Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions
Abstract
:1. Introduction
2. Taxonomy
3. Volatile Chemical Compositions of Basil Essential Oils
4. The Applications of the Basil Essential Oils in the Production of the Tropical Fruits
4.1. Pre-Harvest Applications
4.2. Post-Harvest Applications
5. Techniques for Enhancing the Essential Oil Efficiency
5.1. Emulsification
5.2. Complex Coacervation
5.3. Spray Drying
5.4. Complexation
5.5. Ionic Gelation
5.6. Nanoprecipitation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pac. J. Trop. Biomed. 2014, 4, 682–694. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.P.; Singh, R.; Rao, B.R.R.; Singh, R.R.; Srivastava, A.; Lal, R.K. Differential response of genotype×environment on phenology, essential oil yield and quality of natural aroma chemicals of five Ocimum species. Ind. Crops Prod. 2016, 87, 210–217. [Google Scholar] [CrossRef]
- Juntachote, T.; Berghofer, E.; Siebenhandl, S.; Bauer, F. The antioxidative properties of Holy basil and Galangal in cooked ground pork. Meat Sci. 2006, 72, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, N.; Rawal, S.; Verma, M.; Poddar, M.; Alok, S. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomed. Prev. Nutr. 2013, 3, 185–192. [Google Scholar] [CrossRef]
- Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med. 2017, 17, 60. [Google Scholar] [CrossRef] [Green Version]
- Tangpao, T.; Chung, H.-H.; Sommano, S.R. Aromatic Profiles of Essential Oils from Five Commonly Used Thai Basils. Foods 2018, 7, 175. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Ademiluyi, A.O.; Oyeleye, S.I.; Oboh, G. Biological activities, antioxidant properties and phytoconstituents of essential oil from sweet basil (Ocimum basilicum L.) leaves. Comp. Clin. Pathol. 2016, 25, 169–176. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R.; Prokinova, E. Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere 2014, 112, 443–448. [Google Scholar] [CrossRef]
- Oxenham, S.; Svoboda, K.; Walters, D. Antifungal Activity of the Essential Oil of Basil (Ocimum basilicum). J. Phytopathol. 2005, 153, 174–180. [Google Scholar] [CrossRef]
- Onaebi, C.; Onyeke, C.; Osibe, D.; Ugwuja, F.; Okoro, A.; Onyegirim, P. Antimicrobial activity of Ocimum gratissimum L. and Carica papaya L. against postharvest pathogens of avocado pear (Persea americana Mill.). J. Plant Pathol. 2020, 102, 319–325. [Google Scholar] [CrossRef]
- Kumar, A.; Shukla, R.; Singh, P.; Prakash, B.; Dubey, N.K. Chemical composition of Ocimum basilicum L. essential oil and its efficacy as a preservative against fungal and aflatoxin contamination of dry fruits. Int. J. Food Sci. Technol. 2011, 46, 1840–1846. [Google Scholar] [CrossRef]
- Danh, L.T.; Giao, B.T.; Duong, C.T.; Nga, N.T.T.; Tien, D.T.K.; Tuan, N.T.; Huong, B.T.C.; Nhan, T.C.; Trang, D.T.X. Use of Essential Oils for the Control of Anthracnose Disease Caused by Colletotrichum acutatum on Post-Harvest Mangoes of Cat Hoa Loc Variety. Membranes 2021, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Reyes, J.G.; Spadaro, D.; Prelle, A.; Garibaldi, A.; Gullino, M.L. Efficacy of Plant Essential Oils on Postharvest Control of Rots Caused by Fungi on Different Stone Fruits In Vivo. J. Food Prot. 2013, 76, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Dubey, N.K.; Banerji, R.; Chansouria, J.P.N. Evaluation of some essential oils as botanical fungitoxicants in management of post-harvest rotting of citrus fruits. World J. Microbiol. Biotechnol. 2004, 20, 317–321. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Chandu, A.G.S.; Devi, S.S. Ocimum tenuiflorum oil, a potential insecticide against rice weevil with anti-acetylcholinesterase activity. Ind. Crops Prod. 2018, 126, 434–439. [Google Scholar] [CrossRef]
- Rodríguez-González, Á.; Álvarez-García, S.; González-López, Ó.; Silva, F.D.; Casquero, P.A. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris L.). Insects 2019, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Jayaramaiah, R.H.; Sarate, P.; Thulasiram, H.V.; Kulkarni, M.J.; Giri, A.P. Insecticidal Potential of Defense Metabolites from Ocimum kilimandscharicum against Helicoverpa armigera. PLoS ONE 2014, 9, e104377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.H.; Nishida, R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Canhanga, L.; de Meyer, M.; Cugala, D.; Massimiliano, V.; Maulid, M. Economic injury level of the Oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), on commercial mango farms in Manica Province, Mozambique. Afr. Entomol. 2020, 28, 278–289. [Google Scholar] [CrossRef]
- Orankanok, W.; Chinvinijkul, S.; Thanaphum, S.; Sitilob, P.; Enkerlin, W. Area-Wide Integrated Control of Oriental Fruit Fly Bactrocera Dorsalis and Guava Fruit Fly Bactrocera Correcta in Thailand; Springer: Dordrecht, The Netherlands, 2007; pp. 517–526. [Google Scholar]
- Alam, S.K.; Rahman, M.; Reza, M.; Amin, M.N.; Hussen, M.A. Postharvest loss assessment of mango at different stages of supply chain through traditional and improved handling practices. Adv. Plants Agric. Res. 2019, 9, 384–388. [Google Scholar] [CrossRef]
- Amin, A. Determination of Some Essential Oils Effects on the Quality Traits of the Egyptian Anna Apple Fruit During its Shelf Life. J. Hortic. Sci. Ornam. Plants 2016, 8, 35–45. [Google Scholar] [CrossRef]
- Dharanivasan, G.; Sithanantham, S.; Kannan, M.; Chitra, S.; Kathiravan, K.; Janarthanan, S. Metal Oxide Nanoparticles Assisted Controlled Release of Synthetic Insect Attractant for Effective and Sustainable Trapping of Fruit Flies. J. Clust. Sci. 2017, 28, 2167–2183. [Google Scholar] [CrossRef]
- Chowdhury, T.; Mandal, A.; Roy, S.C.; de Sarker, D. Diversity of the genus Ocimum (Lamiaceae) through morpho-molecular (RAPD) and chemical (GC–MS) analysis. J. Genet. Eng. Biotechnol. 2017, 15, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Shasany, A.K. The Holy basil (Ocimum sanctum L.) and its genome. Indian J. Hist. Sci. 2016, 51, 343–350. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Tekwani, B.; Khan, S.I. Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting. J. Agric. Food Chem. 2008, 56, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Vani, S.R.; Cheng, S.; Chuah, C. Comparative study of volatile compounds from genus Ocimum. Am. J. Appl. Sci. 2009, 6, 523. [Google Scholar] [CrossRef]
- Khalid, K.A.; Hendawy, S.; El-Gezawy, E. Ocimum basilicum L. production under organic farming. Res. J. Agric. Biol. Sci. 2006, 2, 25–32. [Google Scholar]
- Simon, J.E.; Morales, M.R.; Phippen, W.B.; Vieira, R.F.; Hao, Z. Basil: A source of aroma compounds and a popular culinary and ornamental herb. Perspect. New Crops New Uses 1999, 16, 499–505. [Google Scholar]
- Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, H.P.; Vivanco, J.M. Chemical Characterization of Basil (Ocimum basilicum L.) Found in Local Accessions and Used in Traditional Medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef]
- Singh, A.K. Seedling morphology of four species of Ocimum L.(Lamiaceae) and its taxonomic significance. Bangladesh J. Plant Taxon. 2012, 19, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Nahak, G.; Mishra, R.; Sahu, R. Taxonomic distribution, medicinal properties and drug development potentiality of Ocimum (Tulsi). Drug Invent. Today 2011, 3, 95–113. [Google Scholar]
- Prinsi, B.; Morgutti, S.; Negrini, N.; Faoro, F.; Espen, L. Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil. Plants 2020, 9, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón Bravo, H.; Vera Céspedes, N.; Zura-Bravo, L.; Muñoz, L.A. Basil Seeds as a Novel Food, Source of Nutrients and Functional Ingredients with Beneficial Properties: A Review. Foods 2021, 10, 1467. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Heo, S.; Bae, S.; Kim, J.; Moon, K.-D. Discriminating the origin of basil seeds (Ocimum basilicum L.) using hyperspectral imaging analysis. LWT 2020, 118, 108715. [Google Scholar] [CrossRef]
- Kumar, A.; Lal, R.K. The consequence of genotype × environment interaction on high essential oil yield and its composition in clove basil (Ocimum gratissimum L.). Acta Ecol. Sin. 2021. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, P.; Rodrigues, V.; Baskaran, K.; Verma, R.S.; Padalia, R.C.; Sundaresan, V. Delineation of Ocimum gratissimum L. complex combining morphological, molecular and essential oils analysis. Ind. Crops Prod. 2019, 139, 111536. [Google Scholar] [CrossRef]
- Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharm. Rev. 2010, 4, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Khosla, M. Study of inter-relationship, phylogeny and evolutionary tendencies in genus Ocimum. Ind. J. Genet. 1995, 55, 71–83. [Google Scholar]
- Helen, H.D. Investigation of the Cultivars of the Basils (Ocimum). Econ. Bot. 1974, 28, 63–67. [Google Scholar]
- Obeng-Ofori, D.e.; Reichmuth, C. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. Int. J. Pest Manag. 1997, 43, 89–94. [Google Scholar] [CrossRef]
- Asase, A.; Hesse, D.N.; Simmonds, M.S.J. Uses of multiple plants prescriptions for treatment of malaria by some communities in southern Ghana. J. Ethnopharmacol. 2012, 144, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.P.; Gupta, V. Chemotypic characterization of diversity in essential oil composition of Ocimum species and varieties from India. J. Essent. Oil Res. 2018, 30, 444–456. [Google Scholar] [CrossRef]
- Werker, E.; Putievsky, E.; Ravid, U.; Dudai, N.; Katzir, I. Glandular Hairs and Essential Oil in Developing Leaves of Ocimum basilicum L. (Lamiaceae). Ann. Bot. 1993, 71, 43–50. [Google Scholar] [CrossRef]
- Oksanen, E. Trichomes form an important first line of defence against adverse environment—New evidence for ozone stress mitigation. Plant Cell Environ. 2018, 41, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Ameh, S.J.; Obodozie-Ofoegbu, O. Chapter 11—Essential Oils as Flavors in Carbonated Cola and Citrus Soft Drinks. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 111–121. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mindaryani, A.; Rahayu, S. Essential Oil from Extraction and Steam Distillation of Ocimum basillicum. Lect. Notes Eng. Comput. Sci. 2007, 2167, 24–26. [Google Scholar]
- Cassel, E.; Vargas, R.M.F.; Martinez, N.; Lorenzo, D.; Dellacassa, E. Steam distillation modeling for essential oil extraction process. Ind. Crops Prod. 2009, 29, 171–176. [Google Scholar] [CrossRef]
- Da Silva Moura, E.d.S.; D’Antonino Faroni, L.R.; Fernandes Heleno, F.F.; Aparecida Zinato Rodrigues, A.A.Z.; Figueiredo Prates, L.H.; Lopes Ribeiro de Queiroz, M.E. Optimal Extraction of Ocimum basilicum Essential Oil by Association of Ultrasound and Hydrodistillation and Its Potential as a Biopesticide against a Major Stored Grains Pest. Molecules 2020, 25, 2781. [Google Scholar] [CrossRef] [PubMed]
- Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules 2016, 21, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.H.; Nguyen, H.H.H.; Nguyen, D.C.; Nguyen, T.Q.; Tan, H.; Nhan, L.T.H.; Nguyen, D.H.; Tran, L.D.; Do, S.T.; Nguyen, T.D. Optimization of Microwave-Assisted Extraction of Essential Oil from Vietnamese Basil (Ocimum basilicum L.) Using Response Surface Methodology. Processes 2018, 6, 206. [Google Scholar] [CrossRef] [Green Version]
- Kothari, S.K.; Bhattacharya, A.K.; Ramesh, S. Essential oil yield and quality of methyl eugenol rich Ocimum tenuiflorum L.f. (syn. O. sanctum L.) grown in south India as influenced by method of harvest. J. Chromatogr. A 2004, 1054, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Callahan, A.; Cantrell, C.L. Yield and Oil Composition of 38 Basil ( Ocimum basilicum L.) Accessions Grown in Mississippi. J. Agric. Food Chem. 2008, 56, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Khalid, K.A. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 2006, 20, 289–296. [Google Scholar]
- Singh, P.; Kalunke, R.M.; Giri, A.P. Towards comprehension of complex chemical evolution and diversification of terpene and phenylpropanoid pathways in Ocimum species. RSC Adv. 2015, 5, 106886–106904. [Google Scholar] [CrossRef]
- Chalchat, J.-C.; Özcan, M.M. Comparative essential oil composition of flowers, leavesand stems of basil (Ocimum basilicum L.) used as herb. Food Chem. 2008, 110, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Chalchat, J.-C. Essential oil composition of Ocimum basilicum L. Czech J. Food Sci 2002, 20, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Kathirvel, P.; Ravi, S. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts. Nat. Prod. Res. 2012, 26, 1112–1118. [Google Scholar] [CrossRef]
- Siddique, A.; Rahman, S.M.; Hossain, M.A. Chemical composition of essential oil by different extraction methods and fatty acid analysis of the leaves of Stevia Rebaudiana Bertoni. Arab. J. Chem. 2016, 9, S1185–S1189. [Google Scholar] [CrossRef] [Green Version]
- Taraj, K.; Delibashi, A.; Andoni, A.; Lazo, P.; Kokalari, E.; Lame, A.; Xhaxhiu, K. Extraction of chamomile essential oil by subcritical CO2 and its analysis by UV-VIS spectrophotometer. Asian J. Chem. 2013, 25, 7361. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Hădărugă, D.I.; Hădărugă, N.G.; Costescu, C.I.; David, I.; Gruia, A.T. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system. Beilstein J. Org. Chem. 2014, 10, 2809–2820. [Google Scholar] [CrossRef] [Green Version]
- Carson, C.F.; Hammer, K.A. Chemistry and bioactivity of essential oils. Lipids Essent Oils Antimicrob Agents 2011, 25, 203–238. [Google Scholar]
- Tangpao, T.; Krutmuang, P.; Kumpoun, W.; Jantrawut, P.; Pusadee, T.; Cheewangkoon, R.; Sommano, S.R.; Chuttong, B. Encapsulation of Basil Essential Oil by Paste Method and Combined Application with Mechanical Trap for Oriental Fruit Fly Control. Insects 2021, 12, 633. [Google Scholar] [CrossRef] [PubMed]
- Sutaphanit, P.; Chitprasert, P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem. 2014, 150, 313–320. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Tajima, K.; Toi, N.; Sugimura, Y. Characteristic Components Found in the Essential Oil of Ocimum basilicum L. Flavour Fragr. J. 1997, 12, 195–200. [Google Scholar] [CrossRef]
- Vieira, R.F.; Grayer, R.J.; Paton, A.; Simon, J.E. Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochem. Syst. Ecol. 2001, 29, 287–304. [Google Scholar] [CrossRef]
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/index.html (accessed on 3 December 2021).
- Zeller, A.; Rychlik, M. Character impact odorants of fennel fruits and fennel tea. J. Agric. Food Chem. 2006, 54, 3686–3692. [Google Scholar] [CrossRef] [PubMed]
- Pripdeevech, P.; Khummueng, W.; Park, S.-K. Identification of odor-active components of agarwood essential oils from Thailand by solid phase microextraction-GC/MS and GC-O. J. Essent. Oil Res. 2011, 23, 46–53. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Leone, T.; Paduano, A.; Mena, C.; Perez-Jimenez, M.A.; Sacchi, R. Use of odorant series for extra virgin olive oil aroma characterisation. J. Sci. Food Agric. 2019, 99, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Nomura, M.; Marumoto, S.; Mori, K. Characteristic odor components of essential oil from Scutellaria laeteviolacea. J. Oleo Sci. 2013, 62, 51–56. [Google Scholar] [CrossRef]
- Jiang, L.; Kubota, K. Differences in the volatile components and their odor characteristics of green and ripe fruits and dried pericarp of Japanese pepper (Xanthoxylum piperitum DC.). J. Agric. Food Chem. 2004, 52, 4197–4203. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Mittal, R.; Rana, A.; Jaitak, V. Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance. Curr. Drug Targets 2019, 20, 605–624. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Rodríguez-Herrera, R.; Aguilar, C.N. Chapter 11—Essential Oils: A Natural Alternative to Combat Antibiotics Resistance. In Antibiotic Resistance; Kon, K., Rai, M., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 227–237. [Google Scholar] [CrossRef]
- Valgimigli, L. (Ed.) Essential Oils as Natural Food Additives: Composition, Applications, Antioxidant and Antimicrobial Properties; Nova Science Publishing: New York, NY, USA, 2012; ISBN 978-1-62100-241-3. [Google Scholar]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Bedini, S.; Farina, P.; Conti, B. Repellence and Attractiveness: The Double Effect of Essential Oils on Insect Pests. 2020. Available online: www.researchgate.net/publication/343761132 (accessed on 18 December 2021).
- Zakaria, L. Diversity of Colletotrichum Species Associated with Anthracnose Disease in Tropical Fruit Crops—A Review. Agriculture 2021, 11, 297. [Google Scholar] [CrossRef]
- Batista, M.C.; Fonseca, M.C.M.; Teodoro, A.V.; Martins, E.F.; Pallini, A.; Venzon, M. Basil (Ocimum basilicum L.) attracts and benefits the green lacewing Ceraeochrysa cubana Hagen. Biol. Control 2017, 110, 98–106. [Google Scholar] [CrossRef]
- Dube, S.; Upadhyay, P.; Tripathi, S. Antifungal, physicochemical, and insect-repelling activity of the essential oil of Ocimum basilicum. Can. J. Bot. 1989, 67, 2085–2087. [Google Scholar] [CrossRef]
- Kéita, S.M.; Vincent, C.; Schmit, J.-P.; Arnason, J.T.; Bélanger, A. Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.)[Coleoptera: Bruchidae]. J. Stored Prod. Res. 2001, 37, 339–349. [Google Scholar] [CrossRef]
- Schader, C.; Zaller, J.G.; Köpke, U. Cotton-Basil Intercropping: Effects on Pests, Yields and Economical Parameters in an Organic Field in Fayoum, Egypt. Biol. Agric. Hortic. 2005, 23, 59–72. [Google Scholar] [CrossRef]
- Parolin, P.; Bresch, C.; Poncet, C.; Suay-Cortez, R.; van Oudenhove, L. Testing basil as banker plant in IPM greenhouse tomato crops. Int. J. Pest Manag. 2015, 61, 235–242. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Kumar Tewary, D.; Kumar, R.; Kumar, V.; Kumar Sinha, A.; Shanker, A. Larvicidal and structure–activity studies of natural phenylpropanoids and their semisynthetic derivatives against the tobacco armyworm Spodoptera litura (Fab.)(Lepidoptera: Noctuidae). Chem. Biodivers. 2010, 7, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Cho, I.K.; Li, Q.X. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J. Econ. Entomol. 2009, 102, 203–209. [Google Scholar] [CrossRef]
- Hashem, M.; Moharam, A.M.; Zaied, A.A.; Saleh, F.E.M. Efficacy of essential oils in the control of cumin root rot disease caused by Fusarium spp. Crop Prot. 2010, 29, 1111–1117. [Google Scholar] [CrossRef]
- Popović, Z.; Kostić, M.; Popović, S.; Skorić, S. Bioactivities of essential oils from basil and sage to Sitophilus oryzae L. Biotechnol. Biotechnol. Equip. 2006, 20, 36–40. [Google Scholar] [CrossRef]
- Kim, S.-I.; Lee, D.-W. Toxicity of basil and orange essential oils and their components against two coleopteran stored products insect pests. J. Asia-Pac. Entomol. 2014, 17, 13–17. [Google Scholar] [CrossRef]
- López, M.D.; Jordán, M.J.; Pascual-Villalobos, M.J. Toxic compounds in essential oils of coriander, caraway and basil active against stored rice pests. J. Stored Prod. Res. 2008, 44, 273–278. [Google Scholar] [CrossRef]
- Chaaban, S.B.; Hamdi, S.H.; Mahjoubi, K.; Jemâa, J.M.B. Composition and insecticidal activity of essential oil from Ruta graveolens, Mentha pulegium and Ocimum basilicum against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Plant Dis. Prot. 2019, 126, 237–246. [Google Scholar] [CrossRef]
- Mwangangi, B.M.; Mutisya, D.L. Performance of basil powder as insecticide against maize weevil, Sitopillus zeamais (Coleoptera: Curculionidae). Discourse J. Agric. Food Sci. 2013, 1, 196–201. [Google Scholar]
- D’Agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotto, A.; Roberts, D.D.; Roberts, R.G. Evaluation of plant essential oils as natural postharvest disease control of tomato (Lycopersicon esculentum). Acta Hortic. 2003, 628, 737–745. [Google Scholar] [CrossRef]
- Ogbo, E.M.; Oyibo, A. Effects of three plant extracts (Ocimum gratissimum, Acalypha wilkesiana and Acalypha macrostachya) on post harvest pathogen of Persea americana. J. Med. Plants Res. 2008, 2, 311–314. [Google Scholar]
- Carović-Stanko, K.; Fruk, G.; Satovic, Z.; Ivić, D.; Politeo, O.; Sever, Z.; Grdiša, M.; Strikić, F.; Jemrić, T. Effects of Ocimum spp. essential oil on Monilinia laxa in vitro. J. Essent. Oil Res. 2013, 25, 143–148. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, L.; Tanaka, F.; Tanaka, F. Preservation of strawberry fruit with an Aloe vera gel and basil (Ocimum basilicum) essential oil coating at ambient temperature. J. Food Processing Preserv. 2021, 45, e15836. [Google Scholar] [CrossRef]
- Torre, R.; Pereira, E.A.D.; Nascimento, R.V.; Guedes, T.F.; Faria, P.R.d.S.; Alves, M.d.S.; Souza, M.A.A.d. Agroecological approach to seed protection using basil essential oil. Ind. Crops Prod. 2021, 171, 113932. [Google Scholar] [CrossRef]
- Siriwardana, H.; Abeywickrama, K.; Kannangara, S.; Jayawardena, B.; Attanayake, S. Basil oil plus aluminium sulfate and modified atmosphere packaging controls Crown rot disease in Embul banana (Musa acuminata, AAB) during cold storage. Sci. Hortic. 2017, 217, 84–91. [Google Scholar] [CrossRef]
- Saifullah, M.; Shishir, M.R.I.; Ferdowsi, R.; Tanver Rahman, M.R.; van Vuong, Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol. 2019, 86, 230–251. [Google Scholar] [CrossRef]
- Han, X.; Chen, S. Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination 2009, 240, 21–26. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- De Souza Simões, L.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, Ó.L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef] [PubMed]
- Prost, C.; Poinot, P.; Rannou, C.; Arvisenet, G. 21—Bread aroma. In Breadmaking, 2nd ed.; Cauvain, S.P., Ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 523–561. [Google Scholar] [CrossRef]
- Garcia, L.; Tonon, R.; Hubinger, M. Effect of Homogenization Pressure and Oil Load on the Emulsion Properties and the Oil Retention of Microencapsulated Basil Essential Oil (Ocimum basilicum L.). Dry. Technol. 2012, 30, 1413. [Google Scholar] [CrossRef]
- Tripathi, A.D.; Sharma, R.; Agarwal, A.; Haleem, D.R. Nanoemulsions based edible coatings with potential food applications. Int. J. Biobased Plast. 2021, 3, 112–125. [Google Scholar] [CrossRef]
- Moretti, M.D.L.; Sanna-Passino, G.; Demontis, S.; Bazzoni, E. Essential oil formulations useful as a new tool for insect pest control. AAPS PharmSciTech 2002, 3, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovanović, J.; Krnjajić, S.; Ćirković, J.; Radojković, A.; Popović, T.; Branković, G.; Branković, Z. Effect of encapsulated lemongrass (Cymbopogon citratus L.) essential oil against potato tuber moth Phthorimaea operculella. Crop Prot. 2020, 132, 105109. [Google Scholar] [CrossRef]
- Lucia, A.; Girard, C.; Fanucce, M.; Coviella, C.; Rubio, R.G.; Ortega, F.; Guzmán, E. Development of an Environmentally Friendly Larvicidal Formulation Based on Essential Oil Compound Blend to Control Aedes aegypti Larvae: Correlations between Physicochemical Properties and Insecticidal Activity. ACS Sustain. Chem. Eng. 2020, 8, 10995–11006. [Google Scholar] [CrossRef]
- Hernández-Nava, R.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M.T. Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying. Food Hydrocoll. 2020, 109, 106077. [Google Scholar] [CrossRef]
- Muhoza, B.; Xia, S.; Wang, X.; Zhang, X.; Li, Y.; Zhang, S. Microencapsulation of essential oils by complex coacervation method: Preparation, thermal stability, release properties and applications. Crit. Rev. Food Sci. Nutr. 2020, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zhao, S.-Q.; Zhang, J.; Huang, G.-Y.; Chen, L.-Y.; Zhao, F.-Y. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem. 2014, 165, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Le, T.V.A.; Dang, N.N.; Nguyen, D.C.; Nguyen, P.T.N.; Tran, T.T.; Nguyen, Q.V.; Bach, L.G.; Thuy Nguyen Pham, D. Microencapsulation of Essential Oils by Spray-Drying and Influencing Factors. J. Food Qual. 2021, 2021, 5525879. [Google Scholar] [CrossRef]
- Veiga, R.D.S.D.; Aparecida da Silva-Buzanello, R.; Corso, M.P.; Canan, C. Essential oils microencapsulated obtained by spray drying: A review. J. Essent. Oil Res. 2019, 31, 457–473. [Google Scholar] [CrossRef]
- Marques, C.S.; Carvalho, S.G.; Bertoli, L.D.; Villanova, J.C.O.; Pinheiro, P.F.; dos Santos, D.C.M.; Yoshida, M.I.; de Freitas, J.C.C.; Cipriano, D.F.; Bernardes, P.C. β-Cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets. Food Res. Int. 2019, 119, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017, 65, 157–164. [Google Scholar] [CrossRef]
- Caceres, L.; Velasco, G.; Dagnino, E.; Chamorro, E. MICROENCAPSULATION of grapefruit oil with sodium alginate by gelation and ionic extrusion: Optimization and modeling of crosslinking and study of controlled release kinetics. Rev. Tecnol. Y Cienc. 2020, 41–61. [Google Scholar] [CrossRef]
- Wan, L.Q.; Jiang, J.; Arnold, D.E.; Guo, X.E.; Lu, H.H.; Mow, V.C. Calcium concentration effects on the mechanical and biochemical properties of chondrocyte-alginate constructs. Cell. Mol. Bioeng. 2008, 1, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Elaissari, A. Encapsulation of Essential Oils via Nanoprecipitation Process: Overview, Progress, Challenges and Prospects. Pharmaceutics 2020, 12, 431. [Google Scholar] [CrossRef]
- Rajkumar, V.; Gunasekaran, C.; Paul, C.A.; Dharmaraj, J. Development of encapsulated peppermint essential oil in chitosan nanoparticles: Characterization and biological efficacy against stored-grain pest control. Pestic. Biochem. Physiol. 2020, 170, 104679. [Google Scholar] [CrossRef]
- Bhandari, B.R.; D’Arc, B.R.; Padukka, I. Encapsulation of Lemon Oil by Paste Method Using β-Cyclodextrin: Encapsulation Efficiency and Profile of Oil Volatiles. J. Agric. Food Chem. 1999, 47, 5194–5197. [Google Scholar] [CrossRef]
- Chenni, M.; El Abed, D.; Neggaz, S.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Solvent free microwave extraction followed by encapsulation of O. basilicum L. essential oil for insecticide purpose. J. Stored Prod. Res. 2020, 86, 101575. [Google Scholar] [CrossRef]
- Beyki, M.; Zhaveh, S.; Khalili, S.T.; Rahmani-Cherati, T.; Abollahi, A.; Bayat, M.; Tabatabaei, M.; Mohsenifar, A. Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2014, 54, 310–319. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Hosseini, H.; Mohammadifar, M.A.; Mortazavian, A.M.; Mohammadi, A.; Khosravi-Darani, K.; Shojaee-Aliabadi, S.; Dehghan, S.; Khaksar, R. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int. J. Biol. Macromol. 2013, 62, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Chattopadhyay, P.; Ghosh, A.; Goyary, D.; Karmakar, S.; Veer, V. Influence of process variables on essential oil microcapsule properties by carbohydrate polymer–protein blends. Carbohydr. Polym. 2013, 93, 691–697. [Google Scholar] [CrossRef]
- Benavides, S.; Cortés, P.; Parada, J.; Franco, W. Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem. 2016, 204, 77–83. [Google Scholar] [CrossRef]
Scientific Name | Common Name | Overall Characteristic | Leaf | Fluorescence | Seed Characteristics | Location | References | ||
---|---|---|---|---|---|---|---|---|---|
General Characteristic | Leaf Colour | General Characteristic | Flower Colour | ||||||
O. americanum L. | bon tulsi | annual, herb, 20–60 cm tall | leaf elliptic-lanceolate, leaf surface glabrous except hairy midrib, veinlets, and margin | grey green | inflorescence greenish, calyx green with sometimes purplish stripe, long hairy | white | seed black, narrowly ellipsoid, mucilaginous | India | [25] |
O. × africanum Lour. or O. citriodorum | lebu tulsi, lemon basil | annual, herb, 45–105 cm tall | leaf size ~3.5 × 1 cm, leaf elliptic—broadly obovate, glabrous except hairy midrib, veinlets, and margin | n/d | inflorescence greenish, calyx green, long hairy | white | seed brownish-black, ellipsoid, mucilaginous | India, Thailand | [6,25] |
O. basilicum var. thyrsiflorum | Thai basil, marua tulsi | annual, herb, 45–100 cm tall | leaf size ~5.5 × 2 cm, leaf ovate-lanceolate to oblong-lanceolate, glabrous except hairy midrib, veinlets, and margin | n/d | inflorescence greenish, calyx green, long hairy | pinkish white | seed brownish-black, ellipsoid, mucilaginous | Thailand, India | [6,25] |
O. gratissimum var. macrophyllum | tree basil, clove basil, African basil, ram tulsi | perennial, undershrub, or shrub, 140–200 cm tall | leaf size ~9 × 5 cm, leaf lanceolate, ovate or ovate-lanceolate, glabrous except hairy midrib | n/d | inflorescence greenish-purple, calyx greenish-purple, hairy | purple, yellowish-white | seed brown, sub-globose, non-mucilaginous | Thailand, India | [6,25,37,38] |
O. kilimandscharicum Guerke | karpur tulsi | perennial, herb, 60–120 cm tall | leaf ovate-oblong, leaf surface pubescent with white hairs on both sides, much denser and longer on veins beneath | n/d | inflorescence, greenish-greyish, calyx greenish-greyish, densely hairy | white | seed black, narrowly ellipsoid, mucilaginous | India | [25] |
O. sanctum or O. tenuiflorum var. Shyama | red holy basil, krishna tulsi | annual to biannual, branched sub-shrub 30–150 cm tall | simple opposite leaves, leaf size ~4 × 1.5 cm, ovate-obovate, elliptic-oblong, surface patently hairy to clothed with soft spreading hair, purple leaf | purple | inflorescence purple, calyx purple, patently hairy to densely pubescent | purplish | seed brown, globose, non-mucilaginous | Thailand, India | [6,25,39] |
O. sanctum or O. tenuiflorum var. Rama | white holy basil, radha tulsi | annual to biannual, branched sub-shrub 30–160 cm tall | simple opposite leaves, leaf size ~4 × 1.5 cm, leaf ovate-obovate, elliptic-oblong, surface patently hairy to clothed with soft spreading hair, green leaf | green | inflorescence green-greenish-purple, calyx green, patently hairy to densely pubescent | purplish | seed brown, globose, non-mucilaginous | Thailand, India | [6,25,39] |
O. suave or O. gratissimum var. suave | holy basil, wild basil | 92.75 cm tall, 84.42 cm width | leaf blade ovate-oblong to oblong ~5–12 × 1.5–6 cm, gradually reduced toward apex, slightly scabrid | grey green | inflorescence with persistent bracts, calyces flattened dorsoventrally tinged with brown, corolla small white | white | brownish, black-globose, subglobose, non-mucilaginous | India | [38,40,41,42] |
O. viride | African basil, nunum | 158.58 cm. tall, 114.71 cm width | leaf size ~4.73 × 9.46 cm | n/d | less conspicuous, autogamous, fruiting calyx large amount of terpene | brownish green | brownish, black-globose, subglobose, non-mucilaginous when wetted | India | [38,40,43,44] |
No. | Volatile Organic COMPOUNDS | Odour Type | Odour Description | Chemical Class | Ocimum Species 7,8 |
---|---|---|---|---|---|
1 | 3-hexen-1-ol | green 1 | fresh, green, cut grass, foliage, vegetable, herbal, oily 1 | alcohol | TrB |
2 | 1-octen-3-ol | earthy 1 | mushroom, earthy, green, oily, fungal, raw, chicken 1 | alcohol | LB, TrB |
3 | 3-octanol | earthy 1 | earthy, mushroom, herbal, melon, citrus, woody, spicy, minty 1 | alcohol | Trb |
4 | linalool | floral 1 | citrus, floral, sweet, woody, green, blueberry 1 | alcohol | LB, RB, TB, TrB, WB |
5 | borneol | balsamic 1 | pine, woody, camphor 1 | alcohol | RB, WB |
6 | terpinen-4-ol | spicy 1 | peppery, woody, earthy, musty, sweet 1 | alcohol | LB, TB |
7 | l-borneol | balsamic 1 | pine, woody, camphoreous, peppery 1 | alcohol | RB, WB |
8 | p-mentha-1,5-dien-8-ol | n/d | n/d | alcohol | TrB |
9 | fenchol | camphoreous 1 | camphoreous, pine, woody, dry, rooty, sweet, lemon 1 | alcohol | LB, TB, WB |
10 | (e,e)-2,6-dimethyl-3,5,7-octatrien-2-ol | n/d | n/d | alcohol | TrB |
11 | nerol | floral 1 | sweet, natural, neroli, citrus, magnolia 1 | alcohol | LB |
12 | geraniol | floral 1 | sweet, floral, fruity, rose, waxy, citrus 1 | alcohol | LB |
13 | elemol | spicy 1 | spicy, citrus, woody, resinous 1 | alcohol | RB, WB |
14 | spathulenol | earthy 1 | earthy, herbal, fruity 1 | alcohol | TB, TrB |
15 | (z)-4-decen-1-ol | waxy 1 | waxy, fatty, fruity 1 | alcohol | RB |
16 | lanceol | n/d | n/d | alcohol | TrB |
17 | cubenol | spicy 1 | spicy, herbal, green tea 1 | alcohol | TB |
18 | τ-cadinol | balsamic 1 | balsamic, earthy 1 | alcohol | LB, TB, WB |
19 | β-eudesmol | woody 1 | woody, green 1 | alcohol | LB |
20 | α-cadinol | herbal 1 | herbal, woody 1 | alcohol | TrB |
21 | juniper camphor | n/d | n/d | alcohol | RB, WB |
22 | α-bisabolol | floral 1 | floral, peppery, balsamic, clean 1 | alcohol | LB |
23 | (e)-hex-2-enal | green 1 | green, banana, aldehydic, fatty, cheesy 1 | aldehyde | TrB |
24 | trans-chrysanthemal | n/d | n/d | aldehyde | TB |
25 | neral | citrus 1 | sweet, citrus, lemon, lemon peel 1 | aldehyde | LB |
26 | geranial | n/d | pleasant citrus 6 | aldehyde | LB |
27 | citral | citrus 1 | sharp lemon, sweet 1 | aldehyde | LB |
28 | estragole | anisic 1 | sweet, sassafras, anise, spicy, green, herbal, fennel 1 | benzene derivative, ether | LB, RB, TB, WB |
29 | methyl eugenol | spicy 1 | sweet fresh, warm spicy, clove, carnation, cinnamon 1 | benzene derivative, ether | LB, RB, TB, TrB, WB |
30 | eugenol | spicy 1 | sweet, spicy, clove, woody 1 | benzene derivative, ether, alcohol | LB, RB, TrB, WB |
31 | 1-bromo-8-heptadecyne | n/d | n/d | bromoalkene | LB |
32 | methyl 2-methylbutanoate | fruity 1 | etherial, iifting, fruity, tutti-frutti and ripe with a fatty, green nuance 1 | ester | TrB |
33 | bornyl acetate | balsamic 1 | woody, pine, herbal, cedar, spicy 1 | ester | LB |
34 | 1,8-cineole | herbal 1 | eucalyptus, herbal, camphoreous, medicinal 1 | ether | LB, TB |
35 | trans-epoxyocimene | n/d | n/d | ether | TrB |
36 | nerol oxide | green 1 | green, weedy, cortex, herbal, narcissus, celery 1 | ether | LB |
37 | caryophyllene oxide | spicy 1 | sweet, fresh, dry, woody, spicy 1 | ether | LB, RB, TrB, WB |
38 | humulene epoxide ii | n/d | n/d | ether | LB, TB |
39 | ledene oxide-(ii) | n/d | n/d | ether | TrB |
40 | 6-methyl-5-hepten-2-one | citrus 1 | citrus, green, musty, lemongrass, apple 1 | ketone | LB, TrB |
41 | fenchone | n/d | eucalyptus-like, mouldy 2 | ketone | LB |
42 | camphor | camphoreous 1 | camphoraceous 3 | ketone | LB, TB, WB |
43 | 6-methyl-hepta-3,5-dien-2-one | spicy 1 | cinnamon, coconut, spicy, woody, sweet, weedy 1 | ketone | TrB |
44 | salvial-4(14)-en-1-one | n/d | n/d | ketone | TrB |
45 | α-pinene | herbal 1 | fresh, camphoreous, sweet, pine, earthy, woody 1 | monoterpene | WB |
46 | β-pinene | herbal 1 | dry, woody, resinous, pine, hay, green, eucalyptus, camphoreous 1 | monoterpene | LB, TB, WB |
47 | camphene | woody 1 | woody, herbal, fir, needle 1 | monoterpene | WB |
48 | myrcene | spicy 1 | peppery, terpenic, spicy, balsamic, plastic 1 | monoterpene | TB, TrB |
49 | α-ocimene | fruity 1 | fruity, floral, cloth, laundered cloth 1 | monoterpene | TB, TrB |
50 | l-limonene | terpenic 1 | terpenic, pine, herbal, peppery 1 | monoterpene | TB |
51 | γ-terpinene | terpenic 1 | oily, woody, terpenic, lemon/lime, tropical herbal 1 | monoterpene | LB, TB |
52 | β-ocimene | floral 1 | citrus, tropical green, terpenic, woody, green 1 | monoterpene | LB, TrB |
53 | 3-carene | citrus 1 | citrus, terpenic, herbal, pine, solvent, resinous, phenolic, cypress, medicinal, woody 1 | monoterpene | RB, TB, TrB |
54 | (e)-3,7-dimethylocta-1,3,6-triene | herbal 1 | sweet, herbal 1 | monoterpene | TB |
55 | (3e,5e)-2,6-dimethyl-1,3,5,7-octatetraene | n/d | n/d | monoterpene | TrB |
56 | 3-methyl-1,4-heptadiene | n/d | n/d | monoterpene | TB |
57 | 2,6-dimethyl-2,4,6-octatriene | floral 1 | sweet, floral, nut, skin, peppery, herbal, tropical 1 | monoterpene | TrB |
58 | (r)-α-pinene | n/d | n/d | monoterpene | TB |
59 | (+) -(−)-3-carene | citrus 1 | sweet, turpentine-like 1 | monoterpene | TB |
60 | α-copaene | woody 1 | woody, spicy, honey 1 | sesquiterpene | LB, RB, TB, WB |
61 | β-bourbonene | herbal 1 | herbal, woody, floral balsamic 1 | sesquiterpene | TrB |
62 | β-cubebene | citrus 1 | citrus, fruity, radish 1 | sesquiterpene | RB, TrB |
63 | β-elemene | herbal 1 | herbal, waxy, fresh 1 | sesquiterpene | LB, RB, TB, WB |
64 | caryophyllene | spicy 1 | sweet, woody, spicy, clove, dry 1 | sesquiterpene | LB, RB, TrB, WB |
65 | α-bergamotene | woody 1 | woody, warm, tea 1 | sesquiterpene | LB, TB, TrB |
66 | (z,e)-α-farnesene | n/d | n/d | sesquiterpene | TrB |
67 | rotundene | n/d | n/d | sesquiterpene | RB |
68 | α-guaiene | woody 1 | sweet, woody, balsamic, peppery 1 | sesquiterpene | LB |
69 | β-sesquiphellandrene | herbal 1 | herbal, fruity, woody 1 | sesquiterpene | TrB |
70 | trans-α-bergamotene | woody 1 | woody, warm, tea 1 | sesquiterpene | LB, TB, TrB, WB |
71 | α-humulene | woody 1 | woody 1 | sesquiterpene | LB, RB, TrB, WB |
72 | bicyclo sesquiphellandrene | n/d | n/d | sesquiterpene | LB, TB, TrB |
73 | germacrene | n/d | spicy, woody 5 | sesquiterpene | LB, RB, TB, TrB, WB |
74 | trans-β-farnesene | floral 1 | floral, grass 4 | sesquiterpene | LB, TrB |
75 | γ-muurolene | woody 1 | herbal, woody, spicy 1 | sesquiterpene | TrB |
76 | β-selinene | herbal 1 | herbal 1 | sesquiterpene | LB, RB, WB |
77 | α-cubebene | herbal 1 | herbal, waxy 1 | sesquiterpene | RB, WB |
78 | α-selinene | herbal 1 | amber 1 | sesquiterpene | LB, RB, WB |
79 | bicyclogermacrene | greem 1 | green, woody, weedy 1 | sesquiterpene | LB, TB, TrB |
80 | α-bulnesene | n/d | n/d | sesquiterpene | TB, WB |
81 | β-gurjunene | n/d | n/d | sesquiterpene | RB |
82 | trans-α-bisabolene | n/d | n/d | sesquiterpene | LB, TrB |
83 | β-copaene | n/d | n/d | sesquiterpene | LB, TB, WB |
84 | δ-cadinene | herbal 1 | thyme, herbal, woody, dry 1 | sesquiterpene | LB, RB, TrB, WB |
85 | α-farnesene | woody 1 | citrus, herbal, lavender, bergamot, myrrh, neroli, green 1 | sesquiterpene | TrB |
86 | α-amorphene | n/d | n/d | sesquiterpene | ThB |
87 | α-amorphene | n/d | n/d | sesquiterpene | LB, WB |
88 | (z)-α-bisabolene | n/d | n/d | sesquiterpene | TB |
89 | eremophilene | n/d | n/d | sesquiterpene | RB |
90 | 1,3-diisopropyl-1,3-cyclopentadiene | n/d | n/d | sesquiterpene | TrB |
91 | α-muurolene | woody 1 | woody 1 | sesquiterpene | RB |
92 | β-bisabolene | balsamic 1 | balsamic, woody 1 | sesquiterpene | LB |
Pests | Ocimum Species (Volatile Active Compounds) | Forms of Biological Activity | References |
---|---|---|---|
Bactrocera dorsalis (tropical fruit pest) | O. sanctum (methyl eugenol) | male fly attractant | [66] |
Bactrocera dorsalis (tropical fruit pest) | O. basilicum (trans-anethole, estragole and linalool) | insecticide (100% mortality at 2 h after applying 10% oil) | [89] |
Ceratitis capitata (fruit pest) | O. basilicum (trans-anethole, estragole and linalool) | insecticide (95% mortality at 2 h after applying 2.5% oil) | [89] |
Bactrocera cucurbitae (tropical fruit pest) | O. basilicum (trans-anethole, estragole and linalool) | insecticide (100% mortality at 2 h after applying 7.5% oil) | [89] |
Callosobruchus maculatus (cowpeas, green gram, and lentils pests) | O. basilicum and O. gratissimum | reducing egg hatch rate and the emergence of adults | [85] |
Allacophora foveicollis (pumpkin pest) | O. basilicum | repellent | [84] |
Botrytis fabae (cause of faba bean’s chocolate spot disease) | O. basilicum (methyl chavicol, linalol, eugenol, and eucalyptol) | antifungal agent and fungicide | [10] |
Uromyces fabae (cause of faba-bean rust) | O. basilicum (methyl chavicol, linalol, eugenol, and eucalyptol) | antifungal agent and fungicide | [10] |
Fusarium spp. (cause of cumin root rot disease) | O. basilicum var. basilicum and var. minimum) | antifungal agent (antagonistic effect and reduction in mean disease rating of root rot in the in vivo test) | [90] |
Pests | Ocimum Species (Volatile Active Compound) | Forms of Biological Activity | References |
---|---|---|---|
Sitophilus oryzae (stored rice pest) | O. basilicum (methyl eugenol, estragole, linalool) | insecticide (30%–77% mortality at 24 h after fumigation of O. basilicum essential oil) | [93] |
Rhyzopertha dominica (stored rice pest) | O. basilicum (methyl eugenol, estragole, linalool) | insecticide (37%–80% mortality at 24 h after fumigation of O. basilicum essential oil) | [93] |
Cryptolestes pusillus (stored rice pest) | O. basillicum (methyl eugenol, estragole, linalool) | insecticide (90%–100% mortality at 24 h after fumigation of O. basilicum essential oil) | [93] |
Ectomyelois ceratoniae (major insect pest of dates both in field and in storage) | O. basilicum (linalool, methyl cinnamate, and eugenol) | insecticide (LC50 = 1.23 μL/L air after fumigation of O. basilicum essential oil) | [94] |
Ephestia kuehniella (major insect pest of dates both in field and in storage) | O. basilicum (linalool, methyl cinnamate, and eugenol) | insecticide (LC50 = 0.96 μL/L air after fumigation of O. basilicum essential oil) | [94] |
Sitophilus zeamais (stored-grain pest) | O basilicum (linalool, estragole, α-humulene) | insecticide (LC50 = 0.014 mg/cm3 air at 24 h after fumigation of O. basilicum essential oil) | [92] |
Tribolium castaneum (stored-grain pest) | O. basilicum (linalool, estragole, α-humulene) | insecticide (LC50 = 0.02 mg/cm3 air at 24 h after fumigation of O. basilicum essential oil) | [92] |
Sitophilus oryzae (stored-grain pest) | O. basilicum | insecticide (30.7% mortality at 48 h after fumigation of O. basilicum essential oil) and repellent | [91] |
Sitophilus orzyae (stored-grain pest) | O. tenuiflorum (eugenol and caryophyllene) | insecticide (LC50 = 963.3 μL/L air at 6 hours after essential oil exposure; inhibiting acetylcholinester) | [16] |
Acanthoscelides obtectus (pest of beans) | O. basilicum | insecticide (74.94% mortality at 120 µL on day 15 after the oil application) | [17] |
Aspergillus flavus (produce aflatoxins toxic) | O. basilicum (linalool, 1,8-cineol, eugenol) | antifungal agent (100% growth inhibition at 1000 µL/L essential oil) | [10] |
Colletotrichum acutatum (anthracnose disease) | Ocimum sp. (methyl chavicol and linalool) | antifungal agent (MIC = 4 µL/mL) | [13] |
Monilinia laxa (brown rot and grey mould rot of stone fruits) | O. basilicum (linalool, eugenol, estragole) | antifungal agent (control the growth of fungus on inoculated fruits) | [14] |
Botrytis cinerea (brown rot and grey mould rot of stone fruits) | O. basilicum (linalool, eugenol, estragole) | antifungal agent (control the growth of fungus on inoculated fruits) | [14] |
Penicillium italicum (rotting of citrus fruits) | O. canum | antifungal agent (enhance the shelf life of fungus inoculated oranges) | [15] |
Cercospora purpurea (post-harvest pathogen of avocado) | O. gratissimum | antifungal agent (100% growth inhibited using ethanolic extract) | [98] |
Aspergillus flavus (produce mycotoxins, aflatoxins toxic) | O. basilicum | antifungal agent (inhibits the production of aflatoxin B1) | [12] |
Monilinia laxa (brown rot diseases of peach and nectarine) | O. basilicum var. purpurascens (estragole) | antifungal agent (inhibit the mycelium growth) | [99] |
Monilinia laxa (brown rot diseases of peach and nectarine) | O. tenuiflorum (β-bisabolene and 1,8-cineole) | antifungal agent (inhibit the mycelium growth) | [99] |
Aspergillus niger (associated with post-harvest rot of avocado pear) | O. gratissimum | antifungal agent (23.70% growth inhibition at 100% essential oil) | [11] |
Aspergillus flavus (associated with post-harvest rot of avocado pear) | O. gratissimum | antifungal agent (51.93% growth inhibition at 100% essential oil) | [11] |
Galactomyces candidum (associated with post-harvest rot of avocado pear) | O. gratissimum | antifungal agent (44.37% growth inhibition at 100% essential oil) | [11] |
Trichoderma viride (associated with post-harvest rot of avocado pear) | O. gratissimum | antifungal agent (51.00% growth inhibition at 100% essential oil) | [11] |
Lasiodiplodia pseudotheobromae (associated with post-harvest rot of avocado pear) | O. gratissimum | antifungal agent (66.74% growth inhibition at 100% essential oil) | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangpao, T.; Charoimek, N.; Teerakitchotikan, P.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Phimolsiripol, Y.; Chaiyaso, T.; Ruksiriwanich, W.; et al. Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. Horticulturae 2022, 8, 144. https://doi.org/10.3390/horticulturae8020144
Tangpao T, Charoimek N, Teerakitchotikan P, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Seesuriyachan P, Phimolsiripol Y, Chaiyaso T, Ruksiriwanich W, et al. Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. Horticulturae. 2022; 8(2):144. https://doi.org/10.3390/horticulturae8020144
Chicago/Turabian StyleTangpao, Tibet, Nutthawut Charoimek, Patipon Teerakitchotikan, Noppol Leksawasdi, Kittisak Jantanasakulwong, Pornchai Rachtanapun, Phisit Seesuriyachan, Yuthana Phimolsiripol, Thanongsak Chaiyaso, Warintorn Ruksiriwanich, and et al. 2022. "Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions" Horticulturae 8, no. 2: 144. https://doi.org/10.3390/horticulturae8020144
APA StyleTangpao, T., Charoimek, N., Teerakitchotikan, P., Leksawasdi, N., Jantanasakulwong, K., Rachtanapun, P., Seesuriyachan, P., Phimolsiripol, Y., Chaiyaso, T., Ruksiriwanich, W., Jantrawut, P., Van Doan, H., Cheewangkoon, R., & Sommano, S. R. (2022). Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. Horticulturae, 8(2), 144. https://doi.org/10.3390/horticulturae8020144