Fatty Acid Profile, Tocopherol Content of Seed Oil, and Nutritional Analysis of Seed Cake of Wood Apple (Limonia acidissima L.), an Underutilized Fruit-Yielding Tree Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Standards and Chemicals
2.3. Soxhlet Extraction of Wood Apple Seeds
2.4. Investigation of Physico-Chemical Properties of WASO
2.5. Fatty Acids Profiling
2.5.1. Preparation of Fatty Acid Methyl Esters (FAMEs)
2.5.2. GC-MS Characterization of Fatty Acids
2.6. Estimation of Tocopherols
2.6.1. Sample Preparation
2.6.2. Tocopherol Estimation
2.7. Nutritional Characterization of Defatted Seed Cake
2.7.1. Nutritional Analysis
2.7.2. Extraction and Quantification of Total Phenolic Content
2.8. Statistical Analysis
3. Results and Discussion
3.1. Soxhlet Extraction of Wood Apple Seed Oil
3.2. Investigation of Physico-Chemical Properties of WASO
3.3. Fatty Acid Profiling
3.4. Estimation of Tocopherols
3.5. Nutritional Characterization of Defatted Seed Cake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saidani, S.; Dhifi, W.; Marzouk, B. Lipid evaluation of some Tunisian citrus seeds. J. Food Lipids 2004, 1, 242–250. [Google Scholar] [CrossRef]
- Yoshida, H.; Hirakawa, Y.; Abe, S. Roasting influences on molecular species of triacylglycerols in sunflower seeds (Helianthus annuus L.). Food Res. Int. 2001, 34, 613–619. [Google Scholar] [CrossRef]
- Malacrida, C.R.; Kimura, M.; Jorge, N. Phytochemicals and antioxidant activity of citrus seed oils. Food Sci. Technol. Res. 2012, 18, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Timilsena, Y.P.; Vongsvivut, J.; Adhikari, R.; Adhikari, B. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem. 2017, 228, 394–402. [Google Scholar] [CrossRef]
- Theriault, A.; Chao, J.; Wang, Q.; Gapor, A.; Adeli, K. Tocotrienol: A review of its therapeutic potential. Clin. Biochem. 1999, 32, 309–319. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dalawai, D. Bioactive compounds of wood apple (Limonia acidissima L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 544–569. [Google Scholar]
- Nithya, N.; Saraswathi, U. In vitro antioxidant and antibacterial efficacy of Feronia elephantum Correa fruit. Indian J. Nat. Prod. Resour. 2010, 1, 301–305. [Google Scholar]
- Vijayvargia, P.; Choudhary, S.; Vijayvergia, R. Preliminary phytochemical screening of Limonia acidissima Linn. Int. J. Pharm. Pharm. Sci. 2014, 6, 134–136. [Google Scholar]
- Sonawane, S.K.; Bagul, M.B.; LeBlanc, J.G.; Arya, S.S. Nutritional, functional, thermal and structural characteristics of Citrullus lanatus and Limonia acidissima seed flours. J. Food Meas. Charact. 2016, 10, 72–79. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; AOCS Press: Champaign, IL, USA, 1998. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 6th ed.; AOCS Press: Urbana, IL, USA, 2009. [Google Scholar]
- Patil, M.M.; Muhammed, A.M.; Anu-Appaiah, K.A. Lipids and fatty acid profiling of major indian garcinia fruit: A comparative study and its nutritional impact. J. Am. Oil Chem. Soc. 2016, 93, 823–836. [Google Scholar] [CrossRef]
- Morison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Prasad, P.; Savyasachi, S.; Reddy, L.P.A.; Sreedhar, R.V. Physico-chemical characterization, profiling of total lipids and triacylglycerol molecular species of Omega-3 fatty acid rich B. arvensis seed oil from India. J. Oleo Sci. 2019, 68, 209–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manasa, V.; Chaudhari, S.R.; Tumaney, A.W. Spice fixed oils as a new source of γ-oryzanol: Nutraceutical characterization of fixed oils from selected spices. RSC Adv. 2020, 10, 43975–43984. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Analytical Chemists, 15th ed.; AOAC: Washington, DC, USA, 1998. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Analytical Chemists, 17th ed.; AOAC: Arlington, VA, USA, 2000. [Google Scholar]
- Sadasivam, S.; Manickam, A. Biochemical Methods, 3rd ed.; New Age International (P) Limited, Publishers: New Delhi, India, 2008. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.S. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteau Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Paul, A.A.; Southgate, D.A.T. McCance and Widdowson’s the Composition of Foods, 4th ed.; Her Majesty’s Stationery Office: London, UK, 1980.
- Tan, C.H.; Ghazali, H.M.; Kuntom, A.; Tan, C.P.; Ariffin, A.A. Extraction and physicochemical properties of low free fatty acid crude palm oil. Food Chem. 2009, 113, 645–650. [Google Scholar] [CrossRef]
- Khaneghah, M.; Shoeibi, S.; Ameri, M. Effect of storage conditions and PET packing on quality of edible oils in Iran. Adv. Environ. Biol. 2012, 6, 694–701. [Google Scholar]
- Yalcin, H.; Toker, O.S.; Dogan, M. Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils. J. Oleo Sci. 2012, 61, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carelli, A.A.; Frizzera, L.M.; Forbito, P.R.; Crapiste, G.H. Wax Composition of sunflower seed oils. J. Am. Oil Chem. Soc. 2002, 79, 763–768. [Google Scholar] [CrossRef]
- Rossell, J.B. Vegetable oil and fats. In Analysis of Oil Seeds, Fats and Fatty Foods; Rossell, J.B., Pritchard, J.L.R., Eds.; Elsevier Applied Sciences: New York, NY, USA, 1991; pp. 261–319. [Google Scholar]
- Eze, S.O.O. Physico-chemical properties of oil from some selected underutilized oil seeds available for biodiesel preparation. Afr. J. Biotechnol. 2012, 11, 10003–10007. [Google Scholar]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef]
- Cornelius, J.A. Some technical aspects influencing the quality of palm kernels. J. Sci. Food Agric. 1966, 17, 57–61. [Google Scholar] [CrossRef]
- Codex Alimentarius. Standard for Named Vegetable Oils (CODEX STAN 210). 1999. Available online: http://www.fao.org/input/download/standards/336/CXS210e2015.pdf (accessed on 25 July 2021).
- Aremu, M.O.; Adebisi, O. Compositional studies and physicochemical characteristics of cashew nut (Anarcadium occidentale) flour. Pak. J. Nutr. 2006, 5, 328–333. [Google Scholar]
- Mathews, S.; Singhai, R.S.; Kulkarni, P.R. Some physico-chemical characteristics of Lepidium sativum (haliv) seeds. Nahrung 1993, 37, 69–71. [Google Scholar] [CrossRef]
- Joseph, K.S.; Bolla, S.; Joshi, K.; Bhat, M.; Naik, K.; Patil, S.; Bendre, S.; Brunda, G.; Haibatti, V.; Payamalle, S.; et al. Determination of chemical composition and nutritive value with fatty acid compositions of African Mangosteen (Garcinia livingstonei). Erwerbs-Obstbau 2016, 59, 195–202. [Google Scholar] [CrossRef]
- Edem, D.O. Palm oil: Biochemical, physiological, nutritional, hematological and toxicological aspects: A review. Plant. Foods Hum. Nutr. 2002, 57, 319–341. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Saikia, N. Fatty Acids Profile Of Edible Oils and Fats in India; Centre for Science and Environment: New Delhi, India, 2009. [Google Scholar]
- Matthaus, B. Use of palm oil for frying in comparison with other high-stability oils. Eur. J. Lipid Sci. Technol. 2007, 109, 400–409. [Google Scholar] [CrossRef]
- German, J.B. Dietary lipids from an evolutionary perspective: Sources, structures and functions. Matern. Child. Nutr. 2011, 7, 2–16. [Google Scholar] [CrossRef]
- FAO/WHO. Fats and Fatty Acids in Human Nutrition; Report of an Expert Consultation; FAO/WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Gordon, M.H.; Miller, L.A.D. Development of steryl ester analysis for the detection of admixtures of vegetable oils. J. Am. Oil Chem. Soc. 1997, 74, 505–510. [Google Scholar] [CrossRef]
- Ajewole, K.; Adeyeye, A. Characterisation of Nigerian citrus seed oils. Food Chem. 1993, 47, 77–78. [Google Scholar] [CrossRef]
- Petukhov, I.; Malcolmson, L.J.; Przybylski, R.; Armstrong, L. Frying performance of genetically modified canola oils. J. Am. Oil Chem. Soc. 1999, 76, 627–632. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 1991, 54, 438–463. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, Z.; Yi, Z.; Wang, H.; Zhou, W.; Li, F.; Wang, C. Extraction of oil from flaxseed (Linum usitatissimum L.) using enzyme-assisted three-phase partitioning. Appl. Biochem. Biotechnol. 2016, 179, 1325–1335. [Google Scholar] [CrossRef]
- Kenny, F.S.; Pinder, S.E.; Ellis, I.O.; Gee, J.M.; Nicholson, R.I.; Bryce, R.P.; Robertson, J.F. Gamma linolenic acid with tamoxifen as primary therapy in breast cancer. Int. J. Cancer 2000, 85, 643–648. [Google Scholar] [CrossRef]
- Przybylski, R.; Mcdonald, B.E. Development and Processing of Vegetable Oils for Human Nutrition; AOCS Press: Champaign, IL, USA, 1995. [Google Scholar]
- Malekbala, M.R.; Soltani, S.M.; Hosseini, S.; Babadi, F.E.; Malekbala, R. Current technologies in the extraction, enrichment and analytical detection of tocopherols and tocotrienols: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- Paz, S.M.; Aguilar, F.M.; Garcia-Gimenez, M.D.; Fernandez-Arche, M.A. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. [Google Scholar]
- Eldin, A.K.; Andersson, R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 1997, 74, 375–380. [Google Scholar] [CrossRef]
- Gornas, P.; Siger, A.; Junhevica, K.; Lacis, G.; Sne, E.; Seglina, D. Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. Eur. J. Lipid Sci. Technol. 2014, 116, 563–570. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Azeemoddin, G.; Ramayya, D.A.; Rao, S.D.T. Characteristics and composition of Indian wood apple seed and oil. J. Am. Oil Chem. Soc. 1979, 56, 870–871. [Google Scholar] [CrossRef]
- Onyeike, E.N.; Acheru, G.N. Chemical composition of selected Nigerian oil seeds and physiochemical properties of oil extracts. Food Chem. 2002, 77, 431–437. [Google Scholar] [CrossRef]
- Srilatha, K.; Krishnakumari, K. Proximate composition and protein quality evaluation of recipes containing sunflower cake. Plant. Foods Hum. Nutr. 2003, 58, 1–11. [Google Scholar] [CrossRef]
- Onyeike, E.N.; Olungwe, T.; Uwakwe, A.A. Effect of heat-treatment and defatting on the proximate composition of some Nigerian local soup thickeners. Food Chem. 1995, 53, 173–175. [Google Scholar] [CrossRef]
- Ancuta, P.; Sonia, A. Oil press-cakes and meals valorization through circular economy approaches: A review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Terpinc, P.; Ceh, B.; Ulrih, N.P.; Abramovic, H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crop. Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Calixto, F.S. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sl. No. | Parameters (at 30 °C) | Composition |
---|---|---|
1 | Color | Golden yellow |
2 | Physical state at 4 °C | Liquid |
3 | Viscosity (cP) | 42.33 ± 0.57 |
4 | Wax content (mg/g) | 0.13 ± 0.00 |
5 | Refractive index | 1.44 ± 0.01 |
6 | Specific gravity | 0.92 ± 0.00 |
7 | Free fatty acid (%) | 1.38 ± 0.02 |
8 | Acid value (mg KOH/g) | 2.12 ± 0.01 |
9 | Iodine value (g I2/100 g) | 116.16 ± 0.28 |
10 | Saponification value (mg KOH/g) | 186.50 ± 0.86 |
12 | Unsaponifiable matter (%) | 1.15 ± 0.01 |
Peak | tR (min) | Identified Compounds | Common Name | Rel. Percentage (%) | |
---|---|---|---|---|---|
1 | 14.66 | Hexadecanoic acid, methyl ester | C16:0 | Palmitic acid | 17.68 ± 0.65 |
2 | 15.61 | 9-Hexadecenoic acid, methyl ester, (Z)- | C16:1 | Palmitoleic acid | 0.38 ± 0.14 |
3 | 16.76 | Heptadecanoic acid, methyl ester | C17:0 | Margaric acid | 0.30 ± 0.04 |
4 | 17.56 | Methyl stearate | C18:0 | Stearic acid | 14.15 ± 0.27 |
5 | 18.00 | 9-Octadecenoic acid, methyl ester, (E)- | C18:1n9t | Elaidic acid | 1.36 ± 0.04 |
6 | 18.23 | 9-Octadecenoic acid (Z), methyl ester | C18:1n9c | Oleic acid | 21.56 ± 0.57 |
7 | 18.33 | 11-Octadecenoic acid, methyl ester | C18:1n7 | Vaccenic acid | 1.70 ± 0.04 |
8 | 19.33 | 9,12-Octadecadienoic acid, methyl ester (Z,Z)- | C18:2n6 | Linoleic acid (Omega-6) | 10.02 ± 0.43 |
9 | 20.05 | 6,9,12- Octadecatrienoic acid, methyl ester | C18:3n6 | γ- Linolenic acid | 0.23 ± 0.04 |
10 | 20.72 | 9,12,15-Octadecatrienoic acid, methyl ester (Z,Z,Z)- | C18:3n3 | α- Linolenic acid (Omega-3) | 16.28 ± 0.29 |
11 | 21.34 | Cholesta-3,5-diene | Cholesterilene | 0.50 ± 0.06 | |
12 | 21.53 | cis-13-Eicosenoic acid, methyl ester | C20:1n7 | Paullinic acid | 0.50 ± 0.02 |
13 | 22.61 | Octadecanoic acid, 10-hydroxy-, methyl ester | Rosilic acid | 1.63 ± 0.30 | |
14 | 22.68 | Phosphine oxide, methyldiphenyl- | 2.10 ± 0.09 | ||
15 | 23.00 | Octadecanoic acid,9,10,12-trimethoxy-, methyl ester | 1.37 ± 0.05 | ||
16 | 23.38 | Ethyl iso-allocholate | 0.37 ± 0.05 | ||
17 | 23.50 | 7-Methyl-Z-tetradecen-1-ol aceatate | 0.85 ± 0.07 | ||
18 | 23.69 | Cholesta-5,7,9(11)-trien-3-ol acetate | 0.63 ± 0.05 | ||
19 | 23.71 | 1-Heptatriacotanol | 0.50 ± 0.05 | ||
20 | 24.82 | Docosanoic acid, methyl ester | C22:0 | Behenic acid | 1.24 ± 0.10 |
21 | 26.05 | 7,10,13- Eicosatrienoic acid, methyl ester | C22:3 | Eicosatrienoic acid | 0.32 ± 0.06 |
22 | 27.81 | Cholesteryl benzoate | 1.41 ± 0.19 | ||
23 | 29.04 | Z-5-Methyl-6-heneicosen-11-one | 1.17 ± 0.14 | ||
24 | 29.19 | Cholesteryl formate | 0.57 ± 0.05 | ||
25 | 29.21 | Phorbol | 0.64 ± 0.06 | ||
26 | 29.30 | Cholest-5-en-3-ol (3.beta.)-, 9-octadecenoate, (Z)- | 2.30 ± 0.18 | ||
∑ Saturated fatty acids | 33.38 ± 0.60 | ||||
∑ Monounsaturated fatty acids | 25.51 ± 0.67 | ||||
∑ Polyunsaturated fatty acids | 26.86 ± 0.13 |
Sl. No. | tR | Tocopherols | Composition |
---|---|---|---|
1 | 9.54 | δ-Tocopherol | 12.64 ± 0.01 |
2 | 10.92 | γ-Tocopherol | 39.27 ± 0.07 |
3 | 12.25 | α-Tocopherol | 3.77 ± 0.00 |
Total tocopherol content | 55.68 ± 0.08 |
Sl. No. | Parameters | Composition |
---|---|---|
1 | Moisture (%) | 4.83 ± 0.01 |
2 | Oil (%) | 32.02 ± 0.08 |
3 | TSS (°Brix) | 1.52 ± 0.29 |
4 | pH | 1.76 ± 0.19 |
5 | Acidity (%) | 1.83 ± 0.02 |
6 | Ash (%) | 3.76 ± 0.18 |
7 | Total Protein (%) | 25.24 ± 0.07 |
8 | Total Carbohydrate (%) | 31.66 ± 0.04 |
9 | Total phenolics (mg GAE/100 g) | 135.42 ± 1.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamani, S.; Anu-Appaiah, K.A.; Murthy, H.N.; Dewir, Y.H.; Rihan, H.Z. Fatty Acid Profile, Tocopherol Content of Seed Oil, and Nutritional Analysis of Seed Cake of Wood Apple (Limonia acidissima L.), an Underutilized Fruit-Yielding Tree Species. Horticulturae 2021, 7, 275. https://doi.org/10.3390/horticulturae7090275
Lamani S, Anu-Appaiah KA, Murthy HN, Dewir YH, Rihan HZ. Fatty Acid Profile, Tocopherol Content of Seed Oil, and Nutritional Analysis of Seed Cake of Wood Apple (Limonia acidissima L.), an Underutilized Fruit-Yielding Tree Species. Horticulturae. 2021; 7(9):275. https://doi.org/10.3390/horticulturae7090275
Chicago/Turabian StyleLamani, Shrinivas, Konerira Aiyappa Anu-Appaiah, Hosakatte Niranjana Murthy, Yaser Hassan Dewir, and Hail Z. Rihan. 2021. "Fatty Acid Profile, Tocopherol Content of Seed Oil, and Nutritional Analysis of Seed Cake of Wood Apple (Limonia acidissima L.), an Underutilized Fruit-Yielding Tree Species" Horticulturae 7, no. 9: 275. https://doi.org/10.3390/horticulturae7090275
APA StyleLamani, S., Anu-Appaiah, K. A., Murthy, H. N., Dewir, Y. H., & Rihan, H. Z. (2021). Fatty Acid Profile, Tocopherol Content of Seed Oil, and Nutritional Analysis of Seed Cake of Wood Apple (Limonia acidissima L.), an Underutilized Fruit-Yielding Tree Species. Horticulturae, 7(9), 275. https://doi.org/10.3390/horticulturae7090275