Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia
Abstract
:1. Introduction
2. Study Design
2.1. Research Area
2.2. Methodology
3. Sustainable Usage of Plant Material
3.1. Shift in Breeding Strategies—Sustainable Garden Rose Breeding
3.2. Shift in Breeding Strategies—Selection of Autochthonous Terrestrial Orchids
3.3. Shift in Breeding Strategies—Selection of Dwarf Rootstocks to Increase Urban Food Production
4. Sustainable Practices—Utilization and Development of Novel Nature Based Solutions
4.1. Greening the Economy and Economizing the Greenery Approach
4.2. Sustainable Urban Planning
4.2.1. Rain Gardens
4.2.2. Green Roofs
4.2.3. Green Swales/Bioswales
4.2.4. Grass Channels
4.2.5. Constructed Wetlands
5. Discussion
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Constable, C.E. (Ed.) Preface to Transitioning to Affordable and Clean Energy. In Transitioning to Affordable and Clean Energy; Transitioning to Sustainability Series 7; MDPI: Basel, Switzerland, 2022; pp. 1–3. [Google Scholar]
- United Nations Environmental Programme–UNEP-IETC. The Ecosystems Approach to Urban Environmental Management; United Nations Environmental Programme: Nairobi, Kenya, 2003. [Google Scholar]
- Savard, J.P.L.; Clergeau, P.; Mennechez, G. Biodiversity concepts and urban ecosystems. Landsc. Urban Plan 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Schuller, D.; Brunken-Winkler, H.; Busch, P.; Förster, M.; Janiesch, P.; Lemm, R.; Niedringhaus, R.; Strasser, H. Sustainable land use in an agriculturally misused landscape in northwest Germany through ecotechnical restoration by a ‘Patch-Network-Concept’. Ecol. Eng. 2000, 16, 99–117. [Google Scholar] [CrossRef]
- Urban, D.L.; Minor, E.S.; Treml, E.A.; Schick, R.S. Graph models of habitat mosaics. Ecol. Lett. 2009, 12, 260–273. [Google Scholar] [CrossRef]
- Galpern, P.; Manseau, M.; Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 2011, 144, 44–55. [Google Scholar] [CrossRef]
- Rosa Martínez, E.; Coquillat Mora, P.; Berenguer Forner, C. Designing human-friendly cities. Cienc. Cogn. 2022, 16, 7–9. [Google Scholar]
- Zumelzu, A.; Herrmann-Lunecke, M.G. Mental well-being and the influence of place: Conceptual approaches for the built environment for planning healthy and walkable cities. Sustainability 2021, 13, 6395. [Google Scholar] [CrossRef]
- Ma, B.; Zhou, T.; Lei, S.; Wen, Y.; Htun, T.T. Effects of urban green spaces on residents’ well-being. Environ. Dev. Sustain. 2019, 21, 2793–2809. [Google Scholar]
- Jian, I.Y.; Chan, E.H.; Xu, Y.; Owusu, E.K. Inclusive public open space for all: Spatial justice with health considerations. Habitat. Int. 2021, 118, 102457. [Google Scholar] [CrossRef]
- Eurostat. Urban Europe–Statistics on Cities, Towns and Suburbs. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Urban_Europe_%E2%80%94_statistics_on_cities,_towns_and_suburbs (accessed on 15 January 2020).
- Božanić Tanjga, B.; Ljubojević, M.; Đukić, A.; Vukosavljev, M.; Ilić, O.; Narandžić, T. Selection of garden roses to improve the ecosystem services they provide. Horticulturae 2022, 8, 883. [Google Scholar] [CrossRef]
- Ljubojević, M.; Ognjanov, V.; Bošnjaković, D.; Barać, G.; Mladenović, E.; Čukanović, J. Assortment for intensive cherry orchards. In Proceedings of the XXV Conference of Improvement in Fruit and Grape, Institute PKB Agroekonomic, Grocka, Serbia, 29 July 2011; Volume 17, pp. 5–12. [Google Scholar]
- Dorić, D.; Ognjanov, V.; Ljubojević, M.; Barać, G.; Dulić, J.; Pranjić, A.; Dugalić, K. Rapid propagation of sweet and sour cherry rootstocks. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 488–494. [Google Scholar]
- Republic Hydrometeorological Service of Serbia. Meteorological Yearbook–Climatological Data 2017; 2018; 2019; 2020; 2021. Available online: https://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php (accessed on 23 November 2022).
- Statute of the City of Novi Sad. Official Gazette of the City of Novi Sad; The City of Novi Sad, The City Administration for Regulations of the City of Novi Sad: Novi Sad, Serbia, 2019. [Google Scholar]
- Statistical Office of the Republic of Serbia. Statistical Yearbook of the Republic of Serbia. 2017. Available online: https://publikacije.stat.gov.rs/G2020/pdfE/G20202053.pdf (accessed on 23 November 2022).
- Živković, M.B.; Lukić, T.; Đerčan, B. Urban changes and problems of Novi Sad in the 21st century. Geogr. Rev. 2020, 43, 63. [Google Scholar]
- Savić, S.; Milošević, D.; Arsenović, D.; Marković, V.; Bajšanski, I.; Šećerov, I. Urban climate issues in complex urbanized environments: A review of the literature for Novi Sad (Serbia). Acta Climatol. Chorol. 2016, 36, 63–80. [Google Scholar]
- Trišić, I.; Privitera, D.; Štetić, S.; Genov, G.; Stanić Jovanović, S. Sustainable tourism in protected area—A case of Fruška Gora National Park, Vojvodina (Northern Serbia). Sustainability 2022, 14, 14548. [Google Scholar] [CrossRef]
- City of Novi Sad–Official Website of City of Novi Sad. Available online: http://www.novisad.rs/ (accessed on 23 November 2022).
- Republic Hydrometeorological Service of Serbia. Basic Climate Characteristics for the Territory of Serbia. Available online: https://www.hidmet.gov.rs/data/klimatologija_static/eng/Klima_Srbije.pdf (accessed on 23 November 2022).
- Kostreš, M.; Reba, D. Housing for the new socio-economic elite: A case study of Novi Sad. Facta Univ. Ser. Archit. Civ. Eng. 2010, 8, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Kostreš, M.; Atanacković-Jeličić, J. Sociopolitical changes and city growth—A case study of Novi Sad, Serbia. In Proceedings of the REAL CORP, Essen, Germany, 18–20 May 2011. [Google Scholar]
- Stojšin, S. Changes in the population trends in the town of Novi Sad in the period between two censuses. Zb. Matice Srp. Za Drus. Nauk. 2006, 121, 119–126. [Google Scholar] [CrossRef]
- Stojšin, S. Specificity of population trends in Vojvodina-the 2011 census. Zb. Matice Srp. Za Drus. Nauk. 2014, 148, 471–479. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. Municipalities and Regions of the Republic of Serbia 2019; 2020, 2021. Available online: https://www.stat.gov.rs/en-US/publikacije/?d=13&r= (accessed on 23 November 2022).
- Martz, W. Validating an evaluation checklist using a mixed method design. Eval. Program Plan. 2010, 33, 215–222. [Google Scholar] [CrossRef]
- Đorđević, S.; Sentić, I. Industrial heritage park of The Old shunting station in Novi Sad. In Proceedings of the 25st International Eco-Conference, 14th Eco-Conference on Environmental Protection of Urban and Suburban Settlements, Ecological Movement of Novi Sad, Novi Sad, Serbia, 22–24 September 2021. [Google Scholar]
- Đorđević, S.; Brndevska Stipanović, V.; Kolarov, R.; Penchikj, D.; Čukanović, J. From grey to green squares. Fighting climate change. In Proceedings of the ECLAS Conference 2022: Scales of Change, Ljubljana, Slovenia, 12–14 September 2022. [Google Scholar]
- Phoomirat, R.; Disyatat, N.R.; Park, T.Y.; Lee, D.K.; Dumrongrojwatthana, P. Rapid assessment checklist for green roof ecosystem services in Bangkok, Thailand. Ecol. Process. 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Tanjga, B.B.; Lončar, B.; Aćimović, M.; Kiprovski, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Cvetković, M.; Raičević, V.; Zeremski, T. Volatile profile of garden rose (Rosa hybrida) hydrosol and evaluation of its biological activity in vitro. Horticulturae 2022, 8, 895. [Google Scholar] [CrossRef]
- Vukosavljev, M. Towards Marker Assisted Breeding in Garden Roses: From Marker Development to QTL Detection. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2014. [Google Scholar]
- Dulić, J.; Ljubojević, M.; Savić, D.; Ognjanov, V.; Barać, G.; Dulić, T.; Milović, M. Implementation of SWOT analysis to evaluate conservation necessity and utilization of natural wealth: Terrestrial orchids as a case study. J. Environ. Plan. Manag. 2020, 63, 2265–2286. [Google Scholar] [CrossRef]
- Ostojić, J.; Ljubojević, M.; Narandžić, T.; Pušić, M. In vitro culture conditions for asymbiotic germination and seedling development of Anacamptis pyramidalis (L.) Rich. and Gymnadenia conopsea (L.) R. Br. S. Afr. J. Bot. 2022, 150, 829–839. [Google Scholar] [CrossRef]
- Ljubojević, M. Horticulturalization of the 21st century cities. Sci. Hortic. 2021, 288, 110350. [Google Scholar] [CrossRef]
- Narandžić, T.; Ljubojević, M. Breeding size-controlling cherry rootstocks for changing environmental conditions. Hortic. Environ. Biotechnol. 2022, 63, 719–733. [Google Scholar] [CrossRef]
- Ljubojević, M.; Tomić, M.; Simikić, M.; Savin, L.; Narandžić, T.; Pušić, M.; Grubač, M.; Vejnović, S.; Marinković, M. Koelreuteria paniculata invasiveness, yielding capacity and harvest date influence on biodiesel feedstock properties. J. Environ. Manag. 2021, 25, 113102. [Google Scholar] [CrossRef]
- Tomić, M.; Ljubojević, M.; Mićić, R.; Simikić, M.; Dulić, J.; Narandžić, T.; Čukanović, J.; Sentić, I.; Dedović, N. Oil from Koelreuteria paniculata Laxm. 1772 as possible feedstock for biodiesel production. Fuel 2020, 277, 118162. [Google Scholar] [CrossRef]
- Greksa, A.; Ljevnaić-Mašić, B.; Grabić, J.; Benka, P.; Radonić, V.; Blagojević, B.; Sekulić, M. Potential of urban trees for mitigating heavy metal pollution in the city of Novi Sad, Serbia. Environ. Monit. Assess. 2019, 191, 636. [Google Scholar] [CrossRef]
- Greksa, A.; Grabić, J.; Blagojević, B. Contribution of low impact development practices-bioretention systems towards urban flood resilience: Case study of Novi Sad, Serbia. Environ. Eng. Res. 2022, 27, 210125. [Google Scholar] [CrossRef]
- Ljubojević, M.; Grubač, M. Rooftop fruit growing as a nature based solution to mitigate the climate change. In Sustainable Practices in Horticulture and Landscape Architecture; Ostojić, J., Cig, A., Eds.; Iksad: Ankara, Turkey, 2022; pp. 213–244. ISBN 978-625-8323-13-9. [Google Scholar]
- Ljubojević, M.; Ognjanov, V.; Maksimović, I.; Čukanović, J.; Dulić, J.; Szabò, Z.; Szabò, E. Effects of hydrogel on growth and visual damage of ornamental Salvia species exposed to salinity. Clean Soil Air Water 2017, 45, 1600128. [Google Scholar] [CrossRef]
- Békési, D. How can the impact of a world pandemic accelerate the desire to create more functional and ecological public spaces in urban environments? In Proceedings of the Fábos Conference on Landscape and Greenway Planning, Budapest, Hungry, 30 June–3 July 2022; Volume 7, p. 38. [Google Scholar]
- Bringezu, S.; Potočnik, J.; Schandl, H.; Lu, Y.; Ramaswami, A.; Swilling, M.; Suh, S. Multi-scale governance of sustainable natural resource use—Challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 2016, 8, 778. [Google Scholar] [CrossRef] [Green Version]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Javed, A.R.; Shahzad, F.; ur Rehman, S.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Jo, S.S.; Han, H.; Leem, Y.; Lee, S.H. Sustainable smart cities and industrial ecosystem: Structural and relational changes of the smart city industries in Korea. Sustainability 2021, 13, 9917. [Google Scholar] [CrossRef]
- Gudin, S. Rose: Genetics and breeding. Plant Breed. Rev. 2000, 17, 159–189. [Google Scholar]
- Henz, A.; Debener, T.; Linde, M. Identification of major stable QTLs for flower color in roses. Mol. Breed. 2015, 35, 190. [Google Scholar] [CrossRef]
- Tisdell, C.A. Biodiversity and the UN’s Sustainable Development Goals. In Transitioning to Sustainable Life on Land; Transitioning to Sustainability Series 15; Beckmann, V., Ed.; MDPI: Basel, Switzerland, 2021; pp. 25–42. [Google Scholar]
- Cardinale, B.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Gaertner, M.; Wilson, J.R.; Cadotte, M.W.; MacIvor, J.S.; Zenni, R.D.; Richardson, D.M. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 2017, 19, 3461–3469. [Google Scholar] [CrossRef]
- Stojanović, N.; Anastasijević, N.; Anastasijević, V. The use of autochthonous plants in prevention of spreading of invasive plant spaces in the process of urban land planting. In Proceedings of the XIX International Scientific and Professional Meeting “Ecological Truth” EKO-IST-2011, Bor, Serbia, 1–4 June 2011; pp. 324–331. [Google Scholar]
- Wraith, J.; Norman, P.; Pickering, C. Orchid conservation and research: An analysis of gaps and priorities for globally Red Listed species. Ambio 2020, 49, 1601–1611. [Google Scholar] [CrossRef]
- IUCN. IUCN Red List of Threatened Species. Version 2021-1. Available online: https://www.iucnredlist.org (accessed on 30 October 2021).
- Seaton, P.T.; Hu, H.; Perner, H.; Pritchard, H.W. Ex situ conservation of orchids in a warming world. Bot. Rev. 2010, 76, 193–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Wang, R.; Cai, J.; Zhang, Y.; Li, H.; Huang, S.; Jiang, Y. Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Sci. Plant Nutr. 2016, 62, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Robatsch, K. Beiträgezur Blüten biologie und Autogamie der Gattung Epipactis. Jahresber Nat. Ver Wupp. 1983, 36, 25–32. [Google Scholar]
- Harp, A.; Harp, S. Orchids of Britain and Ireland; A&C Black Publishers Ltd.: London, UK, 2005. [Google Scholar]
- Esposito, F.; Vereecken, N.J.; Gammella, M.; Rinaldi, R.; Laurent, P.; Tyteca, D. Characterization of sympatric Platanthera bifolia and Platanthera chlorantha (Orchidaceae) populations with intermediate plants. PeerJ 2018, 6, 42–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rackham, O. Ancient Woodland, 2nd ed.; Castlepoint Press: Colvend, UK, 2003. [Google Scholar]
- Millard, A. Semi-natural vegetation and its relationship to designated urban green space at the landscape scale in Leeds, UK. Landsc. Ecol. 2008, 23, 1231–1241. [Google Scholar] [CrossRef]
- Bailkey, M.; Nasr, J. From brownfields to greenfields: Producing food in North American cities. Community Food Secur. News 1999, 2000, 6. [Google Scholar]
- Russo, A.; Escobedo, F.J.; Cirella, G.T.; Zerbe, S. Edible green infrastructure: An approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 2017, 242, 53–66. [Google Scholar] [CrossRef]
- Chatterjee, A.; Debnath, S.; Pal, H. Implication of urban agriculture and vertical farming for future sustainability. In Urban Horticulture-Necessity of the Future; Solankey, S.S., Akhtar, S., Maldonado, A.I.L., Rodriguez-Fuentes, H., Contreras, J.A.V., Reyes, J.M.M., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- CoDyre, M.; Fraser, E.D.G.; Landman, K. How does your garden grow? An empirical evaluation of the costs and potential of urban gardening. Urban For. Urban Green. 2015, 14, 72–79. [Google Scholar] [CrossRef]
- Glavan, M.; Schmutz, U.; Williams, S.; Corsi, S.; Monaco, F.; Kneafsey, M.; Čenič-Istenič, M.; Pintar, M. The economics of urban gardening in three EU cities examples from London, Ljubljana and Milan. In Proceedings of the 2nd International Conference on Agriculture in an Urbanizing Society: Reconnecting Agriculture and Food Chains to Societal Needs, Rome, Italy, 14–17 September 2015; pp. 225–226. [Google Scholar]
- Saha, M.; Eckelman, M.J. Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landsc. Urban Plan. 2017, 165, 130–141. [Google Scholar] [CrossRef]
- Zasada, I.; Weltin, M.; Zoll, F.; Benninger, S.D. Home gardening practice in Pune (India), the role of communities, urban environment and the contribution to urban sustainability. Urban Ecosyst. 2020, 23, 403–417. [Google Scholar] [CrossRef]
- Narandžić, T.; Ljubojević, M. Urban space awakening–identification and potential uses of urban pockets. Urban Ecosyst. 2022, 25, 1111–1124. [Google Scholar] [CrossRef]
- Nicola, S.; Ferrante, A.; Cocetta, G.; Bulgari, R.; Nicoletto, C.; Sambo, P.; Ertani, A. Food supply and urban gardening in the time of COVID-19. Bull. Univ. Agric. Sci. Veter-Med. Cluj-Napoca. Hortic. 2020, 77, 141–144. [Google Scholar] [CrossRef]
- Von Hoffen, L.P.; Säumel, I. Orchards for edible cities: Cadmium and lead content in nuts, berries, pome and stone fruits harvested within the inner city neighbourhoods in Berlin, Germany. Ecotoxicol. Environ. Saf. 2014, 101, 233–239. [Google Scholar] [CrossRef]
- Da Cunha, M.A.; Paraguassú, L.A.A.; Assis, J.G.d.A.; Silva, A.B.d.P.C.; Cardoso, R.d.C.V. Urban gardening and neglected and underutilized species in Salvador, Bahia, Brazil. J. Ethnobiol. Ethnomed. 2020, 16, 67. [Google Scholar] [CrossRef]
- Petersen, R.; Krost, C. Tracing a key player in the regulation of plant architecture: The columnar growth habit of apple trees (Malus × domestica). Planta 2013, 238, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balducci, F.; Capriotti, L.; Mazzoni, L.; Medori, I.; Albanesi, A.; Giovanni, B.; Giampieri, F.; Mezzetti, B.; Capocasa, F. The rootstock effects on vigor, production and fruit quality in sweet cherry (Prunus avium L.). J. Berry Res. 2019, 9, 249–265. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N. Behavior of some cultivars of apricot (Prunus armeniaca L.) on different rootstocks. Mitt. Klosterneubg. Rebe Wein Obstbau Früchteverwert. 2019, 69, 1–12. [Google Scholar]
- Sobierajski, G.D.R.; Blain, G.C.; Teixeira, L.A.J.; Mayer, N.A. Vegetative growth and foliar nutrient contents of peach on different clonal rootstocks. Pesqui. Agropecu. Bras. 2021, 56, e02043. [Google Scholar] [CrossRef]
- Kajtár-Czinege, A.; Krauczi, É.O.; Hrotkó, K. Growth characteristics of five plum varieties on six different rootstocks grown in containers at different irrigation levels. Horticulturae 2022, 8, 819. [Google Scholar] [CrossRef]
- Houessou, M.D.; van de Louw, M.; Sonneveld, B.G. What constraints the expansion of urban agriculture in Benin? Sustainability 2020, 12, 5774. [Google Scholar] [CrossRef]
- Stokes, A. Responses of Young Trees to Wind: Effects on Root Architecture and Anchorage Strength. Ph.D. Thesis, University of York, Department of Biology, Heslington, UK, 1994. [Google Scholar]
- Milatović, D.; Nikolić, D.; Miletić, N. Sweet and Sour Cherry, 2nd ed.; Scientific Pomological Society of Serbia: Čačak, Serbia, 2015. [Google Scholar]
- Apostol, J. Results of the sweet cherry breading programme in Hungary. Acta Hortic. 1999, 484, 177–178. [Google Scholar]
- Waterman, P. Cherry production trends in British Columbia. Acta Hortic. 2005, 667, 311–317. [Google Scholar] [CrossRef]
- Thurzó, S.; Drén, G.; Dani, M.; Hlevnjak, B.; Hazic, V.; Szabó, Z.; Racskó, J.; Holb, I.; Nyéki, J. Fruit bearing shoot characteristics of apricot and sweet cherry cultivars in Hungary. Int. J. Hortic. Sci. 2006, 12, 107–110. [Google Scholar] [CrossRef]
- Thurzó, S.; Szabó, Z.; Nyéki, J.; Racskó, J.; Drén, G.; Szabó, T.; Nagy, J.; Holb, I.; Veres, Z.S. Some fruit-bearing shoot characteristic of nine sweet cherry cultivars in Hungary. Acta Hortic. 2008, 795, 673–676. [Google Scholar] [CrossRef]
- Whiting, M.D.; Lang, G.; Ophardt, D. Rootstock and training system affect sweet cherry growth, yield, and fruit quality. HortScience 2005, 40, 582–586. [Google Scholar] [CrossRef] [Green Version]
- Kappel, F.; Fisher-Fleming, B.; Hogue, E. Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience 1996, 31, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Vojík, M.; Sádlo, J.; Petřík, P.; Pyšek, P.; Man, M.; Pergl, J. Two faces of parks: Sources of invasion and habitat for threatened native plants. Preslia 2020, 92, 353–373. [Google Scholar] [CrossRef]
- Sladonja, B.; Sušek, M.; Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: Assessment of its ecosystem services and potential biological threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef]
- Hoseini, S.S.; Najafi, G.; Ghobadian, B.; Mamat, R.; Ebadi, M.T.; Yusaf, T. Ailanthus altissima (tree of heaven) seed oil: Characterisation and optimisation of ultrasonication-assisted biodiesel production. Fuel 2018, 220, 621–630. [Google Scholar] [CrossRef]
- Gao, X.Y.; Zhang, Z.F.; Kou, Y.R. Nutritional characteristics of crude fat, crude protein and crude fiber in the fruits of Koelreuteria paniculata Laxm. Nonwood For. Res. 2009, 3. [Google Scholar]
- Andonova, T.; Dimitrova-Dyulgerova, I.; Slavov, I.; Muhovski, Y.; Stoyanova, A. A comparative study of Koelreuteria paniculata Laxm. aerial parts essential oil composition. J. Essent. Oil Bear. Plants 2020, 23, 1363–1370. [Google Scholar] [CrossRef]
- Milanović, M.; Knapp, S.; Pyšek, P.; Kühn, I. Linking traits of invasive plants with ecosystem services and disservices. Ecosyst. Serv. 2020, 42, 101072. [Google Scholar] [CrossRef]
- Velasco-Jiménez, J.M.; Alcázar, P.; Cariñanos, P.; Galán, C. Allergenicity of the urban green areas in the city of Córdoba (Spain). Urban For. Urban Green. 2020, 49, 126600. [Google Scholar] [CrossRef]
- Pušić, M.; Narandžić, T.; Ostojić, J.; Grubač, M.; Ljubojević, M. Assessment and potential of ecosystem services of ornamental dendroflora in public green areas. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Ljubojević, M.; Pušić, M. Review on ornamental Rose of Sharon (Hibiscus syriacus L.): Assessment of decorativeness, invasiveness and ecosystem services in public green areas. In Sustainable Practices in Horticulture and Landscape Architecture; Ostojić, J., Cig, A., Eds.; Iksad: Ankara, Turkey, 2022; pp. 71–144. ISBN 978-625-8323-13-9. [Google Scholar]
- Van Kleunen, M.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Vaz, A.S.; Kueffer, C.; Kull, C.A.; Richardson, D.M.; Vicente, J.R.; Kühn, I.; Schröter, M.; Hauck, J.; Bonn, A.; Honrado, J.P. Integrating ecosystem services and disservices: Insights from plant invasions. Ecosyst. Serv. 2017, 23, 94–107. [Google Scholar] [CrossRef] [Green Version]
- Mrđan, S.; Ljubojević, M.; Orlović, S.; Čukanović, J.; Dulić, J. Poisonous and allergenic plant species in preschool’s and primary school’s yards in the city of Novi sad. Urban For. Urban Green. 2017, 25, 112–119. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, P.M. Biodiesel production from Jatropha curcas oil. Renew. Sust. Energ. Rev. 2010, 14, 3140–3147. [Google Scholar] [CrossRef]
- Vijay, V.; Chandra, R.; Subbarao, P.M.V. Biomass as a means of achieving rural energy self-sufficiency: A concept. Built Environ. Proj. Asset Manag. 2021, 12, 382–400. [Google Scholar] [CrossRef]
- Bremer, L.L.; Keeler, B.; Pascua, P.; Walker, R.; Sterling, E. Nature-based solutions, sustainable development, and equity. In Nature-Based Solutions and Water Security; Elsevier: Amsterdam, The Netherlands, 2021; pp. 81–105. [Google Scholar]
- Li, L.; Cheshmehzangi, A.; Chan, F.K.S.; Ives, C.D. Mapping the research landscape of nature-based solutions in urbanism. Sustainability 2021, 13, 3876. [Google Scholar] [CrossRef]
- Volkan Oral, H.; Radinja, M.; Rizzo, A.; Kearney, K.; Andersen, T.R.; Krzeminski, P.; Buttiglieri, G.; Ayral-Cinar, D.; Comas Matas, J.; Gajewska, M.; et al. Management of urban waters with nature-based solutions in circular cities—Exemplified through seven urban circularity challenges. Water 2021, 13, 3334. [Google Scholar] [CrossRef]
- Stipić, M.; Šranc, R.; Prodanović, D.; Stefanović, R.; Kolaković, S. Redesign of the Existing Combined Sewer System (CSS) of Novi Sad. In Proceedings of the 9th International Conference on Urban Drainage Modelling, Belgrade, Serbia, 4–7 September 2012; pp. 1–13. [Google Scholar]
- Master Plan of the City of Novi Sad till 2030 Year. Available online: http://www.nsurbanizam.rs (accessed on 15 October 2022).
- Mihailović, A.; Vučinić-Vasić, M.; Ninkov, J.; Erić, S.; Ralević, N.M.; Nemes, T.; Antić, A. Multivariate analysis of the contents of metals in urban snow near traffic lanes in Novi Sad, Serbia. J. Serb. Chem. Soc. 2014, 79, 265–276. [Google Scholar] [CrossRef]
- Dunnett, N.; Clayden, A. Rain Gardens—Managing Water Sustainably in the Garden and Designed Landscape; Timber Press, Inc.: Portland, OR, USA, 2007. [Google Scholar]
- Shafique, M.; Kim, R.; Kyung-Ho, K. Green roof for stormwater management in a highly urbanized area: The case of Seoul, Korea. Sustainability 2018, 10, 584. [Google Scholar] [CrossRef]
- Anjum, F.; Yaseen, M.; Rasul, E.; Wahid, A.; Anjum, S. Water stress in barley (Hordeum vulgare L.). I. Effect on morphological characters. Pak. J. Agric. Sci. 2003, 40, 43–44. [Google Scholar]
- Shao, H.B.; Chu, L.Y.; Shao, M.A.; Jaleel, C.A.; Hong-Mei, M. Higher plant antioxidants and redox signaling under environmental stresses. Comp. Rend. Biol. 2008, 331, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Misra, V.; Solomon, S.; Mall, A.K.; Prajapati, C.P.; Hashem, A.; Abd Allah, E.F.; Ansari, M.I. Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop. Saudi J. Biol. Sci. 2020, 27, 1228–1236. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.M.; Nath, M.; Dokku, P.; Raman, K.V.; Kulkarni, K.P.; Vishwakarma, C.; Sahoo, S.P.; Mohapatra, U.B.; Mithra, S.V.A.; Chinnusamy, V.; et al. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants 2015, 7, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Global Warming of 1.5 °C: Summary for Policymakers, in Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Dey, R.; Lewis, S.C.; Arblaster, J.M.; Abram, N.J. A review of past and projected changes in Australia’s rainfall. WIREs Clim. Chang. 2019, 10, e577. [Google Scholar] [CrossRef]
- Marchin, R.M.; Ossola, A.; Leishman, M.R.; Ellsworth, D.S. A simple method for simulating drought effects on plants. Front. Plant Sci. 2020, 10, 1715. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; James, R.A.; Sirault, X.R.R.; Furbank, R.T.; Jones, H.G. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 2010, 61, 3499–3507. [Google Scholar] [CrossRef] [Green Version]
- Poorter, H.; Fiorani, F.; Stitt, M.; Schurr, U.; Finck, A.; Gibon, Y.; Usadel, B.; Munns, R.; Atkin, O.K.; Tardieu, F.; et al. The art of growing plants for experimental purposes: A practical guide for the plant biologist. Funct. Plant Biol. 2012, 39, 821–838. [Google Scholar] [CrossRef] [PubMed]
- Landis, T.D. Miniplug transplants: Producing large plants quickly. In National Proceedings: Forest and Conservation Nursery Associations-2006; USDA Forest Service RMRS-P-50; Riley, L.E., Dumroese, R.K., Landis, T.D., Technical Coordinators, Eds.; USDA Forest Service: Fort Collins, CO, USA, 2007; pp. 46–53. [Google Scholar]
- Kostopoulou, P.; Radoglou, K.; Papanastasi, O.D.; Adamidou, C. Effect of mini-plug container depth on root and shoot growth of four forest tree species during early developmental stages. Turk. J. Agric. For. 2011, 35, 379–390. [Google Scholar] [CrossRef]
- Schueler, T.R. A Current Assessment of Urban Best Management Practices: Techniques for Reducing Non-Point Source Pollution in the Coastal Zone; Metropolitan Washington Council of Governments: Washington, WA, USA, 1992. [Google Scholar]
- Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Wastewater treatment using constructed wetland: Current trends and future potential. Processes 2021, 9, 1917. [Google Scholar] [CrossRef]
- Lütken, H.; Clarke, J.L.; Müller, R. Genetic engineering and sustainable production of ornamentals: Current status and future directions. Plant Cell Rep. 2012, 31, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Van Huylenbroeck, J. Breeding for sustainable ornamental plants. Acta Hortic. 2020, 1288, 1–8. [Google Scholar] [CrossRef]
- Heywood, V. Conservation and sustainable use of wild species as sources of new ornamentals. Acta Hortic. 2003, 598, 43–53. [Google Scholar] [CrossRef]
- Zervaki, D.; Papanastasi, K.; Maloupa, E. A new theory–model strategy for new flower crops development. In Proceedings of the VI International Symposium on New Floricultural Crops, Funchal, Portugal, 11–15 June 2007; pp. 147–154. [Google Scholar]
- Stice, K.N.; Tora, L.D.; McGregor, K. Increasing demand for native plants in Fiji’s ornamental horticulture sector. Acta Hortic. 2013, 977, 363–368. [Google Scholar] [CrossRef]
- Wani, M.A.; Nazki, I.T.; Din, A.; Iqbal, S.; Wani, S.A.; Khan, F.U. Floriculture sustainability initiative: The dawn of new era. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2018; Volume 27, pp. 91–127. [Google Scholar]
- Leus, L.; Van Laere, K.; De Riek, J.; Van Huylenbroeck, J. Rose. In Ornamental Crops; Van Huylenbroeck, J., Ed.; Springer: Cham, Switzerland, 2018; pp. 719–767. [Google Scholar]
- Leus, L. Breeding for disease resistance in ornamentals. In Ornamental Crops; Van Huylenbroeck, J., Ed.; Springer: Cham, Switzerland, 2018; pp. 97–125. [Google Scholar]
- Hindle, T. Guide to Management Ideas and Gurus; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 42. [Google Scholar]
- Science for Environment Policy: The Solution is in Nature, Future Brief 24, Brief Produced for the European Commission; Publications Office of the European Union: Luxembourg, 2021.
- Sowińska-Świerkosz, B.; García, J. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nature Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Campiotti, C.A.; Gatti, L.; Campiotti, A.; Consorti, L.; De Rossi, P.; Bibbiani, C.; Muleo, R.; Latini, A. Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings. Horticulturae 2022, 8, 526. [Google Scholar] [CrossRef]
- Pânzaru, D.M.R.; Iojă, I.C.; Pleșoianu, A.I.; Hossu, C.A.; Diaconu, D.C. Nature-based solutions for urban waters in Romanian cities. Nat. Based Solut. 2022, 2, 100036. [Google Scholar] [CrossRef]
- Souliotis, I.; Voulvoulis, N. Operationalising nature-based solutions for the design of water management interventions. Nat. Based Solut. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Lakićević, M.; Reynolds, K.M.; Orlović, S.; Kolarov, R. Measuring dendrofloristic diversity in urban parks in Novi Sad (Serbia). Trees For. People 2022, 8, 1–8. [Google Scholar]
- Falster, D.S.; FitzJohn, R.G.; Brannstrom, Å.; Dieckmann, U.; Westoby, M. Plant: A package for modelling forest trait ecology and evolution. Methods Ecol. Evol. 2016, 7, 136–146. [Google Scholar] [CrossRef]
Added Value | Disease Resistance | Aesthetic Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Collection Candidate | Food | Medicine | Horticulture, Urban Gardening | Powdery Mildew | Black Spot | Without Spraying | Attractive Color | Compact Growth | Numerous Petals | Fragrance | Easy to Grow |
Mella Collection | |||||||||||
Mellite Mella | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Exotic Mella | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Crystal Mella | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Barbie Mella | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Ruby Mella | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
Ducat Mella | ✔ | ✔ | ✔ | ||||||||
Edible Collection | ✔ | ✔ | ✔ | ✔ | |||||||
Dolce | ✔ | ✔ | ✔ | ✔ | |||||||
Nadia Zerouali | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Raspberry | ✔ | ✔ | ✔ | ✔ | |||||||
Theo Clevers | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Eveline Wild | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Jordi Roca | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Pear | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
Aurora Collection | |||||||||||
Aromatic Aurora | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
White Aurora | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Berry Bush Aurora | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Purple Aurora | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Fashion Collection | |||||||||||
Chic Fashion | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Hippie Fashion | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Perfume Fashion | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Trendy Fashion | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Urban Fashion | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Reka Collection | |||||||||||
Tara Reka | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Tisa Reka | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
Nera Reka | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Morava Reka | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Vaza Collection | |||||||||||
Carmine Vaza | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Lemon Vaza | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Cherry Vaza | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Pearl Vaza | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||
Pink Vaza | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Frayla Collection | |||||||||||
Zora Frayla | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Mina Frayla | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Vera Frayla | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Marija Frajla | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Draga Frayla | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
Jelena Frayla | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Isidora Frayla | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Pixie Collection | |||||||||||
Milky pixie | ✔ | ✔ | ✔ | ✔ | |||||||
Mauve Pixie | |||||||||||
Gaudy Pixie | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Coral Pixie | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
Blush pixie | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Winterjewel Collection | |||||||||||
Allure Winterjewel | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Crimson Winterjewel | ✔ | ✔ | ✔ | ✔ | |||||||
Blush Winterjewel | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Sunrise Winterjewel | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Scarlet Winterjewel | ✔ | ✔ | ✔ | ✔ |
Orchid Species | Morphological Characteristics | Soil Characteristic | Asymbiotic Seed Germination | Conservation Status | Market Demand | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Plant Height ≥ 30 cm | Inflorescence Length ≥ 5 cm | Number of Flower ≥ 20 | pH | CaCO3 | Humus | Seed Viability | Successfully Germinated Seeds in In Vitro Conditions | Urgency for Conservation | Market Potential | Market Life Phase | |
Anacamptis pyramidalis | ✔ | - | ✔ | Al | H | H | H | ✔ | 3 | 3.0 | 5.0 |
Orchis militaris | ✔ | ✔ | ✔ | Al | H | H | H | ✔ | 5 | 4.5 | 5.0 |
Orchis purpurea | ✔ | ✔ | ✔ | Al | H | H | / | / | 5 | 4.5 | 5.0 |
Orchis mascula | ✔ | ✔ | ✔ | Ac | Nc | M | H | / | 5 | 3.5 | 5.0 |
Himantoglossum jankae | ✔ | ✔ | ✔ | Al | H | H | H | ✔ | 5 | 5.0 | 5.0 |
Neotinea tridentata | - | - | ✔ | Al | H | H | H | / | 5 | 4.5 | 5.0 |
Neotinea ustulata | - | - | ✔ | Al | H | H | / | / | 5 | 4.5 | 5.0 |
Gymnadenia conopsea | ✔ | ✔ | ✔ | Al | H | H | H | ✔ | 3 | 4.5 | 5.0 |
Gymnadenia odoratissima | ✔ | ✔ | ✔ | Al | H | H | / | / | 5 | 4.5 | 5.0 |
Ophrys sphegodes | - | ✔ | - | Al | H | H | H | ✔ | 5 | 5.0 | 5.0 |
Ophrys scolopax | - | ✔ | - | Al | H | H | L | / | 5 | 5.0 | 5.0 |
Spiranthes spiralis | - | ✔ | ✔ | Al | M | H | H | ✔ | 5 | 4.8 | 5.0 |
Epipactis helleborine | ✔ | ✔ | ✔ | Sac | Nc | H | / | / | 5 | 4.5 | 5.0 |
Epipactis microphylla | - | ✔ | - | N | H | H | L | / | 5 | 3.5 | 5.0 |
Limodorum abortivum | ✔ | ✔ | - | Ac | Nc | M | H | ✔ | 5 | 3.5 | 5.0 |
Platanthera bifolia | ✔ | ✔ | ✔ | Sac | Nc | H | / | / | 5 | 5.0 | 5.0 |
Cephalanthera longifolia | ✔ | ✔ | ✔ | Ac | Nc | M | L | / | 5 | 4.5 | 5.0 |
Vegetative Growth | Qualitative Characteristics | Fruit Quality Traits | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rootstock Candidate | Tree Height < 3 m | Crown Diameter < 1.5 m | Ve < 3 m3 * | Ve Reduction Compared to ‘Gisela 5’ | Absence of Prominent trunk´s Leaning | Absence of Suckers | Strong Anchorage | Fruit Weight 8–9 g | Fruit Weight > 9 g | Fruit Width > 26 mm | SSC > 15% ** |
PC_01_01 | ✔ | ✔ | ✔ | ✔ | |||||||
PC_01_03 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PC_01_05 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PC_02_01/4 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PC_02_03/2 | ✔ | ✔ | ✔ | ||||||||
PC_03_01 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PC_03_02 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PC_03_03 | ✔ | ✔ | ✔ | ✔ | |||||||
PC_04_01 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
PC_04_02 | ✔ | ✔ | ✔ | ✔ | |||||||
PC_04/1_01 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||
PC_04/1_03 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PC_05_02 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PC_05_04 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
PC_05_06 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PC_05_07 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
PC_06_03 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PC_06_04 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||
PC_06_12 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
‘Ciganymeggy’ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||
PF_01_01 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
PF_02_16 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
PF_04_09 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
PF_06_04 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PF_06_06 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PF_06_08 | ✔ | ✔ | ✔ | ✔ | |||||||
PF_06_15 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PF_07_01 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
PF_07_02 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
PF_07_04 | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
PF_07_05 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PF_07_07 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PF_07_08 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
PM_09_01 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||
PM_09_02 | ✔ | ✔ | ✔ | ✔ | |||||||
‘Gisela 5’ | ✔ | ✔ | ✔ | / | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
‘Colt’ | ✔ | ✔ | ✔ | ✔ | ✔ |
Quantitative Characteristics | Qualitative Characteristics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species | Total Number of Specimens | Canopy Volumes (m3) | Oil Percentage (%) | High Invasive Potential | Moderate Invasive Potential | Low Invasive Potential | High Allergen Potential | Moderate Allergen Potential | High Vitality Value | High Ornamental Value | Biodiesel Production |
Oriental cedar (Thuja orientalis L.) | 816 | 61.7 | 22 | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Chinese golden rain (Koelreuteria paniculata Laxm.) | 400 | 268.6 | 22.8 | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Rose of Sharon (Hibiscus syriacus L.) | 865 | 9.4 | 11.5 | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Creeping Juniper (Juniperus horizontalis Moench.) | 84 | 34.9 | 2.1 | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Virginia creeper (Parthenocissus quinquefolia L.) | 61 | 21.4 | 25 | ✔ | ✔ | ✔ | ✔ | ✔ |
Locations/part of the city | Percentage of imperviousness for this part of the city [106] | Land use [107] | Heavy metals in soil (Zn, Pb, Cu) [40] | Heavy metals in stormwater runoff (Zn) [41] | Heavy metals in snow runoff [108] | Concentrations of heavy metals in plants (Zn, Pb, Cu) [40] | Often flooded locations | Presence of neglected areas or unused green spaces and [107] |
Detelinara | 49 | residential | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
City center | 60 | residential, city centers | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Industrial zone-North 2 | 30 | industrial, commercial | ✔ | ✔ | ||||
Banatic | 30 | multi-family housing | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Liman | 31 | residential | ✔ | ✔ | ✔ | ✔ | ✔ | |
Podbara | 39 | multi-family and single housing | ✔ | ✔ | ✔ | ✔ | ✔ | |
Old city part | 42 | city centers and residential | ✔ | ✔ | ✔ | ✔ | ✔ | |
Grbavica | 50 | residential | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
3 Months after Planting | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Plant Height > 15 cm | Plant Width > 20 cm | Plant Length > 20 | % of Survival > 50% | Moderate Vitality Score | Good Vitality | High Decorativeness | 100% Regenerative Potential | ||||||||
T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | |
Gazania rigens (L.) Gaertn. | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||||
Petunia × hybrida Juss. | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Salvia splendens Sellow ex J.A. Schultes | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||||
Catharanthus roseus (L.) G.Don | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Begonia × semperflorens-cultorum L. | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ljubojević, M.; Narandžić, T.; Ostojić, J.; Božanić Tanjga, B.; Grubač, M.; Kolarov, R.; Greksa, A.; Pušić, M. Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia. Horticulturae 2022, 8, 1222. https://doi.org/10.3390/horticulturae8121222
Ljubojević M, Narandžić T, Ostojić J, Božanić Tanjga B, Grubač M, Kolarov R, Greksa A, Pušić M. Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia. Horticulturae. 2022; 8(12):1222. https://doi.org/10.3390/horticulturae8121222
Chicago/Turabian StyleLjubojević, Mirjana, Tijana Narandžić, Jovana Ostojić, Biljana Božanić Tanjga, Milica Grubač, Radenka Kolarov, Amela Greksa, and Magdalena Pušić. 2022. "Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia" Horticulturae 8, no. 12: 1222. https://doi.org/10.3390/horticulturae8121222
APA StyleLjubojević, M., Narandžić, T., Ostojić, J., Božanić Tanjga, B., Grubač, M., Kolarov, R., Greksa, A., & Pušić, M. (2022). Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia. Horticulturae, 8(12), 1222. https://doi.org/10.3390/horticulturae8121222