | 0.39 | 0.31 | ± | 0.01 | 639.33 | ± | 15.57 | 10.93 | ± | 0.21 |
Basil y-II harvest, regrowth | 0.10 | 41 | 13.00 | ± | 0.33 | 0.29 | ± | 0.01 | 519.85 | ± | 13.33 | 10.57 | ± | 0.14 |
Red spearmint-I harvest | 0.10 | 42 | 21.30 | ± | 2.37 | 0.39 | ± | 0.06 | 852.12 | ± | 94.94 | 17.30 | ± | 0.56 |
Red spearmint-II harvest, regrowth | 0.10 | 37 | 34.77 | ± | 2.20 | 0.80 | ± | 0.06 | 1390.97 | ± | 87.90 | 16.26 | ± | 0.90 |
Red spearmint-III harvest, regrowth | 0.10 | 27 | 29.73 | ± | 6.54 | 0.92 | ± | 0.24 | 1189.39 | ± | 261.52 | 18.99 | ± | 1.32 |
Casablanca mint-I harvest | 0.10 | 37 | 15.61 | ± | 2.11 | 0.29 | ± | 0.06 | 624.25 | ± | 84.40 | 18.10 | ± | 0.43 |
Casablanca mint-II harvest, regrowth | 0.10 | 46 | 35.24 | ± | 1.60 | 0.66 | ± | 0.03 | 1409.79 | ± | 63.82 | 18.31 | ± | 1.17 |
Casablanca mint-III harvest, regrowth | 0.10 | 30 | 24.46 | ± | 2.83 | 0.65 | ± | 0.09 | 978.46 | ± | 113.00 | 18.89 | ± | 0.28 |
Peppermint-I harvest | 0.10 | 49 | 17.05 | ± | 1.47 | 0.25 | ± | 0.03 | 681.85 | ± | 58.79 | 17.09 | ± | 0.59 |
Peppermint-II harvest, regrowth | 0.10 | 43 | 19.95 | ± | 0.91 | 0.35 | ± | 0.02 | 797.85 | ± | 36.39 | 17.92 | ± | 0.67 |
Peppermint-III harvest, regrowth | 0.10 | 30 | 11.62 | ± | 2.46 | 0.22 | ± | 0.08 | 464.99 | ± | 98.57 | 22.96 | ± | 1.46 |
Lettuces ‘Aquino’ z-‘Seurat’ z | 0.20 | 24 | 56.42 | ± | 2.04 | 2.14 | ± | 0.09 | 1128.33 | ± | 40.82 | 7.45 | ± | 0.45 |
Lettuce ‘Expertise’ z | 0.20 | 28 | 76.72 | ± | 7.39 | 2.56 | ± | 0.26 | 1534.33 | ± | 147.74 | 6.62 | ± | 0.13 |
Lettuce ‘Tourbillon’ z-I sampling | 0.20 | 28 | 53.43 | ± | 0.73 | 1.73 | ± | 0.03 | 1068.53 | ± | 14.68 | 8.17 | ± | 0.37 |
Lettuce ‘Tourbillon’ z-II sampling | 0.20 | 31 | 53.93 | ± | 1.50 | 1.58 | ± | 0.05 | 1078.60 | ± | 29.94 | 7.88 | ± | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicola, S.; Pignata, G.; Casale, M.; Hazrati, S.; Ertani, A. Setting Up a Lab-Scale Pilot Plant to Study the New Growing System (NGS®) for Leafy Vegetable and Culinary Herb Growth. Horticulturae 2021, 7, 90. https://doi.org/10.3390/horticulturae7050090
Nicola S, Pignata G, Casale M, Hazrati S, Ertani A. Setting Up a Lab-Scale Pilot Plant to Study the New Growing System (NGS®) for Leafy Vegetable and Culinary Herb Growth. Horticulturae. 2021; 7(5):90. https://doi.org/10.3390/horticulturae7050090
Chicago/Turabian StyleNicola, Silvana, Giuseppe Pignata, Manuela Casale, Saeid Hazrati, and Andrea Ertani. 2021. "Setting Up a Lab-Scale Pilot Plant to Study the New Growing System (NGS®) for Leafy Vegetable and Culinary Herb Growth" Horticulturae 7, no. 5: 90. https://doi.org/10.3390/horticulturae7050090
APA StyleNicola, S., Pignata, G., Casale, M., Hazrati, S., & Ertani, A. (2021). Setting Up a Lab-Scale Pilot Plant to Study the New Growing System (NGS®) for Leafy Vegetable and Culinary Herb Growth. Horticulturae, 7(5), 90. https://doi.org/10.3390/horticulturae7050090