Development of InDel Markers for Gypsophila paniculata Based on Genome Resequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Variation Detection by Genome Resequencing
2.3. Development of InDel Markers
2.4. PCR Analyses of InDel Markers
3. Results
3.1. Genome Resequencing and Sequence Polymorphism Identification
3.2. Construction of InDel Markers for Polymorphism Analysis
3.3. InDel Marker Polymorphisms among Commercial Cultivars
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, D.; Nicholas, J.T. Gypsophila Linnaeus; Science Press: St. Louis, MA, USA, 2001; Volume 6. [Google Scholar]
- Li, F.; Wang, G.; Yu, R.; Wu, M.; Shan, Q.; Wu, L.; Ruan, J.; Yang, C. Effects of Seasonal Variation and Gibberellic Acid Treatment on the Growth and Development of Gypsophila paniculata. HortScience 2019, 54, 1370–1374. [Google Scholar] [CrossRef] [Green Version]
- Kuligowska, K.; Lütken, H.; Müller, R. Towards development of new ornamental plants: Status and progress in wide hybridization. Planta 2016, 244, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zvi, M.M.B.; Zuker, A.; Ovadis, M.; Shklarman, E.; Ben-Meir, H.; Zenvirt, S.; Vainstein, A. Agrobacterium-mediated transformation of gypsophila (Gypsophila paniculata L.). Mol. Breed. 2008, 22, 543–553. [Google Scholar]
- Li, F.; Mo, X.; Wu, L.; Yang, C. A Novel Double-flowered Cultivar of Gypsophila paniculata Mutagenized by 60Co γ-Ray. HortScience 2020, 55, 1531–1532. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, R.; Xue, J.; Wang, S.; Zhang, X. Genetic Diversity and Relatedness Analysis of Nine Wild Species of Tree Peony Based on Simple Sequence Repeats Markers. Hortic. Plant J. 2021, 7, 579–588. [Google Scholar] [CrossRef]
- Sousa, A.; Souza, M.M.; Melo, C.; Sodré, G. ISSR markers in wild species of Passiflora L. (Passifloraceae) as a tool for taxon selection in ornamental breeding. Genet. Mol. Res. Gmr 2015, 14, 18534. [Google Scholar] [CrossRef]
- Conceição, L.; Belo, G.; Souza, M.; Santos, S.; Cerqueira-Silva, C.; Corrêa, R. Confirmation of cross-fertilization using molecular markers in ornamental passion flower hybrids. Genet. Mol. Res. 2011, 10, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-g.; Hu, Y.-d.; Zhao, R.-x.; Yan, S.; Zhang, X.-q.; Zhao, T.-m.; Chun, Z. Genome-wide researches and applications on Dendrobium. Planta 2018, 248, 769–784. [Google Scholar] [CrossRef]
- Yang, C.; Ma, Y.; Cheng, B.; Zhou, L.; Yu, C.; Luo, L.; Pan, H.; Zhang, Q. Molecular Evidence for Hybrid Origin and Phenotypic Variation of Rosa Section Chinenses. Genes 2020, 11, 996. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, Q.; Dong, Z.; Yin, Y.; Teixeira da Silva, J.A.; Yu, X. Advances in molecular biology of Paeonia L. Planta 2020, 251, 23. [Google Scholar] [CrossRef] [Green Version]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breed. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Cao, T.X.; Piao, X.C.; Wu, S.Q.; Wang, S.M.; Lian, M.L. Analysis of RAPD Fingerprint of Shoots and Its Vitrification Shoots in vitro of Gypsophila paniculata L. Plant Physiol. Commun. 2007, 43, 288–290. [Google Scholar]
- Calistri, E.; Buiatti, M.; Bogani, P. Characterization of Gypsophila species and commercial hybrids with nuclear whole-genome and cytoplasmic molecular markers. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 11–21. [Google Scholar]
- Li, M.; Wen, Z.; Meng, J.; Cheng, T.; Zhang, Q.; Sun, L. The genomics of ornamental plants: Current status and opportunities. Ornam. Plant Res. 2022, 2, 6. [Google Scholar] [CrossRef]
- Rouet, C.; O’Neill, J.; Banks, T.; Tanino, K.; Derivry, E.; Somers, D.; Lee, E.A. Mapping Winterhardiness in Garden Roses. J. Am. Soc. Hortic. Sci. 2022, 147, 216–238. [Google Scholar] [CrossRef]
- Mieulet, D.; Aubert, G.; Bres, C.; Klein, A.; Droc, G.; Vieille, E.; Rond-Coissieux, C.; Sanchez, M.; Dalmais, M.; Mauxion, J.-P.; et al. Unleashing meiotic crossovers in crops. Nat. Plants 2018, 4, 1010–1016. [Google Scholar] [CrossRef] [Green Version]
- Li, F. Meiotic Recombination Suppressors of Arabidopsis Thaliana. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2018. [Google Scholar]
- De Maagd, R.A.; Loonen, A.E.H.M.; Chouaref, J.; Pele, A.; Meijerdekens, F.; Fransz, P.; Bai, Y. CRISPR/Cas inactivation of RECQ4 increases homeologous crossovers in an interspecific tomato hybrid. Plant Biotechnol. J. 2020, 18, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Xu, Y.; Gao, K.; Fan, G.; Zhang, F.; Deng, C.; Dai, S.; Huang, H.; Xin, H.; Li, Y. High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum (Chrysanthemum × morifolium Ramat.). Hortic. Res. 2020, 7, 108. [Google Scholar] [CrossRef] [PubMed]
- Rouet, C.; Lee, E.A.; Banks, T.; O’Neill, J.; LeBlanc, R.; Somers, D.J. Identification of a polymorphism within the Rosa multiflora muRdr1A gene linked to resistance to multiple races of Diplocarpon rosae W. in tetraploid garden roses (Rosa × hybrida). Theor. Appl. Genet. 2020, 133, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Saint-Oyant, L.H.; Ruttink, T.; Hamama, L.; Kirov, I.; Lakhwani, D.; Zhou, N.-N.; Bourke, P.; Daccord, N.; Leus, L.; Schulz, D. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 2018, 4, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, X.; Lin, S.; Yang, S.; Yan, X.; Bendahmane, M.; Bao, M.; Fu, X. Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. J. Exp. Bot. 2020, 71, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Gull, S.; Haider, Z.; Gu, H.; Raza Khan, R.A.; Miao, J.; Wenchen, T.; Uddin, S.; Ahmad, I.; Liang, G. InDel marker based estimation of multi-gene allele contribution and genetic variations for grain size and weight in rice (Oryza sativa L.). Int. J. Mol. Sci. 2019, 20, 4824. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Gao, Y.; Jin, C.; Wen, X.; Geng, H.; Cheng, Y.; Qu, H.; Liu, X.; Feng, S.; Zhang, F.; et al. The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity. Hortic. Res. 2022, 9, uhac176. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Cheng, Y.; Zhao, X.; Yu, R.; Li, H.; Wang, L.; Li, S.; Shan, Q. Haploid induction via unpollinated ovule culture in Gerbera hybrida. Sci. Rep. 2020, 10, 1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.L.; Cnudde, F.; Gerats, T. Forward genetics and map-based cloning approaches. Trends Plant Sci. 2003, 8, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Van Huylenbroeck, J. Ornamental Crops; Springer: Amsterdam, The Netherlands, 2018; Volume 11. [Google Scholar]
- Hou, X.; Li, L.; Peng, Z.; Wei, B.; Tang, S.; Ding, M.; Liu, J.; Zhang, F.; Zhao, Y.; Gu, H. A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant J. 2010, 63, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Su, L.; Hu, S.; Xue, J.-Y.; Liu, H.; Liu, G.; Jiang, Y.; Du, J.; Qiao, Y.; Fan, Y.; et al. A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. Hortic. Res. 2021, 8, 141. [Google Scholar] [CrossRef]
- Liang, Y.; Li, F.; Gao, Q.; Jin, C.; Dong, L.; Wang, Q.; Xu, M.; Sun, F.; Bi, B.; Zhao, P.; et al. The genome of Eustoma grandiflorum reveals the whole-genome triplication event contributing to ornamental traits in cultivated lisianthus. Plant Biotechnol. J. 2022, 20, 1856–1858. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Li, P.; Li, L.; Zhang, Q. Research advances in and prospects of ornamental plant genomics. Hortic. Res. 2021, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Advance of Horticultural Plant Genomes. Hortic. Plant J. 2019, 5, 229–230. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, H.; Zhang, M.; Zhang, X.; Guo, L.; Qi, T.; Tang, H.; Wang, H.; Qiao, X.; Zhang, B. Development and utilization of an InDel marker linked to the fertility restorer genes of CMS-D8 and CMS-D2 in cotton. Mol. Biol. Rep. 2020, 47, 1275–1282. [Google Scholar] [CrossRef]
- Hechanova, S.L.; Bhattarai, K.; Simon, E.V.; Clave, G.; Karunarathne, P.; Ahn, E.-K.; Li, C.-P.; Lee, J.-S.; Kohli, A.; Hamilton, N. Development of a genome-wide InDel marker set for allele discrimination between rice (Oryza sativa) and the other seven AA-genome Oryza species. Sci. Rep. 2021, 11, 8962. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, Y.; Zhai, W.; Deng, J.; Wang, H.; Cui, Y.; Cheng, F.; Wang, X.; Wu, J. Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor. Appl. Genet. 2013, 126, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.-B.; Kim, S.-J.; Hong, S.-Y.; Park, S.-G.; Oh, D.-H.; Lee, S.; Nam, H.Y.; Nam, J.H.; Kim, Y.-H. Development of 50 InDel-based barcode system for genetic identification of tartary buckwheat resources. PLoS ONE 2021, 16, e0250786. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, Z.; Xie, D.; Chen, J.; Tang, Q.; Cheng, C.; Xu, Y.; Wang, T.; Su, J. Development of an InDel polymorphism database for jute via comparative transcriptome analysis. Genome 2018, 61, 323–327. [Google Scholar] [CrossRef]
- Islam, M.R.; Hossain, M.R.; Jesse, D.M.I.; Jung, H.-J.; Kim, H.-T.; Park, J.-I.; Nou, I.-S. Development of molecular marker linked with bacterial fruit blotch resistance in melon (Cucumis melo L.). Genes 2020, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Roorkiwal, M.; Kale, S.; Garg, V.; Yadala, R.; Varshney, R.K. InDel markers: An extended marker resource for molecular breeding in chickpea. PLoS ONE 2019, 14, e0213999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adedze, Y.M.N.; Lu, X.; Xia, Y.; Sun, Q.; Nchongboh, C.G.; Alam, M.; Liu, M.; Yang, X.; Zhang, W.; Deng, Z. Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Sci. Rep. 2021, 11, 3872. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Zhang, G.L.; Pan, B.G.; Diao, W.P.; Liu, J.B.; Ge, W.; Gao, C.Z.; Zhang, Y.; Jiang, C.; Wang, S.B. Development and application of InDel markers for Capsicum spp. based on whole-genome re-sequencing. Scientific reports. Sci. Rep. 2019, 9, 3691. [Google Scholar]
- Chen, R.; Chang, L.C.; Cai, X.; Wu, J.; Liang, J.L.; Lin, R.M.; Song, Y.; Wang, X.W. Development of InDel markers for Brassica rapa based on a high-resolution melting curve. Hortic. Plant J. 2021, 7, 31–37. [Google Scholar]
Chromosome | Number of Markers | Number of Green Markers | Number of Red Markers | Successful Rate (%) |
---|---|---|---|---|
Chr.1 | 20 | 14 | 70.0 | |
Chr.2 | 18 | 12 | 66.7 | |
Chr.3 | 26 | 18 | 3 | 69.2 |
Chr.4 | 26 | 17 | 3 | 65.4 |
Chr.5 | 23 | 12 | 52.2 | |
Chr.6 | 25 | 10 | 6 | 40.0 |
Chr.7 | 23 | 12 | 6 | 52.2 |
Chr.8 | 38 | 24 | 1 | 63.2 |
Chr.9 | 27 | 20 | 2 | 74.1 |
Chr.10 | 21 | 18 | 1 | 85.7 |
Chr.11 | 28 | 26 | 92.9 | |
Chr.12 | 22 | 18 | 3 | 81.8 |
Chr.13 | 21 | 13 | 4 | 61.9 |
Chr.14 | 24 | 21 | 1 | 87.5 |
Chr.15 | 23 | 21 | 91.3 | |
Chr.16 | 19 | 16 | 1 | 84.2 |
Chr.17 | 23 | 17 | 73.9 | |
Total | 407 | 289 | 31 | 71.0 |
Cultivars | WT-P | YX1 | YX2 | YX3 |
---|---|---|---|---|
YX1 | 173 | |||
YX2 | 172 | 49 | ||
YX3 | 170 | 43 | 45 | |
YX4 | 171 | 31 | 33 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Liu, B.; Ruan, J.; Yang, C.; Li, F. Development of InDel Markers for Gypsophila paniculata Based on Genome Resequencing. Horticulturae 2022, 8, 921. https://doi.org/10.3390/horticulturae8100921
Jin C, Liu B, Ruan J, Yang C, Li F. Development of InDel Markers for Gypsophila paniculata Based on Genome Resequencing. Horticulturae. 2022; 8(10):921. https://doi.org/10.3390/horticulturae8100921
Chicago/Turabian StyleJin, Chunlian, Bin Liu, Jiwei Ruan, Chunmei Yang, and Fan Li. 2022. "Development of InDel Markers for Gypsophila paniculata Based on Genome Resequencing" Horticulturae 8, no. 10: 921. https://doi.org/10.3390/horticulturae8100921
APA StyleJin, C., Liu, B., Ruan, J., Yang, C., & Li, F. (2022). Development of InDel Markers for Gypsophila paniculata Based on Genome Resequencing. Horticulturae, 8(10), 921. https://doi.org/10.3390/horticulturae8100921