Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plants Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Determination of Leaf Water Potential, Leaf Area and Water Content
2.3. Leaf Elastic Modulus Measurement
2.4. Determination of Leaf Anatomy and Leaf Density
2.5. Determination of Physiological Capacitance, Impedance and Leaf Tensity
2.6. Chlorophyll Fluorescence Parameters Measurement
2.7. Statistical Analysis
3. Results
3.1. Leaf Water Potential, Leaf Area and Water Content
3.2. Changes of Elastic Modulus and Leaf Anatomical Structure
3.3. Changes of Physiological Capacitance and Impedance
3.4. Changes of Leaf Tensity and Leaf Density
3.5. Chlorophyll Fluorescence Parameters
4. Discussion
4.1. Leaf Intracellular Water Translocation vs. Anatomical Structure and Electrophysiology
4.2. Dynamic Leaf Water Status under Dehydration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.Y.; Xing, D.K.; Hang, H.T.; Zhao, K. Principles and Technology of Determination on Plant’s Adaptation to Karst Environment; Science Press: Beijing, China, 2018. [Google Scholar]
- Wu, Y.Y.; Xu, W.X. Effect of plant growth regulators on the growth of Orychophragmus violaceus plantlets in vitro. Planta Med. 2011, 77, 1292–1293. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Y.Y.; Hang, H.T.; Liu, Y.; Xie, T.X.; Zhang, K.Y.; Li, H.T. Orychophragmus violaceus L., a marginal land-based plant for biodiesel feedstock: Heterogeneous catalysis, fuel properties, and potential. Energy Convers. Manag. 2014, 84, 497–502. [Google Scholar] [CrossRef]
- Xing, D.k.; Chen, X.L.; Wu, Y.Y.; Xu, X.J.; Chen, Q.; Li, L.; Zhang, C. Rapid prediction of the re-watering time point of Orychophragmus violaceus L. based on the online monitoring of electrophysiological indexes. Sci. Hortic. 2019, 256, 108642. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Y.Y.; Zhang, K.Y. Dose bicarbonate affect the nitrate utilization and photosynthesis of Orychophragmus violaceus? Acta Geochim. 2018, 6, 875–885. [Google Scholar] [CrossRef]
- Bhardwaj, A.R.; Joshi, G.; Kukreja, B.; Malik, V.; Arora, P.; Pandey, R.; Shukla, R.N.; Bankar, K.G.; Katiyar-Agarwal, S.; Goel, S.; et al. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol. 2015, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Ortiz, E.; Ramírez-Tobias, H.M.; González-Escobar, J.L.; Gutiérrez-García, A.K.; Bojorquez-Velazquez, E.; Espitia-Rangel, E.; de la Rosa, A.P.B. Biomass, chlorophyll fluorescence, and osmoregulation traits let differentiation of wild and cultivated Amaranthus under water stress. J. Photochem. Photobiol. B Biol. 2021, 220, 112210–112220. [Google Scholar] [CrossRef]
- Jagiełło-Kubiec, K.; Nowakowska, K.; Łukaszewska, A.J.; Pacholczak, A. Acclimation to ex vitro conditions in ninebark. Agronomy 2021, 11, 612. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Xing, D.K.; Chen, X.L.; Wu, Y.Y.; Li, Z.Y.; Shanjida, K. Changes in elastic modulus, leaf tensity and leaf density during dehydration of detached leaves in two plant species of Moraceae. Chil. J. Agric. Res. 2021, 81, 434–447. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, M.; Zhao, X.; Wu, L. Adjustments of leaf traits and whole plant leaf area for balancing water supply and demand in Robinia pseudoacacia under different precipitation conditions on the Loess Plateau. Agric. For. Meteorol. 2019, 279, 107733. [Google Scholar] [CrossRef]
- Matschi, S.; Vasquez, M.F.; Bourgault, R.; Steinbach, P.; Chamness, J.; Kaczmar, N.; Gore, M.A.; Molina, I.; Smith, L.G. Structure-function analysis of the maize bulliform cell cuticle and its potential role in dehydration and leaf rolling. Plant Direct 2020, 10, e00282. [Google Scholar] [CrossRef]
- Vastag, E.; Cocozza, C.; Orlović, S.; Kesić, L.; Kresoja, M.; Stojnić, S. Half-sib lines of pedunculate oak (Quercus robur L.) respond differently to drought through biometrical, anatomical and physiological traits. Forests 2020, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- García-Orellana, Y.; Ortuño, M.F.; Conejero, W.; Ruiz-Sánchez, M.C. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period. Span. J. Agric. Res. 2013, 11, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.D.; Chen, Y.J.; Ye, Q.; He, P.C.; Liu, H.; Li, R.H.; Fu, P.L.; Jiang, G.F.; Cao, K.F. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol. 2018, 5, 658–663. [Google Scholar] [CrossRef]
- Xing, D.K.; Chen, L.; Wu, Y.Y.; Janusz, J.Z. Leaf physiological impedance and elasticity modulus in Orychophragmus violaceus seedlings subjected to repeated osmotic stress. Sci. Hortic. 2021, 276, 109763. [Google Scholar] [CrossRef]
- Bochicchio, A.; Vazzana, C.; Puliga, S.; Alberti, A.; Cinganelli, S.; Vernieri, P. Moisture content of the dried leaf is critical to desiccation tolerance in detached leaves of the resurrection plant Boea hygroscopica. Plant Growth Regul. 1998, 24, 163–170. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Huang, H.; Wang, H.; Peñuelas, J.; Sardans, J.; Niinemets, Ü.; Niklas, K.J.; Li, Y.; Xie, J.B.; Wright, I.J. Leaf water content contributes to global leaf trait relationships. Nat. Commun. 2021, 13, 5525. [Google Scholar] [CrossRef]
- Li, Z.L. Plant Section Technique; Science Press: Beijing, China, 1978. [Google Scholar]
- Xing, D.K.; Chen, X.L.; Wu, Y.Y.; Chen, Q.; Li, L.; Fu, W.G.; Shu, Y. Leaf stiffness of two Moraceae species based on leaf tensity determined by compressing different external gripping forces under dehydration stress. J. Plant Interact. 2019, 14, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wu, Y.; Xing, D.; Zhao, K.; Yu, R. Rapid measurement of drought resistance in plants based electrophysiological properties. Trans. ASABE 2015, 58, 1441–1446. [Google Scholar] [CrossRef]
- Xing, D.K.; Mao, R.L.; Li, Z.Y.; Wu, Y.Y.; Qin, X.J.; Fu, W.G. Leaf intracellular water transport rate based on physiological impedance: A possible role of leaf internal retained water in photosynthesis and growth of tomatoes. Front. Plant Sci. 2022, 13, 845628. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.; Su, Y.; Xing, D.; Dai, Y.; Wu, Y.; Fang, L. A plant’s electrical parameters indicate its physiological state: A study of intracellular water metabolism. Plants 2020, 9, 1256. [Google Scholar] [CrossRef] [PubMed]
- Petrov, P.; Petrova, A.; Dimitrov, I.; Tashev, T.; Olsovska, K.; Brestic, M.; Misheva, S. Relationships between leaf morpho-anatomy, water status and cell membrane stability in leaves of wheat seedlings subjected to severe soil drought. J. Agron. Crop Sci. 2018, 204, 219–227. [Google Scholar] [CrossRef]
- Vitalevna, P.O.; Dmitrievna, G.O.; Dmitrievich, K.S.; Vitalevna, K.O. Physiological Features of Red Currant Adaptation to Drought and High Air Temperatures. In Drought-Detection and Solutions; Ondrasek, G., Ed.; IntechOpen: London, UK, 2019; pp. 1–13. [Google Scholar]
- Oliveira, I.; Meyer, A.; Afonso, S.; Gonçalves, B. Compared leaf anatomy and water relations of commercial and traditional Prunus dulcis (Mill.) cultivars under rain-fed conditions. Sci. Hortic. 2018, 229 (Suppl. C), 226–232. [Google Scholar] [CrossRef]
- Xing, D.K.; Xu, X.J.; Wu, Y.Y.; Liu, Y.J.; Wu, Y.S.; Ni, J.H.; Azeem, A. Leaf tensity: A method for rapid determination of water requirement information in Brassica napus L. J. Plant Interact. 2018, 13, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.L.; Li, R.A. Anatomical observation of assimilating branches of nine xerophytes in Gansu. Acta Bot. Sin. 1981, 23, 181–185. [Google Scholar]
- Luan, Z.H.; Shao, D.K.; Qi, Q.G.; Zhang, Q.C.; Gao, X.; Luan, J.E.; Lin, M.F.; Jiang, W.Q. Variation of leaf traits with altitude in Lonicera caerulea var. edulis (Caprifoliaceae) from Northeastern China. Pak. J. Bot. 2021, 53, 949–957. [Google Scholar] [CrossRef]
- Chen, J.; Shen, Z.J.; Lu, W.Z.; Liu, X.; Wu, F.H.; Gao, G.F.; Liu, Y.L.; Wu, C.S.; Yan, C.L.; Fan, H.Q. Leaf miner-induced morphological, physiological and molecular changes in mangrove plant Avicennia marina (Forsk.) Vierh. Tree Physiol. 2017, 37, 82–97. [Google Scholar] [CrossRef]
Species | Water Loss Time (h) | Leaf Water Potential | Leaf Area | Leaf Water Content |
---|---|---|---|---|
O. violaceus | 0 | −0.81 ± 0.05 a | 20.10 ± 0.24 a | 86.01 ± 1.20 a |
1 | −1.12 ± 0.11 ab | 19.31 ± 0.14 b | 82.74 ± 0.95 b | |
2 | −1.20 ± 0.15 bc | 18.77 ± 0.19 c | 81.32 ± 0.82 bc | |
3 | −1.29 ± 0.14 bc | 18.13 ± 0.12 d | 79.05 ± 1.03 cd | |
4 | −1.49 ± 0.13 bc | 17.45 ± 0.06 e | 77.12 ± 0.96 de | |
5 | −1.58 ± 0.13 c | 16.81 ± 0.02 f | 75.75 ± 0.55 e | |
B. napus | 0 | −0.83 ± 0.08 a | 22.97 ± 0.38 a | 81.52 ± 1.35 a |
1 | −1.00 ± 0.08 ab | 22.68 ± 0.36 ab | 79.94 ± 1.02 ab | |
2 | −1.02 ± 0.09 ab | 22.39 ± 0.34 abc | 79.10 ± 0.81 ab | |
3 | −1.10 ± 0.10 ab | 21.98 ± 0.29 abc | 78.49 ± 0.63 b | |
4 | −1.02 ± 0.08 ab | 21.66 ± 0.30 bc | 77.87 ± 0.60 b | |
5 | −1.20 ± 0.11 b | 21.38 ± 0.29 c | 77.11 ± 0.32 b |
Water Loss Time (h) | Thickness (μm) | ||||
---|---|---|---|---|---|
Total Leaf Thickness | Upper Epidermis | Palisade Parenchyma | Sponge Parenchyma | Lower Epidermis | |
0 | 150.63 ± 7.57 a | 13.97 ± 0.81 a | 27.66 ± 1.69 a | 95.02 ± 5.70 a | 13.98 ± 0.69 a |
1 | 142.42 ± 0.54 ab | 13.15 ± 0.38 a | 20.88 ± 2.80 b | 94.54 ± 2.05 a | 13.85 ± 0.04 a |
2 | 130.18 ± 2.56 b | 13.20 ± 1.17 a | 26.13 ± 1.36 ab | 79.71 ± 2.80 b | 11.15 ± 0.46 b |
3 | 100.59 ± 5.61 c | 12.06 ± 0.62 ab | 20.77 ± 1.30 b | 57.87 ± 3.03 c | 9.90 ± 0.73 bc |
4 | 98.42 ± 3.85 c | 10.09 ± 0.56 b | 20.28 ± 1.09 b | 58.62 ± 3.11 c | 9.44 ± 0.24 bc |
5 | 106.20 ± 2.49 c | 11.93 ± 0.63 ab | 23.93 ± 2.12 ab | 61.59 ± 2.22 c | 8.74 ± 0.67 c |
Water Loss Time (h) | Thickness (μm) | ||||
---|---|---|---|---|---|
Total Leaf Thickness | Upper Epidermis | Palisade Parenchyma | Sponge Parenchyma | Lower Epidermis | |
0 | 154.41 ± 2.94 ab | 17.09 ± 0.85 a | 33.19 ± 0.47 c | 95.59 ± 2.96 a | 8.54 ± 0.33 b |
1 | 155.90 ± 1.59 ab | 16.95 ± 0.43 a | 37.71 ± 1.03 b | 90.55 ± 1.42 a | 10.69 ± 0.85 a |
2 | 157.80 ± 3.89 a | 16.53 ± 0.88 a | 40.54 ± 0.74 a | 89.05 ± 3.85 a | 11.68 ± 0.52 a |
3 | 138.78 ± 2.27 c | 15.67 ± 0.62 a | 30.80 ± 0.79 cd | 80.61 ± 1.01 b | 11.70 ± 0.74 a |
4 | 153.46 ± 4.17 ab | 15.32 ± 0.31 ab | 32.12 ± 0.73 c | 94.90 ± 3.31 a | 11.13 ± 0.38 a |
5 | 146.88 ± 1.29 bc | 13.59 ± 0.46 b | 29.04 ± 0.64 d | 94.32 ± 1.96 a | 9.93 ± 0.76 ab |
Species | Water Loss Time (h) | Palisade-Sponge Ratio (%) | CTR (%) | SR (%) |
---|---|---|---|---|
O. violaceus | 0 | 29.14 ± 1.05 bc | 18.35 ± 0.40 b | 63.04 ± 1.09 ab |
1 | 22.24 ± 3.49 c | 14.65 ± 1.92 c | 66.39 ± 1.62 a | |
2 | 32.85 ± 2.07 ab | 20.05 ± 0.74 ab | 61.23 ± 1.76 bc | |
3 | 35.86 ± 0.76 ab | 20.63 ± 0.32 ab | 57.55 ± 0.35 c | |
4 | 34.70 ± 1.85 ab | 20.60 ± 0.72 ab | 59.50 ± 1.25 bc | |
5 | 39.09 ± 4.26 a | 22.52 ± 1.75 a | 58.01 ± 1.85 c | |
B. napus | 0 | 34.76 ± 0.74 cd | 21.50 ± 0.19 b | 61.88 ± 0.79 a |
1 | 41.69 ± 1.64 ab | 24.19 ± 0.63 a | 58.09 ± 0.83 b | |
2 | 45.74 ± 2.53 a | 25.73 ± 0.90 a | 56.38 ± 1.14 b | |
3 | 38.20 ± 0.51 bc | 22.19 ± 0.21 b | 58.09 ± 0.29 b | |
4 | 33.88 ± 0.41 cd | 20.94 ± 0.11 bc | 61.81 ± 0.48 a | |
5 | 30.83 ± 1.12 d | 19.77 ± 0.49 c | 64.20 ± 0.83 a |
Species | Water Loss Time (h) | Physiological Capacitance | Physiological Impedance |
---|---|---|---|
O. violaceus | 0 | 165.829 ± 3.203 a | 0.686 ± 0.026 c |
1 | 106.725 ± 0.112 bc | 1.131 ± 0.088 b | |
2 | 95.636 ± 0.694 cd | 1.256 ± 0.049 b | |
3 | 87.890 ± 7.766 d | 1.328 ±0.092 ab | |
4 | 65.463 ± 4.508 e | 1.486 ± 0.086 a | |
5 | 114.747 ± 3.202 b | 0.875 ± 0.052 c | |
B. napus | 0 | 278.716 ± 10.921 b | 0.526 ± 0.027 de |
1 | 322.141 ± 10.274 a | 0.412 ± 0.019 e | |
2 | 161.440 ± 11.663 c | 0.711 ± 0.032 c | |
3 | 133.522 ± 3.965 d | 0.641 ± 0.024 cd | |
4 | 130.789 ± 1.907 d | 1.017 ± 0.060 b | |
5 | 99.254 ± 2.585 e | 1.165 ± 0.082 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, D.; Wang, W.; Wu, Y.; Qin, X.; Li, M.; Chen, X.; Yu, R. Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plants Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L. Horticulturae 2022, 8, 1082. https://doi.org/10.3390/horticulturae8111082
Xing D, Wang W, Wu Y, Qin X, Li M, Chen X, Yu R. Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plants Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L. Horticulturae. 2022; 8(11):1082. https://doi.org/10.3390/horticulturae8111082
Chicago/Turabian StyleXing, Deke, Weixu Wang, Yanyou Wu, Xiaojie Qin, Meiqing Li, Xiaole Chen, and Rui Yu. 2022. "Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plants Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L." Horticulturae 8, no. 11: 1082. https://doi.org/10.3390/horticulturae8111082
APA StyleXing, D., Wang, W., Wu, Y., Qin, X., Li, M., Chen, X., & Yu, R. (2022). Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plants Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L. Horticulturae, 8(11), 1082. https://doi.org/10.3390/horticulturae8111082