Chemical and Sensorial Characterization of Scented and Non-Scented Alstroemeria Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sensorial Confirmation of Scented Hybrids
2.3. Evaluation of Scent Composition of Scented Alstroemeria Hybrids through GC-MS
2.4. Statistical Analysis
3. Results
3.1. Sensorial Confirmation of Scented Hybrids
3.2. Evaluation of Scent Composition of Scented Alstroemeria Hybrids through GC-MS
4. Discussion
4.1. Sensorial Analysis
4.2. Analysis of VOCs
4.3. Ocimene Isomers
4.4. Monoterpenes
4.5. Esters
4.6. Floral Scent Differences between Scented Hybrids
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Hybrid | Stage of Development | Time of Evaluation | ||||
---|---|---|---|---|---|---|
S3 | S4 | S5 | 10:00 h | 13:00 h | 16:00 h | |
13A01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 |
13B01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 |
13B04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 |
13B07 | 0.00 | 0.52 | 0.00 | 0.00 | 0.00 | 0.21 |
13B11 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
13E01 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 |
13M07 | 0.50 | 0.68 | 0.68 | 0.50 | 0.61 | 0.75 |
14A11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
14B01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
14D01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 |
14D19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
14E06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 |
14E07 | 0.00 | 1.00 | 0.68 | 0.00 | 0.50 | 1.00 |
14E08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
14F02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
14H03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
ALIG | 0.17 | 0.17 | 0.00 | 0.00 | 0.17 | 0.00 |
APEL | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Appendix B
References
- Dudareva, N.; Pichersky, E. Biology of Floral Scent; CRC Press: Boca Raton, FL, USA, 2006; 364p. [Google Scholar]
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Raguso, R.A. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 549–569. [Google Scholar] [CrossRef]
- Junker, R.R.; Parachnowitsch, A.L. Working towards a holistic view on flower traits-how floral scents mediate plant–animal interactions in concert with other floral characters. J. Indian Inst. Sci. 2015, 95, 43–68. [Google Scholar]
- Dudareva, N.; Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 2000, 122, 627–634. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, C.M.; Mescher, M.C.; Tumlinson, J.H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 2001, 410, 577–580. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Caruso, C.M.; Parachnowitsch, A.L. Do plants eavesdrop on floral scent signals? Trends Plant Sci. 2016, 21, 9–15. [Google Scholar] [CrossRef]
- Schnepp, J.; Dudareva, N. Floral scent: Biosynthesis, regulation and genetic modifications. Flower. Its Manip. 2018, 10, 240–257. [Google Scholar]
- Hu, Z.; Zhang, H.; Leng, P.; Zhao, J.; Wang, W.; Wang, S. The emission of floral scent from Lilium ‘Siberia’ in response to light intensity and temperature. Acta Physiol. Plant. 2013, 35, 1691–1700. [Google Scholar] [CrossRef]
- Fu, J.; Hou, D.; Zhang, C.; Bao, Z.; Zhao, H.; Hu, S. The emission of the floral scent of four Osmanthus fragrans cultivars in response to different temperatures. Molecules 2017, 22, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. Pollination mode determines floral scent. Biochem. Syst. Ecol. 2015, 61, 44–53. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1. [Google Scholar] [CrossRef]
- Kim, S.Y.; An, H.R.; Park, P.M.; Baek, Y.S.; Kwon, O.K.; Park, S.Y.; Park, P.H. Analysis of floral scent patterns in flowering stages and floral organs of Maxillaria using an electronic nose. Flower Res. J. 2016, 24, 171–180. [Google Scholar] [CrossRef]
- Aros, D.; Spadafora, N.; Venturi, M.; Núñez-Lillo, G.; Meneses, C.; Methven, L.; Müller, C.; Rogers, H. Floral scent evaluation of segregating lines of Alstroemeria caryophyllaea. Sci. Hortic. 2015, 185, 183–192. [Google Scholar] [CrossRef]
- Aros, D.; Garrido, N.; Rivas, C.; Medel, M.; Müller, C.; Rogers, H.; Úbeda, C. Floral scent evaluation of three cut flowers through sensorial and gas chromatography analysis. Agronomy 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Finot, V.; Baeza, C.; Muñoz-Schick, M.; Ruiz, E.; Espejo, J.; Alarcón, D.; Carrasco, P.; Novoa, P.; Eyzaguirre, M.T. Guía de Campo Alstroemerias Chilenas; Corporación Chilena de la Madera: Concepción, Chile, 2018; 292p. [Google Scholar]
- Assis, M.C. Alstroemeriaceae no estado do Rio de Janeiro. Rodriguésia 2004, 55, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.S.; Lee, S.I.; Kang, S.C.; Kim, J.B. Alstroemeria plants and its biotechnological applications. J. Plant Biotechnol. 2012, 39, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Bridgen, M.P. Alstroemeria. In Ornamental Crops; Springer: Berlin/Heidelberg, Germany, 2018; pp. 231–236. [Google Scholar]
- Amrad, A.; Moser, M.; Mandel, T.; de Vries, M.; Schuurink, R.C.; Freitas, L.; Kuhlemeier, C. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. Curr. Biol. 2016, 26, 3303–3312. [Google Scholar] [CrossRef] [Green Version]
- Borda, A.M.; Clark, D.G.; Huber, D.J.; Welt, B.A.; Nell, T.A. Effects of ethylene on volatile emission and fragrance in cut roses: The relationship between fragrance and vase life. Postharvest Biol. Technol. 2011, 59, 245–252. [Google Scholar] [CrossRef]
- Aros, D.; Gonzalez, V.; Allemann, R.K.; Müller, C.T.; Rosati, C.; Rogers, H.J. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J. Exp. Bot. 2012, 63, 2739–2752. [Google Scholar] [CrossRef] [Green Version]
- Aros, D.; Suazo, M.; Rivas, C.; Zapata, P.; Ubeda, C.; Bridgen, M. Molecular and morphological characterization of new interspecific hybrids of alstroemeria originated from A. caryophylleae scented lines. Euphytica 2019, 215, 93. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, C.; Rogers, H.J.; Leverentz, M.; Thomas, B.; Chanasut, U.; Stead, A. Characterisation of Alstroemeria vase life. Acta Hortic. 2001, 543, 161–175. [Google Scholar] [CrossRef]
- Flavornet and Human Odor Space. Available online: http://flavornet.org/ (accessed on 8 April 2020).
- The Pherobase: Database of Pheromones and Semiochemicals. Available online: https://www.pherobase.com/ (accessed on 8 April 2020).
- The National Institute of Standards and Technology (NIST) Mass Spectrometry Data Center. Available online: https://chemdata.nist.gov/ (accessed on 8 April 2020).
- González, A.V.; Murúa, M.; Ramírez, P.A. Temporal and spatial variation of the pollinator assemblages in Alstroemeria ligtu (Alstroemeriaceae). Rev. Chil. De Hist. Nat. 2014, 87, 5. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Basilio, A. Sex differential nectar secretion in protandrous Alstroemeria aurea (Alstroemeriaceae): Is production altered by pollen removal and receipt? Am. J. Bot. 1998, 85, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Zarzo, M. The sense of smell: Molecular basis of odorant recognition. Biol. Rev. 2007, 82, 455–479. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef] [Green Version]
- Navia-Giné, W.G.; Yuan, J.S.; Mauromoustakos, A.; Murphy, J.B.; Chen, F.; Korth, K.L. Medicago truncatula (E)-β-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene. Plant Physiol. Biochem. 2009, 47, 416–425. [Google Scholar] [CrossRef]
- Arimura, G.I.; Ozawa, R.; Kugimiya, S.; Takabayashi, J.; Bohlmann, J. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol. 2004, 135, 1976–1983. [Google Scholar] [CrossRef] [Green Version]
- Dufaÿ, M.; Hossaert-McKey, M.; Anstett, M.C. When leaves act like flowers: How dwarf palms attract their pollinators. Ecol. Lett. 2003, 6, 28–34. [Google Scholar] [CrossRef]
- Andersson, S.; Nilsson, L.A.A.; Groth, I.; Bergstrom, G. Floral scents in butterfly-pollinated plants: Possible convergence in chemical composition. Bot. J. Linn. Soc. 2002, 140, 129–153. [Google Scholar] [CrossRef] [Green Version]
- Borg-Karlson, A.-K.; Valterová, I.; Nilsson, L.A. Volatile compounds from flowers of six species in the family Apiaceae: Bouquets for different pollinators? Phytochemistry 1994, 35, 111–119. [Google Scholar] [CrossRef]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The volatile constituents in the peel and pulp of a green Thai mango, Khieo Sawoei cultivar (Mangifera indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Báez, D.; Pino, J.A.; Morales, D. Volatiles from Magnolia grandiflora flowers: Comparative analysis by simultaneous distillation-extraction and solid phase microextraction. Nat. Prod. Commun. 2012, 7, 237–238. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.H.; Lin, L.Y.; Chiang, H.M.; Lay, S.J.; Wu, C.S.; Chen, H.C. Analysis of volatile compounds from different parts of Citrus grandis (L.) Osbeck flowers by headspace solid-phase microextraction-gas chromatography-mass spectrometry. J. Essent. Oil Bear. Plants 2017, 20, 1057–1065. [Google Scholar] [CrossRef]
- Kim, M.K.; Jang, H.W.; Lee, K.G. Sensory and instrumental volatile flavor analysis of commercial orange juices prepared by different processing methods. Food Chem. 2018, 267, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar]
- Rodríguez, A.; Peris, J.E.; Redondo, A.; Shimada, T.; Costell, E.; Carbonell, I.; Rojas, C.; Peña, L. Impact of D-limonene synthase up-or down-regulation on sweet orange fruit and juice odor perception. Food Chem. 2017, 217, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Sun, M.; Pan, H.T.; Zhang, Q.X. Composition and emission rhythm of floral scent volatiles from eight lily cut flowers. J. Am. Soc. Hortic. Sci. 2012, 137, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Kilic, A.; Hafizoglu, H.; Kollmannsberger, H.; Nitz, S. Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L. J. Agric. Food Chem. 2004, 52, 1601–1606. [Google Scholar] [CrossRef]
- Egea, M.B.; Pereira-Netto, A.B.; Cacho, J.; Ferreira, V.; Lopez, R. Comparative analysis of aroma compounds and sensorial features of strawberry and lemon guavas (Psidium cattleianum Sabine). Food Chem. 2014, 164, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Oyama-Okubo, N.; Tsuji, T. Analysis of floral scent compounds and classification by scent quality in tulip cultivars. J. Jpn. Soc. Hortic. Sci. 2013, 82, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Fariña, L.; Boido, E.; Carrau, F.; Versini, G.; Dellacassa, E. Terpene compounds as possible precursors of 1,8-cineole in red grapes and wines. J. Agric. Food Chem. 2005, 53, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Negre, F.; Kolosova, N.; Knoll, J.; Kish, C.M.; Dudareva, N. Novel S-adenosyl-L-methionine: Salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch. Biochem. Biophys. 2002, 406, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Shulaev, V.; Silverman, P.; Raskin, I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 1997, 385, 718–721. [Google Scholar] [CrossRef]
- Kishimoto, K.; Nakayama, M.; Yagi, M.; Onozaki, T.; Oyama-Okubo, N. Evaluation of wild dianthus species as genetic resources for fragrant carnation breeding based on their floral scent composition. J. Jpn. Soc. Hortic. Sci. 2011, 80, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Park, P.H.; Ramya, M.; An, H.R.; Park, P.M.; Lee, S.Y. Breeding of Cymbidium ‘Sale Bit’ with bright yellow flowers and floral scent. Korean Soc. Breed. Sci. 2019, 51, 258–262. [Google Scholar] [CrossRef] [Green Version]
Hybrid | Stage of Development | Time of Evaluation (h) | Intensity | ||||
---|---|---|---|---|---|---|---|
S3 | S4 | S5 | 10:00 a.m. | 1:00 p.m. | 4:00 p.m. | ||
13M07 | 0.50 | 0.68 | 0.68 | 0.50 | 0.61 | 0.75 | 3.58 a,* |
14E07 | 0.00 | 1.00 | 0.68 | 0.00 | 0.50 | 1.00 | 7.11 b |
13B01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | ni ** |
VOCs | RI | ID * | Aromatic Description ** | Alstroemeria Hybrid | ||
---|---|---|---|---|---|---|
13M07 | 13B01 | 14E07 | ||||
Hexanal | 1081 | A | Grass, tallow, fat | 39,871 ± 2814 c,*** | 11,020 ± 2094 b | nd a,**** |
β-Pinene | 1127 | A | Pine, resin, turpentine, wood | 12,055 ± 630 b | 1475 ± 146 a | 14,942 ± 476 c |
Methyl hexanoate | 1168 | A | Fruit, fresh, sweet | 47,155 ± 3531 c | 32,435 ± 472 b | 13,558 ± 545 a |
D-Limonene | 1187 | A | Lemon, orange | 33,905 ± 3045 c | 6098 ± 838 a | 18,832 ± 3847 b |
Eucalyptol | 1212 | B | Pine, eucalyptus, herbal, camphor | 154,172 ± 16,341 c | 16,454 ± 1588 a | 110,033 ± 1239 b |
(Z)-Ocimene | 1234 | A | Citrus, herb, flower | 95,447 ± 11,786 a | 55,464 ± 23,044 a | 102,730 ± 21,584 a |
(E)-Ocimene | 1249 | A | Sweet, herb | 1,142,285 ± 450,187 a | 689,933 ± 369,096 a | 707,495 ± 343,866 a |
Hexyl acetate | 1285 | A | Fruit, herb | 33,117 ± 406 b | 31,075 ± 3041 b | 4638 ± 1159 a |
o-Cymene | 1304 | B | ni **** | 21,481 ± 4833 a | 16,599 ± 6054 a | 22,477 ± 1645 a |
Hexanol | 1375 | A | Resin, flower, green | 143,011 ± 4460 b | 59,447 ± 5744 a | 143,492 ± 952 b |
Allo-Ocimene | 1361 | B | ni | 62,984 ± 2685 b | 25,507 ± 4448 a | 28,304 ± 8494 a |
Methyl octanoate | 1401 | A | Orange | 62,986 ± 20,828 b | 27,717 ± 1175 ab | nd a |
(Z)-3-Hexenol | 1410 | A | Moss, fresh | 70,052 ± 5286 c | 4544 ± 1290 a | 43,789 ± 1585 b |
Ethyl octanoate | 1437 | A | Fruit, fat | 329,393 ± 12,672 b | 10,942 ± 284 a | 15,176 ± 1598 a |
Cyclosativene | 1481 | B | ni | 35,162 ± 2860 b | nd a | nd a |
Methyl decanoate | 1602 | A | wine | 81,464 ± 27,691 b | 41,379 ± 5233 a | 8252 ± 497 a |
Ethyl decanoate | 1647 | A | grape | 158,110 ± 38,375 c | nd a | 12,027 ± 2527 b |
Methyl benzoate | 1656 | A | Prune, lettuce, herb, sweet | 155,0154 ± 481,956 b | 48,103 ± 6285 a | 175,374 ± 15,723 a |
Methyl salicylate | 1795 | A | Peppermint | 6,075,487 ± 797,505 b | 50,712 ± 10,993 a | 298,455 ± 82,070 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aros, D.; Suazo, M.; Medel, M.; Ubeda, C. Chemical and Sensorial Characterization of Scented and Non-Scented Alstroemeria Hybrids. Horticulturae 2022, 8, 65. https://doi.org/10.3390/horticulturae8010065
Aros D, Suazo M, Medel M, Ubeda C. Chemical and Sensorial Characterization of Scented and Non-Scented Alstroemeria Hybrids. Horticulturae. 2022; 8(1):65. https://doi.org/10.3390/horticulturae8010065
Chicago/Turabian StyleAros, Danilo, Macarena Suazo, Marcela Medel, and Cristina Ubeda. 2022. "Chemical and Sensorial Characterization of Scented and Non-Scented Alstroemeria Hybrids" Horticulturae 8, no. 1: 65. https://doi.org/10.3390/horticulturae8010065
APA StyleAros, D., Suazo, M., Medel, M., & Ubeda, C. (2022). Chemical and Sensorial Characterization of Scented and Non-Scented Alstroemeria Hybrids. Horticulturae, 8(1), 65. https://doi.org/10.3390/horticulturae8010065