The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Treatments
2.2.1. Nitrogen Fertilizer Treatments (Soil Application)
2.2.2. Foliar Spraying Treatments
2.3. Experiment Design and Layout
2.4. Data Recorded
2.4.1. Vegetative Growth Characteristics
2.4.2. Fruit Yield and Its Components
- −
- Exportable yield (ton/ha): It was calculated as the weight of harvested fruits at the ripe stage during November, December, and January after discarding the misshaped and infected fruits (unmarketable yield),
- −
- Total fruit yield (ton/ha): It was calculated as the weight of all fruits harvest throughout the growing season,
- −
- Fruit yield per plant (g): It was calculated based on the fruit yield/plot divided by the number of plants/plot.
2.4.3. Physical Parameters of Fruit Quality
2.4.4. Chemical Parameters of Fruit Quality
2.5. Statistical Analysis
3. Results and Discussion
3.1. Vegetative Growth Parameters
3.2. Chemical Constituents of Plant Foliage
3.3. Fruit Yield Parameters
3.4. Physical Parameters of Fruit
3.5. Chemical Composition of Fruit
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Production Year Book; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020; Volume 54, p. 177. [Google Scholar]
- Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://en.wikipedia.org/wiki/Strawberry (accessed on 15 July 2021).
- Yogesh, K.N.; Paramjeet, S.; Shweta, U.; Mishra, A.C. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Sci. Hortic. 2021, 283, 110038. [Google Scholar] [CrossRef]
- Available online: https://extension.psu.edu/strawberry-production (accessed on 15 July 2021).
- Ariza, M.T.; Miranda, L.; Gómez-Mora, J.A.; Medina, J.J.; Lozano, D.; Gavilán, P.; Soria, C.; Martínez-Ferri, E. Yield and fruit quality of strawberry cultivars under different irrigation regimes. Agronomy 2021, 11, 261. [Google Scholar] [CrossRef]
- Noosheen, Z.; Mehdi, M.; Abdul, H.; Muhammad, S.; Majid, M.T.; Khuram, M.; Hafiz, M.R.J.; Haseeb, U.R.; Mazhar, A.; Asgar, A.; et al. Changes in vegetative and reproductive growth and quality parameters of strawberry (Fragaria × ananassa Duch.) cv. Chandler grown at different substrates. J. Food Qual. 2021, 9996073. [Google Scholar] [CrossRef]
- Sharma, R.R. Growing Strawberry; International Book Distributing Co.: Lucknow, India, 2002; p. 164. Available online: https://www.worldcat.org/title/growing-strawberries/oclc/634658787 (accessed on 15 July 2021).
- Palomaki, V.; Mansikka-Aho, A.M.; Etelamaki, M. Organic fertilization and technique of strawberry grown in greenhouse. Acta Hort. 2002, 567, 597–599. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. Are compost teas an effective nutrient amendment in the cultivation of strawberries? Soil and plant tissue effects. J. Sci. Food. Agric. 2009, 89, 390–397. [Google Scholar] [CrossRef]
- Chandini; Randeep, K.; Ravendra, K.; Om, P. The Impact of Chemical Fertilizers on our Environment and Ecosystem. In Research Trends in Environmental Sciences, 2nd ed.; Chapter 5; AkiNik Publications: Delhi, India, 2019; pp. 71–86. [Google Scholar]
- Bakshi, P.; Jasroyia, A.; Wali, V.K.; Sharma, A.; Bakshi, M. Influence of pre- harvest application of calcium and micro-nutrients on growth, yield, quality and shelf-life of strawberry cv. Chandler. Indian J. Agric. Sci. 2013, 83, 831–883. [Google Scholar]
- Vance, A.J.; Jones, P.; Strik, B.C. Foliar calcium applications do not improve quality or shelf life of strawberry, raspberry, blackberry, or blueberry fruit. HortScience 2017, 52, 382–387. [Google Scholar] [CrossRef]
- Chandrakar, S.; Singh, P.; Kumar, H.; Paikra, S. Effect of foliar feeding of calcium and micro-nutrients on quality parameters of strawberry (Fragaria × ananassa Duch.) cv. Nabila under net tunnel. Int. J. Chem. Studies 2018, 6, 658–661. Available online: https://www.scribd.com/document/429587251/6-5-588-701 (accessed on 15 July 2021).
- Sangeeta, H.; Panigrahi, K.; Lodhi, Y.; Saha, M. Growth, yield and quality improvement in strawberry through foliar application of calcium, iron and zinc: A review. J. Pharmacogn. Phytochem. 2019, 8, 734–737. Available online: https://www.phytojournal.com/archives/2019/vol8issue6/PartL/8-6-8-389.pdf (accessed on 15 July 2021).
- Goldbach, H.E.; Longbin, H.; Monika, A.W. Boron Functions in Plants and Animals: Recent Advances in Boron Research and Open Questions. In Advances in Plant and Animal Boron Nutrition; Xu, F., Goldbach, H.E., Brown, P.H., Bell, R.W., Fujiwara, T., Hunt, C.D., Goldberg, S., Shi, L., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 3–25. [Google Scholar]
- Rafeii, S.; Pakkish, Z. Improvement of vegetative and reproductive growth of ‘Camarosa’ strawberry: Role of humic acid, Zn, and B. Agric. Conspec. Sci. 2014, 79, 239–244. Available online: https://hrcak.srce.hr/136730 (accessed on 15 July 2021).
- Sharma, R.R.; Sharma, V.P. The Strawberry; ICAR: New Delhi, India, 2004; Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2016011914 (accessed on 15 July 2021).
- Rajbir, S.; Sharma, R.R.; Tyagi, S.K. Pre-harvest foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry Fragaria× ananassa Duch. Sci. Hortic. 2007, 112, 215–220. Available online: https://krishi.icar.gov.in/jspui/bitstream/123456789/28897/1/Dr.%20Rajbir%20Singh_Pre-harvest%20foliar%20application%20of%20calcium%20and%20boron%20influences.pdf (accessed on 15 July 2021).
- Jackson, M.L. Soil Chemical Analysis. Printice-Hall of India; Privat Limited: New Delhi, India, 1973; Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1453838 (accessed on 15 July 2021).
- Black, C.A.; Evans, D.O.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Soil Science Society of America, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Pregl, F. Quantitative Organic Microanalysis, 4th ed.; Chundril: London, UK, 1945; Available online: https://www.elsevier.com/books/quantitative-organic-microanalysis/steyermark/978-0-12-395686-6 (accessed on 15 July 2021).
- John, M.K. Colorimetric determination of phosphorus in soil and plant material with ascorbic acid. Soil Sci. 1970, 109, 214–220. [Google Scholar] [CrossRef]
- Brown, J.; Lilliland, O. Rapid determination of potassium and sodium in plant material and soil extracts by flame photometric. Proc. Am. Soc. Hort. Sci. 1946, 48, 341–346. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants, and Waters; University of California, Division of Agricultural Sciences: Riverside, CA, USA, 1961; p. 309. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1045783 (accessed on 15 July 2021).
- Herbert, D.; Phipps, P.J.; Strange, R.E. Determination of Total Carbohydrates. Method Microb. 1971, 5, 290–344. [Google Scholar]
- Qurecky, D.K.; Bourne, M.C. Measurement of strawberry texture. J. Am. Sci. 1968, 93, 317–339. [Google Scholar]
- Association of Official Analytical Chemists. Official and Tentative Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 15 July 2021).
- Nelson, N. A photometric adaptation of the Somogyi methods for determination of glucose. J. Biology. Chem. 1974, 195, 19–23. Available online: http://garfield.library.upenn.edu/classics1977/A1977DM02500001.pdf (accessed on 15 July 2021).
- Snedecor, G.W.; Cocharn, W.G. Statistical Methods, 8th ed.; lowa State University press: Iowa City, IA USA, 1991; Available online: https://www.amazon.com/Statistical-Methods-George-W-Snedecor/dp/0813815614 (accessed on 15 July 2021).
- Agehara, S. Characterizing Early-Season Nitrogen Fertilization Rate Effects on Growth, Yield, and Quality of Strawberry. Agronomy 2021, 11, 905. [Google Scholar] [CrossRef]
- Weber, C.N.; Koron, D.; Jakopič, J.; Veberič, R.; Hudina, M.; Baša Česnik, H. Influence of nitrogen, calcium and nano-fertilizer on strawberry (Fragaria × ananassa Duch.) fruit inner and outer quality. Agronomy 2021, 11, 997. [Google Scholar] [CrossRef]
- Hassan, A.H. Effect of nitrogen fertilizer levels in the form of organic, inorganic and bio fertilizer applications on growth, yield and quality of strawberry. Middle East J. Appl. Sci. 2015, 5, 604–617. Available online: https://www.curresweb.com/mejas/mejas/2015/604-617.pdf (accessed on 15 July 2021).
- Loyd, M.; Kluepfel, D.; Gordon, T. Evaluation of four commercial composts on strawberry plant productivity and soil characteristics in California. Int. J. Fruit Sci. 2016, 16, 84–107. [Google Scholar] [CrossRef]
- Khalil, N.H.; Agah, R.J. Effect of chemical, organic and bio fertilization on growth and yield of strawberry plant. Int. J. Adv. Chem. Eng. Biol. Sci. 2018, 4, 167–171. Available online: https://iicbe.org/upload/712912%20KL%20formatted.pdf (accessed on 15 July 2021).
- Yadav, D.K.; Kumar, S.; Saloni, A. Molecular Insights into the Interaction of RONS and Thieno[3,2-c]pyran Analogs with SIRT6/COX-2: A Molecular Dynamics Study. Sci. Rep. 2016, 8, 4777. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Kim, J.; An, J.; Chang, Y.; Hong, K. Daughter plant growth, flowering and fruit yield in strawberry in response to different levels of slow release fertilizer during the nursery period. Korean J. Hortic. Sci. Technol. 2018, 36, 20–27. Available online: http://www.kjhst.org (accessed on 15 July 2021).
- Lundblad, J. Estimation of flowering potential and growth pattern in everbearing strawberry Fragaria × ananassa cv. Favori. Master Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2019; p. 71. Available online: https://stud.epsilon.slu.se/15264/7/lundblad_j_200107.pdf (accessed on 15 July 2021).
- Santos, B.M.; Chandler, K.C. Influence of nitrogen fertilization rates on the performance of strawberry cultivars. Int. J. Fruit Sci. 2009, 9, 126–135. [Google Scholar] [CrossRef]
- Sas, L.; Marschner, H.; Römheld, V. Effect of nitrogen forms on growth and chemical changes in the rhizosphere of strawberry plants. Acta Physiol. Plant. 2003, 25, 241–247. [Google Scholar] [CrossRef]
- Wójcik, P.; Lewandowski, M. Effect of calcium and boron sprays on yield and quality of “Elsanta” strawberry. J. Plant Nutr. 2003, 26, 671–682. [Google Scholar] [CrossRef]
- Hassan, A.H. Effect of different natural potassium fertilizer rates and microbial inoculants as well as foliar spray of calcium on growth and yield of strawberry plants grown under organic fertilizer systems. Middle East J. Appl. Sci. 2016, 6, 1038–1053. [Google Scholar]
- Hamail, A.F.; Hamada, M.S.; El-Awady, A.A.; Salim, M.A.A. Effect of foliar spray with some plants extracts and different calcium sources on productivity and quality of strawberry fruits. I. vegetative growth, productivity and fruit quality. J. Product. Dev. 2018, 23, 653–667. [Google Scholar] [CrossRef]
- Farid, M.Z.; Qureshi, K.M.; Shah, S.H.; Qureshi, A.A.; Umair, M.; Shafiq, H. Foliar application of micronutrients improves growth, productivity and fruit quality of strawberry (Fragaria × ananassa Duch). J. Anim. Plant Sci. 2020, 30, 905–912. Available online: http://thejaps.org.pk/Volume/2020/30-04/16.php. (accessed on 15 July 2021).
- Strik, B.; Timothy, R.; Gil, B. Influence of rate, timing, and method of nitrogen fertilizer application on uptake and use of fertilizer nitrogen, growth, and yield of June-bearing strawberry. J. Am. Soc. Hort. Sci. 2004, 129, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Iatrou, M.; Papadopoulos, A. Influence of nitrogen nutrition on yield and growth of an everbearing strawberry cultivar (cv. Evie II). J. Plant Nutr. 2016, 39, 1499–1505. [Google Scholar] [CrossRef]
- Nestby, R. Effect of N-fertigation on fruit yield, leaf N and sugar content in fruits of two strawberry cultivars. J. Hortic. Sci. Biotechnol. 1998, 73, 563–568. [Google Scholar] [CrossRef]
- Gariglio, N.F.; Pilatti, R.A.; Baldi, B.L. Using nitrogen balance to calculate fertilization in strawberries. HortTechnology 2000, 10, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Real, L.A.; Lobbit, P.; Cárdenas-Navarro, R.; Grageda-Cabrera, O.; Farías-Rodríguez, R.; Valencia-Cantero, E.; Macías-Rodríguez, L. Effect of nitrogen fertilization on quality markers of strawberry (Fragaria × ananassa Duch. cv. Aromas). J. Sci. Food Agric. 2009, 89, 935–939. [Google Scholar] [CrossRef]
Physical Parameters | Chemical Parameters | ||||
---|---|---|---|---|---|
Cations mmol/L | Anions mmol/L | ||||
Coarse sand | 19.4% | Ca++ | 3.9 | CO3− | 0.0 |
Fine sand | 35.7% | Mg++ | 2.125 | HCO3− | 5.6 |
Silt | 26.6% | Na+ | 3.22 | Cl− | 5.23 |
Clay | 19.3% | K+ | 1.16 | SO4− | 3.56 |
Texture class | Sandy | ||||
Soil pH | 7.58 | Available N 26.6 mg/kg | |||
EC (dS/m) | 1.77 | Available P 13.8 mg/kg | |||
Organic matter | 0.78% | Available K 172 mg/kg |
Items | 2017/2018 | 2018/2019 |
---|---|---|
N% | 1.19 | 1.17 |
P% | 0.65 | 0.69 |
K% | 1.49 | 1.43 |
C:N ratio | 17:1 | 18:1 |
Organic matter (%) | 32.47 | 33.92 |
pH | 6.78 | 6.89 |
EC (dS/m) | 3.14 | 3.42 |
Specific weight (kg/m3) | 612 kg | 627 kg |
Treatments | 2017/2018 | 2018/2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Nitrogen Fertilizers | Foliar Spray | Plant Height (cm) | No. of Crowns/Plant | No. of Leaves/Plant | Total Fresh Weight (g/Plant) | Total Dry Weight (g/Plant) | Plant Height (cm) | No. of Crowns/Plant | No. of Leaves/Plant | Total Fresh Weight (g/Plant) | Total Dry Weight (g/Plant) |
100% mineral N | 21.7 | 2.5 | 21.6 | 87.7 | 17.81 | 21.0 | 2.9 | 21.1 | 86.2 | 17.46 | |
50% mineral N + 50% organic N | 19.1 | 1.9 | 18.3 | 75.4 | 15.34 | 18.3 | 1.9 | 17.2 | 68.2 | 14.85 | |
50% mineral N + 75% organic N | 20.5 | 2.1 | 19.7 | 81.7 | 17.61 | 19.8 | 2.3 | 19.3 | 80.3 | 17.08 | |
50% mineral N + 100% organic N | 22.8 | 2.8 | 22.9 | 92.1 | 19.75 | 22.2 | 3.0 | 22.5 | 89.6 | 19.33 | |
LSD at 5% | 1.42 | 0.37 | 1.41 | 5.02 | 2.04 | 1.30 | 0.18 | 1.52 | 3.81 | 1.96 | |
Control | 20.1 | 2.0 | 19.3 | 80.4 | 16.68 | 19.6 | 2.2 | 18.9 | 76.5 | 15.91 | |
Ca+B at 2 mL/L | 21.7 | 2.3 | 20.4 | 83.8 | 17.26 | 20.3 | 2.5 | 20.2 | 81.3 | 17.08 | |
Ca+B at 4 mL/L | 22.5 | 2.6 | 22.2 | 88.4 | 18.94 | 21.1 | 2.8 | 21.1 | 85.2 | 18.55 | |
LSD at 5% | 1.23 | 0.32 | 1.22 | 4.35 | 1.74 | 1.12 | 0.15 | 1.32 | 3.31 | 1.71 | |
100% mineral N | Control | 20.6 | 2.1 | 20.2 | 83.5 | 16.75 | 20.2 | 2.6 | 19.6 | 82.6 | 16.36 |
Ca+B at 2 mL/L | 21.8 | 2.6 | 21.1 | 87.5 | 17.59 | 21.1 | 2.9 | 21.6 | 85.6 | 17.12 | |
Ca+B at 4 mL/L | 22.9 | 2.9 | 23.6 | 92.2 | 19.10 | 21.8 | 3.2 | 22.2 | 90.4 | 18.92 | |
50% mineral N + 50% organic N | Control | 18.1 | 1.7 | 17.1 | 71.2 | 14.65 | 17.6 | 1.8 | 16.2 | 63.2 | 13.12 |
Ca+B at 2 mL/L | 19.3 | 1.9 | 18.2 | 75.4 | 14.62 | 18.4 | 1.9 | 17.4 | 69.3 | 15.11 | |
Ca+B at 4 mL/L | 20.1 | 2.1 | 19.7 | 79.8 | 16.75 | 18.9 | 2.2 | 18.2 | 72.3 | 16.32 | |
50% mineral N + 75% organic N | Control | 19.6 | 1.8 | 18.6 | 78.4 | 16.98 | 19.2 | 2.0 | 18.1 | 75.6 | 16.27 |
Ca+B at 2 mL/L | 20.4 | 2.0 | 19.5 | 81. | 17.11 | 19.7 | 2.4 | 19.3 | 80.9 | 16.85 | |
Ca+B at 4 mL/L | 21.7 | 2.4 | 21.1 | 85. | 18.75 | 20.6 | 2.6 | 20.5 | 84.6 | 18.12 | |
50% mineral N + 100% organic N | Control | 22.1 | 2.5 | 21.6 | 88.7 | 18.35 | 21.5 | 2.6 | 21.9 | 85.6 | 17.89 |
Ca+B at 2 mL/L | 22.8 | 2.8 | 22.8 | 91.2 | 19.75 | 22.2 | 3.1 | 22.5 | 89.7 | 19.27 | |
Ca+B at 4 mL/L | 23.5 | 3.2 | 24.5 | 96.2 | 21.16 | 22.9 | 3.3 | 23.2 | 93.5 | 20.85 | |
LSD at 5% | 2.46 | 0.64 | 2.44 | 8.7 | 3.48 | 2.24 | 0.30 | 2.64 | 6.62 | 3.41 |
Treatments | 2017/2018 | 2018/2019 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nitrogen Fertilizers | Foliar Spray | N % | P % | K % | Ca % | B (ppm) | Total Carbohydrates % | N % | P % | K % | Ca % | B (ppm) | Total Carbohydrates % |
100% mineral N | 2.15 | 0.219 | 2.23 | 1.85 | 53.9 | 17.91 | 2.17 | 0.226 | 2.27 | 1.80 | 66.6 | 20.02 | |
50% mineral N + 50% organic N | 1.89 | 0.205 | 1.94 | 1.58 | 49.3 | 14.14 | 1.86 | 0.205 | 1.97 | 1.45 | 57.1 | 15.25 | |
50% mineral N + 75% organic N | 1.93 | 0.218 | 2.13 | 1.67 | 56.5 | 15.07 | 1.94 | 0.214 | 2.17 | 1.61 | 62.0 | 17.14 | |
50% mineral N + 100% organic N | 2.18 | 0.225 | 2.28 | 1.90 | 64.4 | 19.86 | 2.20 | 0.235 | 2.35 | 1.85 | 68.2 | 21.13 | |
LSD at 5% | 0.12 | 0.007 | 0.13 | 0.21 | 3.2 | 1.42 | 0.08 | 0.006 | 0.12 | 0.23 | 3.21 | 2.82 | |
Control | 1.95 | 0.204 | 2.01 | 1.66 | 48.9 | 15.27 | 1.96 | 0.212 | 2.06 | 1.58 | 55.3 | 16.58 | |
Ca+B at 2 mL/L | 2.05 | 0.220 | 2.18 | 1.77 | 57.6 | 16.85 | 2.05 | 0.223 | 2.20 | 1.71 | 64.8 | 18.78 | |
Ca+B at 4 mL/L | 2.11 | 0.225 | 2.24 | 1.83 | 61.6 | 18.11 | 2.11 | 0.225 | 2.28 | 1.74 | 70.3 | 19.80 | |
LSD at 5% | 0.10 | 0.006 | 0.11 | 0.18 | 2.78 | 1.23 | 0.07 | 0.005 | 0.10 | 0.20 | 2.80 | 2.45 | |
100% mineral N | Control | 2.04 | 0.206 | 2.12 | 1.78 | 49.3 | 16.12 | 2.09 | 0.219 | 2.18 | 1.69 | 56.7 | 18.06 |
Ca+B at 2 mL/L | 2.18 | 0.226 | 2.26 | 1.86 | 53.2 | 17.81 | 2.17 | 0.228 | 2.29 | 1.87 | 68.2 | 20.17 | |
Ca+B at 4 mL/L | 2.24 | 0.224 | 2.31 | 1.92 | 59.2 | 19.82 | 2.26 | 0.231 | 2.34 | 1.85 | 74.9 | 21.84 | |
50% mineral N + 50% organic N | Control | 1.82 | 0.192 | 1.82 | 1.46 | 45.2 | 12.91 | 1.79 | 0.196 | 1.86 | 1.37 | 51.8 | 13.24 |
Ca+B at 2 mL/L | 1.91 | 0.204 | 1.94 | 1.61 | 51.0 | 14.32 | 1.87 | 0.208 | 1.97 | 1.48 | 58.2 | 15.80 | |
Ca+B at 4 mL/L | 1.96 | 0.218 | 2.06 | 1.68 | 51.8 | 15.21 | 1.93 | 0.212 | 2.08 | 1.52 | 61.3 | 16.71 | |
50%mineral N + 75% organic N | Control | 1.89 | 0.211 | 2.01 | 1.56 | 48.3 | 13.82 | 1.84 | 0.206 | 1.97 | 1.51 | 54.1 | 15.21 |
Ca+B at 2 mL/L | 1.94 | 0.220 | 2.21 | 1.71 | 58.2 | 15.16 | 1.97 | 0.219 | 2.19 | 1.64 | 63.2 | 17.92 | |
Ca+B at 4 mL/L | 1.98 | 0.223 | 2.18 | 1.76 | 63.2 | 16.24 | 2.02 | 0.217 | 2.28 | 1.68 | 68.9 | 18.31 | |
50% mineral N + 100% organic N | Control | 2.08 | 0.209 | 2.11 | 1.84 | 52.8 | 18.26 | 2.14 | 0.226 | 2.23 | 1.78 | 58.8 | 19.81 |
Ca+B at 2 mL/L | 2.17 | 0.231 | 2.31 | 1.91 | 68.3 | 20.14 | 2.21 | 0.237 | 2.38 | 1.86 | 69.8 | 21.26 | |
Ca+B at 4 mL/L | 2.29 | 0.236 | 2.42 | 1.96 | 72.3 | 21.20 | 2.26 | 0.241 | 2.45 | 1.93 | 76.2 | 22.34 | |
LSD at 5% | 0.21 | 0.012 | 0.23 | 0.36 | 5.56 | 2.46 | 0.14 | 0.010 | 0.20 | 0.40 | 5.58 | 4.90 |
Treatments | 2017/2018 | 2018/2019 | |||||
---|---|---|---|---|---|---|---|
Nitrogen Fertilizers | Foliar Spray | Exportable Yield (ton/ha) | Total Yield (g)/Plant | Total Yield (ton/ha) | Exportable Yield (ton/ha) | Total Yield (g)/Plant | Total Yield (ton/ha) |
100% mineral N | 12.61 | 558 | 51.90 | 13.70 | 582 | 55.14 | |
50% mineral N + 50% organic N | 10.87 | 521 | 44.72 | 12.61 | 557 | 46.67 | |
50% mineral N + 75% organic N | 15.13 | 602 | 57.04 | 16.37 | 645 | 59.90 | |
50% mineral N + 100% organic N | 16.25 | 649 | 61.02 | 17.61 | 668 | 62.78 | |
LSD at 5% | 2.14 | 32.1 | 4.14 | 2.23 | 36.4 | 3.82 | |
Control | 12.44 | 546 | 50.71 | 13.70 | 577 | 52.97 | |
Ca+B at 2 mL/L | 13.61 | 579 | 53.38 | 15.04 | 615 | 56.16 | |
Ca+B at 4 mL/L | 15.08 | 622 | 56.90 | 16.46 | 646 | 59.23 | |
LSD at 5% | 1.86 | 27.9 | 3.60 | 1.94 | 31.69 | 3.32 | |
100% mineral N | Control | 11.85 | 531 | 48.93 | 12.49 | 543 | 51.45 |
Ca+B at 2 mL/L | 12.30 | 552 | 50.57 | 13.70 | 586 | 55.04 | |
Ca+B at 4 mL/L | 13.68 | 591 | 56.21 | 14.94 | 617 | 58.88 | |
50% mineral N + 50% organic N | Control | 9.18 | 496 | 42.10 | 11.13 | 519 | 44.07 |
Ca+B at 2 mL/L | 10.85 | 525 | 45.02 | 12.78 | 562 | 46.90 | |
Ca+B at 4 mL/L | 12.59 | 542 | 47.02 | 13.94 | 591 | 49.07 | |
50% mineral N + 75% organic N | Control | 14.16 | 547 | 53.88 | 14.63 | 611 | 56.54 |
Ca+B at 2 mL/L | 14.86 | 586 | 56.69 | 16.49 | 642 | 59.78 | |
Ca+B at 4 mL/L | 16.35 | 674 | 60.61 | 17.99 | 682 | 63.42 | |
50% mineral N + 100% organic N | Control | 14.58 | 612 | 57.97 | 16.58 | 636 | 59.90 |
Ca+B at 2 mL/L | 16.46 | 653 | 61.28 | 17.25 | 672 | 62.90 | |
Ca+B at 4 mL/L | 17.70 | 682 | 63.83 | 18.99 | 697 | 65.59 | |
LSD at 5% | 3.72 | 55.9 | 7.20 | 3.88 | 63.3 | 6.64 |
Treatments | 2017/2018 | 2018/2019 | |||||||
---|---|---|---|---|---|---|---|---|---|
Nitrogen Fertilizers | Foliar Spray | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Weight (g) | Fruit Firmness (g/cm2) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Weight (g) | Fruit Firmness (g/cm2) |
100% mineral N | 5.63 | 3.67 | 26.50 | 212 | 5.78 | 3.79 | 27.13 | 225 | |
50% mineral N + 50% organic N | 4.95 | 3.04 | 18.90 | 236 | 5.12 | 3.17 | 19.46 | 236 | |
50% mineral N + 75% organic N | 5.29 | 3.43 | 21.76 | 257 | 5.43 | 3.53 | 22.83 | 269 | |
50% mineral N + 100% organic N | 5.47 | 3.57 | 24.63 | 267 | 5.60 | 3.67 | 25.40 | 282 | |
LSD at 5% | 0.41 | 0.46 | 2.17 | 21.4 | 0.42 | 0.43 | 2.43 | 9.34 | |
Control | 5.12 | 3.27 | 21.42 | 228 | 5.28 | 3.40 | 22.32 | 241 | |
Ca+B at 2 mL/L | 5.33 | 3.42 | 22.95 | 241 | 5.49 | 3.55 | 23.55 | 254 | |
Ca+B at 4 mL/L | 5.53 | 3.60 | 24.47 | 260 | 5.67 | 3.67 | 25.25 | 265 | |
LSD at 5% | 0.36 | 0.40 | 1.89 | 18.6 | 0.37 | 0.37 | 2.11 | 8.13 | |
100% mineral N | Control | 5.43 | 3.51 | 25.20 | 196 | 5.62 | 3.66 | 25.70 | 213 |
Ca+B at 2 mL/L | 5.65 | 3.65 | 26.80 | 217 | 5.78 | 3.78 | 27.30 | 229 | |
Ca+B at 4 mL/L | 5.82 | 3.86 | 27.50 | 224 | 5.94 | 3.93 | 28.40 | 235 | |
50% mineral N + 50% organic N | Control | 4.81 | 2.93 | 17.50 | 219 | 5.95 | 3.10 | 18.30 | 227 |
Ca+B at 2 mL/L | 4.93 | 3.05 | 18.70 | 231 | 5.10 | 3.17 | 19.20 | 238 | |
Ca+B at 4 mL/L | 5.12 | 3.16 | 20.50 | 258 | 5.31 | 3.25 | 20.90 | 244 | |
50% mineral N + 75% organic N | Control | 5.07 | 3.21 | 20.20 | 246 | 5.26 | 3.32 | 21.60 | 259 |
Ca+B at 2 mL/L | 5.25 | 3.43 | 21.70 | 254 | 5.41 | 3.58 | 22.40 | 263 | |
Ca+B at 4 mL/L | 5.47 | 3.67 | 23.40 | 273 | 5.64 | 3.71 | 24.50 | 287 | |
50% mineral N + 100% organic N | Control | 5.18 | 3.43 | 22.80 | 251 | 5.32 | 3.52 | 23.70 | 266 |
Ca+B at 2 mL/L | 5.51 | 3.56 | 24.60 | 265 | 5.69 | 3.68 | 25.30 | 287 | |
Ca+B at 4 mL/L | 5.73 | 3.74 | 26.50 | 287 | 5.81 | 3.82 | 27.20 | 295 | |
LSD at 5% | 0.71 | 0.80 | 3.78 | 37.2 | 0.73 | 0.74 | 4.23 | 16.25 |
Treatments | 2017/2018 | 2018/2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Nitrogen Fertilizers | Foliar Spray | TSS % | Total Acidity % | V. C (mg/100 g f.w) | Total Sugars % | Anthocyanin (mg/100 g f.w.) | TSS % | Total Acidity % | V. C (mg/100 g f.w.) | Total Sugars % | Anthocyanin (mg/100 g f.w.) |
100% mineral N | 9.86 | 0.79 | 47.95 | 6.85 | 81.0 | 10.50 | 0.82 | 48.84 | 7.08 | 84.9 | |
50% mineral N + 50% organic N | 10.50 | 0.75 | 50.37 | 7.09 | 86.7 | 10.70 | 0.77 | 51.88 | 7.32 | 88.0 | |
50% mineral N + 75% organic N | 10.80 | 0.73 | 53.86 | 7.38 | 90.9 | 11.23 | 0.76 | 55.45 | 7.56 | 93.0 | |
50% mineral N + 100% organic N | 11.36 | 0.66 | 55.45 | 7.78 | 93.2 | 11.53 | 0.70 | 57.23 | 7.86 | 95.5 | |
LSD at 5% | 0.46 | 0.07 | 4.82 | 0.41 | 4.28 | 0.39 | 0.06 | 4.37 | 0.36 | 2.84 | |
Control | 10.15 | 0.78 | 49.77 | 7.08 | 84.1 | 10.57 | 0.80 | 51.18 | 7.29 | 86.7 | |
Ca+B at 2 mL/L | 10.60 | 0.73 | 51.66 | 7.28 | 87.7 | 10.97 | 0.76 | 53.22 | 7.47 | 90.2 | |
Ca+B at 4 mL/L | 11.15 | 0.68 | 54.28 | 7.46 | 91.9 | 11.42 | 0.72 | 55.66 | 7.60 | 94.1 | |
LSD at 5% | 0.42 | 0.06 | 4.19 | 0.36 | 3.72 | 0.40 | 0.05 | 3.80 | 0.31 | 2.47 | |
100% mineral N | Control | 9.30 | 0.76 | 46.36 | 6.63 | 74.3 | 10.10 | 0.79 | 47.17 | 7.01 | 80.2 |
Ca+B at 2 mL/L | 9.80 | 0.79 | 47.93 | 6.78 | 81.2 | 10.50 | 0.83 | 48.62 | 7.08 | 84.7 | |
Ca+B at 4 mL/L | 10.50 | 0.82 | 49.56 | 7.07 | 87.5 | 10.90 | 0.86 | 50.75 | 7.15 | 89.8 | |
50% mineral N + 50% organic N | Control | 10.0 | 0.70 | 48.75 | 6.94 | 82.7 | 10.20 | 0.74 | 50.08 | 7.20 | 84.2 |
Ca+B at 2 mL/L | 10.40 | 0.75 | 50.24 | 7.08 | 86.3 | 10.60 | 0.77 | 51.63 | 7.31 | 87.5 | |
Ca+B at 4 mL/L | 11.10 | 0.81 | 52.12 | 7.25 | 91.1 | 11.30 | 0.82 | 53.74 | 7.46 | 92.4 | |
50% mineral N + 75% organic N | Control | 10.30 | 0.68 | 51.52 | 7.18 | 88.5 | 10.80 | 0.72 | 52.84 | 7.32 | 89.9 |
Ca+B at 2 mL/L | 10.80 | 0.74 | 53.24 | 7.32 | 90.8 | 11.30 | 0.76 | 55.42 | 7.57 | 93.2 | |
Ca+B at 4 mL/L | 11.30 | 0.78 | 56.85 | 7.64 | 93.6 | 11.60 | 0.80 | 58.11 | 7.81 | 96.1 | |
50% mineral N + 100% organic N | Control | 11.0 | 0.61 | 52.46 | 7.58 | 91.2 | 11.20 | 0.65 | 54.63 | 7.65 | 92.7 |
Ca+B at 2 mL/L | 11.4 | 0.65 | 55.26 | 7.87 | 92.8 | 11.50 | 0.71 | 57.21 | 7.94 | 95.6 | |
Ca+B at 4 mL/L | 11.70 | 0.72 | 58.64 | 7.91 | 95.7 | 11.90 | 0.75 | 59.86 | 7.99 | 98.4 | |
LSD at 5% | 0.84 | 0.12 | 8.39 | 0.71 | 7.45 | 0.80 | 0.10 | 7.60 | 0.62 | 4.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.H.M.; Petropoulos, S.A.; Ali, M.M.E. The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants. Horticulturae 2021, 7, 257. https://doi.org/10.3390/horticulturae7080257
Mohamed MHM, Petropoulos SA, Ali MME. The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants. Horticulturae. 2021; 7(8):257. https://doi.org/10.3390/horticulturae7080257
Chicago/Turabian StyleMohamed, Mustafa. H. M., Spyridon A. Petropoulos, and Maha Mohamed Elsayed Ali. 2021. "The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants" Horticulturae 7, no. 8: 257. https://doi.org/10.3390/horticulturae7080257
APA StyleMohamed, M. H. M., Petropoulos, S. A., & Ali, M. M. E. (2021). The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants. Horticulturae, 7(8), 257. https://doi.org/10.3390/horticulturae7080257