Effect of Harvesting Time Variations on Essential Oil Yield and Composition of Sage (Salvia officinalis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study and Plant Material
2.2. Essential Oil Extraction
2.3. Identification of Essential Oil Compositions
2.4. GC and GC/MS
2.5. Statistical Design and Analysis
3. Results and Discussions
3.1. Essential Oil Content
3.2. Constituents of the EO
3.3. Correlation Analysis
3.4. Cluster Analysis and Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bisset, N.; Wichtl, M. Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis with Reference to German Commission E Monographs, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 440–443. [Google Scholar]
- Miura, K.; Kikuzaki, H.; Nakatani, N. Apianane terpenoids from Salvia officinalis. Phytochemistry 2001, 58, 1171–1175. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Ozcelik, B.; Altın, G.; Daşkaya-Dikmen, C.; Martorell, M.; Ramírez-Alarcón, K.; Alarcón-Zapata, P.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Leal, A.L.A.B.; et al. Salvia spp. plants-from farm to food applications and phytopharmacotherapy. Trends Food Sci. Technol. 2018, 80, 242–263. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 2000, 55, 263–267. [Google Scholar] [CrossRef]
- Veličković, D.T.; Randjelović, N.V.; Ristić, M.S.; Veličković, A.S.; Šmelcerović, A.A. Chemical constituents and antimicrobial activity of the ethanol extracts obtained from the flower, leaf and stem of Salvia officinalis L. J. Serbian Chem. Soc. 2003, 68, 17–24. [Google Scholar] [CrossRef]
- Capek, P.; Hříbalová, V. Water-soluble polysaccharides from Salvia officinalis L. possessing immunomodulatory activity. Phytochemistry 2004, 65, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Laborda, R.; Manzano, I.; Gamón, M.; Gavidia, I.; Pérez-Bermúdez, P.; Boluda, R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 2013, 48, 106–110. [Google Scholar] [CrossRef]
- Delamare, A.P.L.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Perry, N.B.; Anderson, R.E.; Brennan, N.J.; Douglas, M.H.; Heaney, A.J.; McGimpsey, J.A.; Smallfield, B.M. Essential oils from Dalmatian sage (Salvia officinalis L.): Variations among individuals, plant parts, seasons, and sites. J. Agric. Food Chem. 1999, 47, 2048–2054. [Google Scholar] [CrossRef]
- Rguez, S.; Msaada, K.; Daami-Remadi, M.; Chayeb, I.; Rebey, I.B.; Hammami, M.; Laarif, A.; Hamrouni-Sellami, I. Chemical composition and biological activities of essential oils of Salvia officinalis aerial parts as affected by diurnal variations. Plant Biosyst. 2019, 153, 264–272. [Google Scholar] [CrossRef]
- Kulak, M.; Gul, F.; Sekeroglu, N. Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Ind. Crops Prod. 2020, 145. [Google Scholar] [CrossRef]
- Topçu, G. Bioactive triterpenoids from Salvia species. J. Nat. Prod. 2006, 69, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Pace, S.; Haskell, C.; Okello, E.J.; Milne, A.; Scholey, A.B. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology 2006, 31, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Eidi, A.; Eidi, M. Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats. Diabetes Metab. Syndr. Clin. Res. Rev. 2009, 3, 40–44. [Google Scholar] [CrossRef]
- Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-Bdour, T.H.; Salgueiro, L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Cytotoxic activity of essential oils from Labiatae and Lauraceae families against in vitro human tumor models. Anticancer Res. 2007, 27, 3293–3299. [Google Scholar]
- Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T. Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res. 2011, 31, 185–191. [Google Scholar]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef]
- Şulea, D.; Albu, M.G.; Leca, M.; Mihalache, M.; Popa, L.; Ghica, M.V. Collagen-Thuja tincture biomaterials for wound treatment. 4. Porous matrices containing Thuja tincture and chlorhexidine digluconate. Rev. Roum. Chim. 2012, 57, 569–575. [Google Scholar]
- Şulea, D.; Micutz, M.; Albu, M.G.; Staicu, T.; Leca, M.; Popa, L.; Ghica, M.V. Collagen-Thuja tincture biomaterials for wound treatment. 3. Hydrogels containing thuja tincture and chlorhexidine digluconate. Rev. Roum. Chim. 2011, 56, 811–817. [Google Scholar]
- Albu, M.G.; Ferdes, M.; Kaya, D.A.; Ghica, M.V.; Titorencu, I.; Popa, L.; Albu, L. Collagen wound dressings with anti-inflammatory activity. Mol. Cryst. Liq. Cryst. 2012, 555, 271–279. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Houshfar, G.; Mahmoudi, Z.; Asghari, M. Diurnal variation of essential of the oil components of pycnocycla spinosa decne. ex boiss. Jundishapur J. Nat. Pharm. Prod. 2014, 9, 35–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baricevic, T.; Bartol, T. The biological/pharmacological activity of the Salvia genus. Sage the Genus Salvia. Harwood Acad. Publ. Amst. 2000, 11, 143–184. [Google Scholar]
- Šalamon, I. Effect of the internal and external factors on yield and qualitative quantitative characteristics of chamomile essential oil. Acta Hortic. 2006, 749, 45–65. [Google Scholar] [CrossRef]
- Salehi, A.; Hazrati, S. How essential oil content and composition fluctuate in German Chamomile flowers during the day? J. Essent. Oil-Bearing Plants 2017, 20, 622–631. [Google Scholar] [CrossRef]
- Çirak, C.; Saǧlam, B.; Ayan, A.K.; Kevseroǧlu, K. Morphogenetic and diurnal variation of hypericin in some Hypericum species from Turkey during the course of ontogenesis. Biochem. Syst. Ecol. 2006, 34, 1–13. [Google Scholar] [CrossRef]
- Kevseroğlu, K.; Çirak, C.; Özyazici, G. A study on ontogenetic and diurnal variability of Laurel (Laurus nobilis L.) Leaves. Turkish J. F. Crop. 2003, 8, 29–32. [Google Scholar] [CrossRef]
- Figueiredo, A.; Barroso, J.; Pedro, L.; Salgueiro, L.; Miguel, M.; Faleiro, M. Portuguese thymbra and Thymus Species volatiles: Chemical composition and biological activities. Curr. Pharm. Des. 2008, 14, 3120–3140. [Google Scholar] [CrossRef]
- Bufalo, J.; Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Ciampa, L.; Jeliazkova, E. Diurnal effects on spearmint oil yields and composition. Sci. Hortic. (Amst.) 2015, 182, 73–76. [Google Scholar] [CrossRef]
- Ramezani, S.; Rahmanian, M.; Jahanbin, R.; Mohajeri, F.; Reza Rezaei, M.; Solaimani, B. Diurnal Changes in essential oil content of Coriander (Coriandrum sativum L.) aerial parts from Iran. Res. J. Biol. Sci. 2009, 4, 277–281. [Google Scholar]
- Silva, M.G.d.V.; Craveiro, A.A.; Matos, F.J.A.; MacHado, M.I.L.; Alencar, J.W. Chemical variation during daytime of constituents of the essential oil of Ocimum gratissimum leaves. Fitoterapia 1999, 70, 32–34. [Google Scholar] [CrossRef]
- Rao, B.R.; Bhattacharya, A.; Kaul, P.; Ramesh, S. Yield and chemical composition of rose-scented Geranium (Pelargonium species) oil at different times of harvesting. J. Essent. Oil Res. 2001, 13, 456–459. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Lazari, D.M.; Vlachonasios, K.E. The effects of habitat type and diurnal harvest on essential oil yield and composition of Lavandula angustifolia Mill. Fresenius Environ. Bull. 2010, 19, 1491–1498. [Google Scholar]
- Genova, E. Changes in the essential oil content of some Bulgarian Satureja specie. Fitologiya 1980, 14. [Google Scholar]
- Binello, A.; Orio, L.; Pignata, G.; Nicola, S.; Chemat, F.; Cravotto, G. Effect of microwaves on the in situ hydrodistillation of four different Lamiaceae. Comptes Rendus Chim. 2014, 17, 181–186. [Google Scholar] [CrossRef]
- Kapoor, R.; Giri, B.; Mukerji, K.G. Improved growth and essential oil yield and quality in Foeniculum vulgare Mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour. Technol. 2004, 93, 307–311. [Google Scholar] [CrossRef]
- Paulus, D.; Valmorbida, R.; Ramos, C.E.P. Productivity and chemical composition of the essential oil of Ocimum x citriodorum Vis. according to ontogenetic and diurnal variation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 59–65. [Google Scholar] [CrossRef]
- Melo, F.H.C.; Moura, B.A.; de Sousa, D.P.; de Vasconcelos, S.M.M.; Macedo, D.S.; Fonteles, M.M.d.F.; Viana, G.S.d.B.; de Sousa, F.C.F. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: Involvement of dopaminergic system. Fundam. Clin. Pharmacol. 2011, 25, 362–367. [Google Scholar] [CrossRef]
- Morais, L.A.S.M. Influence of abiotic factors on the chemical composition of the essential oils. Braz. Hortic. 2009, 27, 4050–4063. [Google Scholar]
- Zhang, M.; Anderson, S.L.; Brym, Z.T.; Pearson, B.J. Photoperiodic flowering response of essential oil, grain, and fiber Hemp (Cannabis sativa L.) Cultivars. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Farooqi, A.H.A.; Sangwan, N.S.; Sangwan, R.S. Effect of different photoperiodic regimes-on growth, flowering and essential oil in Mentha species. Plant Growth Regul. 1999, 29, 181–187. [Google Scholar] [CrossRef]
- Fatthi Siahkamari, S.; Ghojehbegloo, A.; Salehi Sardoei, H.; Khairullah, A. Evaluation of the effects of drought stress and salicylic acid on some growth traits, photosynthetic pigments and yield of peppermint essential oil (Mentha piperita L.). New Agric. Find. 2017, 11, 125–137. [Google Scholar]
- Yalcin, H.; Kavuncuoğlu, H.; Tulukcu, E.; Eroğlu, Z. The effect of harvest time on the bioactive properties and volatile components of Lavender (Lavandula officinalis). Qual. Assur. Saf. Crop. Foods 2017, 9, 275–283. [Google Scholar] [CrossRef]
- De Oliveira, A.R.M.F.; Jezler, C.N.; Oliveira, R.A.; Costa, L.C.d.B. Influence of plant age on production and quality of essential oil of peppermint. Rev. Ceres 2012, 59, 241–245. [Google Scholar] [CrossRef]
- Tounekti, T.; Khemira, H. NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage. J. Intercult. Ethnopharmacol. 2015, 4, 208. [Google Scholar] [CrossRef] [PubMed]
- Toncer, O.; Karaman, S.; Diraz, E. An annual variation in essential oil composition of Origanum syriacum from Southeast Anatolia of Turkey. J. Med. Plants Res. 2010, 4, 1059–1064. [Google Scholar] [CrossRef]
- Tibaldi, G.; Fontana, E.; Nicola, S. Cultivation practices do not change the Salvia sclarea L. essential oil but drying process does. J. Food Agric. Environ. 2010, 8, 790–794. [Google Scholar]
- Farmanpour-Kalalagh, K.; Mohebodini, M.; Sabaghnia, N. Comparison and correlation of the compositions in volatile constituents from different parts of summer Savory (Satureja hortensis L.). Int. J. Hortic. Sci. Technol. 2020, 7, 295–304. [Google Scholar] [CrossRef]
- Hazrati, S.; Mollaei, S.; Angourani, H.R.; Hosseini, S.J.; Sedaghat, M.; Nicola, S. How do essential oil composition and phenolic acid profile of Heracleum persicum fluctuate at different phenological stages? Food Sci. Nutr. 2020, 8, 6192–6206. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Maggi, F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J. Clean. Prod. 2018, 198, 91–95. [Google Scholar] [CrossRef]
- Dardioti, A.; Karousou, R.; Lanaras, T.; Kokkini, S. Diversity of Satureja pilosa subsp. origanita essential oils: A new “oregano” from East Mediterranean. Biochem. Syst. Ecol. 2012, 40, 178–183. [Google Scholar] [CrossRef]
- Hosseini, S.J.; Tahmasebi-Sarvestani, Z.; Pirdashti, H.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A.; Hazrati, S.; Nicola, S. Investigation of yield, phytochemical composition, and photosynthetic pigments in different mint ecotypes under salinity stress. Food Sci. Nutr. 2021, 9, 2620–2643. [Google Scholar] [CrossRef] [PubMed]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
Soil Texture | Electrical Conductivity (dS. m−1) | Soil Acidity | Organic Matter | Total N | Available P | Available K | Available Zn | Available Cu | Available P Fe | Available P Mn |
---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | |||||||||
sandy loam | 5.55 | 7.97 | 1.15 | 0.11 | 28.5 | 820 | 0.52 | 0.54 | 1.2 | 3 |
Part A: from 6 a.m. to 6 p.m. | |||||||||
No | RI | Adams (RI) | Compounds | 6:00–8:00 a.m. | 8:00–10:00 a.m. | 10:00–12:00 a.m. | 12:00–2:00 p.m. | 2:00–4:00 p.m. | 4:00–6:00 p.m. |
1 | 928 | 932 | α-Pinene | 3.70 ± 0.08 cd | 3.94 ± 0.09 b | 3.66 ± 0.03 cd | 3.54 ± 0.04 d | 4.16 ± 0.03 ab | 3.09 ± 0.05 e |
2 | 943 | 946 | Camphene | 3.11 ± 0.22 de | 4.02 ± 0.22 b | 3.83 ± 0.01 cd | 3.85 ± 0.03 c | 3.91 ± 0.11 bc | 3.19 ± 0.05 de |
3 | 967 | 969 | Sabinene | 0.24 ± 0.03 ab | 0.25 ± 0.01 ab | 0.28 ± 0.02 a | 0.25 ± 0.01 ab | 0.24 ± 0.01 ab | 0.29 ± 0.01 a |
4 | 971 | 974 | β-Pinene | 2.43 ± 0.01 d | 2.81 ± 0.02 ab | 2.52 ± 0.03 cd | 2.77 ± 0.13 bc | 2.54 ± 0.06 cd | 2.62 ± 0.05 b-d |
5 | 992 | 988 | Myrcene | 1.94 ± 0.08 c | 1.60 ± 0.01 d | 1.50 ± 0.03 d | 1.95 ± 0.03 c | 2.22 ± 0.04 b | 2.51 ± 0.05 a |
6 | 1001 | 1002 | Phellandrene | 0.00 ± 0.00 c | 0.05 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
7 | 1012 | 1014 | α-Terpinene | 0.19 ± 0.01 ab | 0.21 ± 0.01 ab | 0.20 ± 0.02 ab | 0.24 ± 0.02 a | 0.19 ± 0.01 ab | 0.17 ± 0.01 b |
8 | 1019 | 1020 | p-Cymene | 0.28 ± 0.01 c | 0.31 ± 0.00 bc | 0.30 ± 0.02 bc | 0.32 ± 0.01 a–c | 0.29 ± 0.01 c | 0.29 ± 0.00 c |
9 | 1027 | 1026 | 1,8-cineol | 9.63 ± 0.21 ef | 10.38 ± 0.14 ab | 9.87 ± 0.13 c–e | 10.35 ± 0.38 b–d | 8.70 ± 0.17 g | 9.81 ± 0.01 de |
10 | 1052 | 1054 | γ-Terpinene | 0.41 ± 0.01 a–c | 0.46 ± 0.03 a–c | 0.43 ± 0.02 a–c | 0.47 ± 0.01 a | 0.42 ± 0.01 a–c | 0.37 ± 0.01 cd |
11 | 1066 | 1065 | cis-Sabinene hydrate | 0.21 ± 0.03 ab | 0.17 ± 0.01 b–e | 0.18 ± 0.01 b–d | 0.17 ± 0.01 b–e | 0.16 ± 0.00 de | 0.18 ± 0.01 b–d |
12 | 1083 | 1086 | Terpinolene | 0.20 ± 0.02 c | 0.25 ± 0.00 a | 0.23 ± 0.01 a–c | 0.25 ± 0.01 a | 0.21 ± 0.01 a–c | 0.20 ± 0.01 c |
13 | 1107 | 1101 | cis-Thujone | 42.22 ± 2.27 b | 37.04 ± 1.05 fg | 37.82 ± 1.16 d–f | 40.65 ± 0.20 bc | 40.90 ± 0.64 bc | 39.29 ± 0.41 c–e |
14 | 1115 | 1112 | trans-Thujone | 10.38 ± 0.10 c | 11.30 ± 0.30 b | 9.43 ± 0.37 d | 10.13 ± 0.39 cd | 10.57 ± 0.25 c | 10.59 ± 0.27 c |
15 | 1140 | 1141 | Camphor | 9.65 ± 0.25 g | 12.88 ± 0.90 ab | 13.04 ± 0.55 bc | 12.23 ± 0.14 cd | 11.02 ± 0.13 ef | 10.61 ± 0.23 e |
16 | 1168 | 1165 | Borneol | 1.18 ± 0.00 f | 1.48 ± 0.04 a–c | 1.48 ± 0.08 a–e | 1.50 ± 0.05 a–d | 1.50 ± 0.05 a–d | 1.25 ± 0.03 ef |
17 | 1187 | 1186 | α-Terpineol | 0.68 ± 0.01 c | 0.52 ± 0.01 d | 0.51 ± 0.01 d | 0.71 ± 0.02 c | 0.90 ± 0.05 b | 1.08 ± 0.04 a |
18 | 1216 | 1215 | trans-Carveol | 0.00 ± 0.00 c | 0.05 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
19 | 1230 | 1226 | cis-Carveol | 0.07 ± 0.01 a | 0.07 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.07 ± 0.00 b | 0.06 ± 0.00 b |
20 | 1286 | 1284 | Bornyl acetate | 0.84 ± 0.02 c | 0.94 ± 0.00 ab | 0.94 ± 0.02 ab | 0.81 ± 0.01 a–c | 1.02 ± 0.07 a | 0.91 ± 0.04 ab |
21 | 1393 | 1298 | Carvacrol | 0.22 ± 0.00 a | 0.18 ± 0.03 b | 0.12 ± 0.00 b | 0.22 ± 0.01 ab | 0.31 ± 0.01 ab | 0.42 ± 0.01 ab |
22 | 1417 | 1417 | (E)-Caryophyllene | 1.91 ± 0.05 bc | 1.84 ± 0.12 ab | 2.13 ± 0.03 a | 1.37 ± 0.04 bc | 1.74 ± 0.03 ab | 2.05 ± 0.09 a |
23 | 1436 | 1431 | β-Gurjunene | 0.24 ± 0.02 a–c | 0.25 ± 0.01 ab | 0.25 ± 0.03 a | 0.14 ± 0.00 bc | 0.25 ± 0.03 a | 0.21 ± 0.01 a–c |
24 | 1452 | 1452 | α-Humulene | 2.48 ± 0.31 b–d | 2.59 ± 0.17 a–d | 2.74 ± 0.14 ab | 1.78 ± 0.01 cd | 2.67 ± 0.07 a–c | 2.71 ± 0.01 ab |
25 | 1492 | 1496 | Ledene | 0.19 ± 0.01 d | 0.24 ± 0.01 ab | 0.21 ± 0.02 a–c | 0.20 ± 0.01 a–d | 0.19 ± 0.01 a–d | 0.18 ± 0.01 b–d |
26 | 1520 | 1522 | δ-Cadinene | 0.00 ± 0.00 ab | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
27 | 1575 | 1577 | Spathulenol | 0.16 ± 0.01 a | 0.18 ± 0.01 a–c | 0.20 ± 0.01 ab | 0.16 ± 0.01 a–c | 0.12 ± 0.01 bc | 0.17 ± 0.00 a–c |
28 | 1582 | 1582 | Caryophyllene oxide | 0.45 ± 0.03 a | 0.48 ± 0.02 b | 0.61 ± 0.01 ab | 0.47 ± 0.01 b | 0.45 ± 0.03 b | 0.52 ± 0.03 ab |
29 | 1591 | 1592 | Viridiflorol | 2.04 ± 0.21 ef | 2.21 ± 0.15 d–f | 2.81 ± 0.02 ab | 2.39 ± 0.02 a–d | 2.17 ± 0.04 c–f | 2.75 ± 0.14 a–c |
30 | 1597 | 1602 | Ledol | 0.66 ± 0.03 a | 0.66 ± 0.03 ab | 0.77 ± 0.01 ab | 0.62 ± 0.02 ab | 0.75 ± 0.03 ab | 0.78 ± 0.07 ab |
31 | 2054 | 2056 | Manool | 2.74 ± 0.15 bc | 2.24 ± 0.07 bc | 3.18 ± 0.02 a | 2.21 ± 0.12 bc | 1.87 ± 0.08 bc | 3.14 ± 0.08 a |
32 | 2066 | 2059 | 13-epi-Manool | 1.10 ± 0.06 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Part B: from 6 p.m. to 6 a.m. | |||||||||
No | RI | Adams (RI) | Compounds | 6:00–8:00 p.m. | 8:00–10:00 p.m. | 10:00–00:00 p.m. | 00:00–2:00 a.m. | 2:00–4:00 a.m. | 4:00–6:00 a.m. |
1 | 928 | 932 | α-Pinene | 09 ± 0.05 e | 06 ± 0.02 e | 17 ± 0.04 e | 32 ± 0.11 a | 76 ± 0.03 c | 99 ± 0.05 e |
2 | 943 | 94 | Camphene | 37 ± 0.13 d | 83 ± 0.10 c | 01 ± 0.01 e | 82 ± 0.11 a | 15 ± 0.04 bc | 10 ± 0.06 de |
3 | 967 | 969 | Sabinene | 28 ± 01 a | 19 ± 01 c | 29 ± 01 a | 22 ± 01 bc | 20 ± 01 bc | 25 ± 03 ab |
4 | 971 | 974 | β-Pinene | 57 ± 0.04 cd | 52 ± 0.13 cd | 55 ± 0.03 cd | 05 ± 0.03 a | 70 ± 0.06 bc | 54 ± 0.14 cd |
5 | 992 | 988 | Myrcene | 58 ± 0.05 d | 22 ± 0.12 b | 68 ± 0.04 d | 53 ± 0.02 d | 68 ± 0.01 d | 32 ± 0.04 b |
6 | 1001 | 1002 | Phellandrene | 06 ± 01 a | 00 ± 00 c | 00 ± 00 c | 00 ± 00 c | 06 ± 00 a | 00 ± 00 c |
7 | 1012 | 1014 | α-Terpinene | 23 ± 03 ab | 08 ± 01 c | 20 ± 00 ab | 00 ± 00 d | 22 ± 00 ab | 22 ± 04 ab |
8 | 1019 | 1020 | p-Cymene | 31 ± 04 bc | 27 ± 02 c | 30 ± 01 bc | 37 ± 01 a | 36 ± 03 ab | 29 ± 01 c |
9 | 1027 | 1026 | 1,8-cineol | 20 ± 0.12 fg | 42 ± 0.19 bc | 37 ± 0.08 ef | 85 ± 0.09 ab | 80 ± 0.12 ab | 07 ± 0.30 a |
10 | 1052 | 1054 | γ-Terpinene | 47 ± 02 a | 33 ± 01 d | 45 ± 03 ab | 39 ± 01 bc | 46 ± 02 ab | 41 ± 04 a–c |
11 | 1066 | 1065 | cis-Sabinene hydrate | 24 ± 02 a | 18 ± 01 b–d | 21 ± 01 a–c | 16 ± 01 de | 14 ± 01 e | 17 ± 01 c–e |
12 | 1083 | 1086 | Terpinolene | 24 ± 00 ab | 20 ± 01 bc | 23 ± 01 a–c | 23 ± 01 a–c | 26 ± 02 a | 20 ± 01 c |
13 | 1107 | 1101 | cis-Thujone | 26 ± 0.50 b–d | 44 ± 0.25 b–d | 93 ± 0.04 e–g | 38 ± 0.10 g | 52 ± 0.21 c–f | 18 ± 0.34 a |
14 | 1115 | 1112 | trans-Thujone | 45 ± 0.31 b | 43 ± 0.04 d | 19 ± 0.47 a | 29 ± 0.16 cd | 89 ± 0.12 cd | 28 ± 0.05 cd |
15 | 1140 | 1141 | Camphor | 80 ± 0.29 de | 45 ± 0.26 b | 10 ± 0.17 fg | 38 ± 0.10 a | 49 ± 0.23 b | 34 ± 0.20 fg |
16 | 1168 | 1165 | Borneol | 41 ± 0.05 b–f | 64 ± 0.04 ab | 32 ± 0.04 c–f | 70 ± 0.06 a | 67 ± 0.19 a | 26 ± 0.02 d–f |
17 | 1187 | 1186 | α-Terpineol | 49 ± 01 d | 99 ± 00 ab | 55 ± 03 d | 67 ± 01 c | 57 ± 02 d | 90 ± 06 b |
18 | 1216 | 1215 | trans-Carveol | 05 ± 00 ab | 00 ± 00 c | 00 ± 00 c | 00 ± 00 c | 06 ± 00 a | 00 ± 00 c |
19 | 1230 | 1226 | cis-Carveol | 04 ± 02 b | 00 ± 00 b | 09 ± 01 b | 00 ± 00 b | 00 ± 00 b | 00 ± 00 b |
20 | 1286 | 1284 | Bornyl acetate | 91 ± 05 ab | 83 ± 01 a–c | 92 ± 04 ab | 91 ± 01 ab | 00 ± 0.12 ab | 75 ± 03 bc |
21 | 1393 | 1298 | Carvacrol | 13 ± 01 b | 35 ± 03 ab | 15 ± 00 b | 54 ± 03 ab | 17 ± 01 b | 32 ± 02 ab |
22 | 1417 | 1417 | (E)-Caryophyllene | 11 ± 0.06 a | 31 ± 0.05 bc | 00 ± 0.06 a | 10 ± 0.12 c | 62 ± 0.05 a–c | 31 ± 0.07 bc |
23 | 1436 | 1431 | β-Gurjunene | 24 ± 02 ab | 21 ± 01 a–c | 24 ± 01 ab | 23 ± 01 ab | 18 ± 01 a–c | 12 ± 00 c |
24 | 1452 | 1452 | α-Humulene | 81 ± 0.11 a | 90 ± 0.06 b–d | 86 ± 0.03 a | 17 ± 0.01 a–d | 98 ± 0.01 a–d | 55 ± 0.03 d |
25 | 1492 | 1496 | Ledene | 21 ± 01 a–c | 21 ± 01 a–c | 25 ± 00 a | 18 ± 01 b–d | 17 ± 01 b–d | 14 ± 01 cd |
26 | 1520 | 1522 | δ–Cadinene | 00 ± 00 b | 00 ± 00 b | 07 ± 00 a | 00 ± 00 b | 00 ± 00 b | 00 ± 00 b |
27 | 1575 | 1577 | Spathulenol | 15 ± 03 a–c | 18 ± 01 a–c | 19 ± 01 a–c | 18 ± 01 a–c | 15 ± 00 a–c | 11 ± 01 c |
28 | 1582 | 1582 | Caryophyllene oxide | 46 ± 03 b | 45 ± 00 b | 56 ± 02 ab | 49 ± 01 ab | 54 ± 03 ab | 31 ± 01 b |
29 | 1591 | 1592 | Viridiflorol | 41 ± 0.12 a–d | 24 ± 0.14 b–e | 98 ± 0.01 a | 79 ± 0.02 ab | 30 ± 0.11 b–e | 59 ± 0.18 f |
30 | 1597 | 1602 | Ledol | 64 ± 02 ab | 66 ± 03 ab | 80 ± 00 ab | 72 ± 01 ab | 68 ± 05 ab | 34 ± 02 b |
31 | 2054 | 2056 | Manool | 43 ± 0.04 b | 90 ± 0.06 bc | 67 ± 0.04 a | 06 ± 0.03 a | 72 ± 0.05 c | 82 ± 04 d |
32 | 2066 | 2059 | 13-epi-Manool | 00 ± 00 b | 00 ± 00 b | 00 ± 00 b | 00 ± 00 b | 00 ± 00 b | 00 ± 00 b |
Compounds | Component | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | |
α-Pinene | 0.155 | 0.606 | −0.107 | 0.320 | −0.601 |
Camphene | −0.077 | 0.946 | −0.127 | 0.153 | −0.175 |
Sabinene | 0.579 | −0.539 | 0.043 | −0.299 | −0.218 |
β-Pinene | −0.015 | 0.797 | −0.068 | −0.320 | −0.380 |
Myrcene | −0.600 | −0.541 | −0.321 | 0.162 | 0.001 |
Phellandrene | 0.248 | 0.312 | 0.741 | 0.274 | 0.117 |
α-Terpinene | 0.196 | −0.477 | 0.734 | 0.013 | 0.024 |
ρ-Cymene | 0.101 | 0.809 | 0.190 | −0.250 | −0.337 |
1,8-cineol | −0.601 | 0.496 | 0.102 | −0.400 | 0.149 |
γ-Terpinene | 0.433 | 0.089 | 0.780 | −0.204 | −0.296 |
cis-Sabinene hydrate | 0.425 | −0.602 | 0.026 | −0.090 | 0.169 |
Terpinolene | 0.447 | 0.596 | 0.584 | −0.173 | 0.049 |
cis-Thujone | −0.653 | −0.663 | 0.311 | 0.101 | 0.019 |
trans-Thujone | 0.621 | −0.330 | 0.089 | −0.394 | −0.117 |
Camphor | −0.056 | 0.936 | −0.036 | 0.060 | 0.235 |
Borneol | −0.082 | 0.918 | −0.044 | 0.139 | 0.177 |
α-Terpineol | −0.629 | −0.313 | −0.548 | 0.162 | 0.019 |
trans-Carveol | 0.239 | 0.336 | 0.739 | 0.279 | 0.116 |
cis-Carveol | 0.597 | −0.531 | −0.065 | 0.211 | −0.293 |
Bornyl acetate | 0.612 | 0.380 | 0.012 | 0.509 | −0.173 |
Carvacrol | −0.491 | 0.216 | −0.700 | −0.064 | −0.319 |
E-Caryophyllene | 0.746 | −0.473 | 0.157 | 0.268 | 0.091 |
β-Gurjunene | 0.755 | 0.018 | −0.296 | 0.475 | −0.065 |
α-Humulene | 0.880 | −0.250 | −0.157 | 0.273 | −0.124 |
Ledene | 0.774 | −0.010 | −0.017 | −0.101 | 0.281 |
δ-Cadinene | 0.540 | −0.259 | −0.109 | −0.498 | 0.141 |
Spathulenol | 0.618 | 0.296 | −0.389 | −0.195 | 0.437 |
Caryophyllene oxide | 0.775 | 0.320 | −0.203 | 0.022 | 0.248 |
Viridiflorol | 0.728 | 0.283 | −0.450 | −0.282 | 0.117 |
Ledol | 0.757 | 0.212 | −0.487 | 0.238 | 0.051 |
Manool | 0.794 | −0.002 | −0.494 | −0.229 | −0.005 |
13-epi-Manool | −0.009 | −0.410 | −0.066 | 0.249 | −0.154 |
Eigenvalue | 9.630 | 8.350 | 4.699 | 2.336 | 2.127 |
Variability (%) | 29.181 | 25.303 | 14.239 | 7.079 | 6.447 |
Cumulative % | 29.181 | 54.484 | 68.723 | 75.802 | 82.249 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazrati, S.; Beidaghi, P.; Beyraghdar Kashkooli, A.; Hosseini, S.J.; Nicola, S. Effect of Harvesting Time Variations on Essential Oil Yield and Composition of Sage (Salvia officinalis). Horticulturae 2022, 8, 149. https://doi.org/10.3390/horticulturae8020149
Hazrati S, Beidaghi P, Beyraghdar Kashkooli A, Hosseini SJ, Nicola S. Effect of Harvesting Time Variations on Essential Oil Yield and Composition of Sage (Salvia officinalis). Horticulturae. 2022; 8(2):149. https://doi.org/10.3390/horticulturae8020149
Chicago/Turabian StyleHazrati, Saeid, Pouya Beidaghi, Arman Beyraghdar Kashkooli, Seyyed Jaber Hosseini, and Silvana Nicola. 2022. "Effect of Harvesting Time Variations on Essential Oil Yield and Composition of Sage (Salvia officinalis)" Horticulturae 8, no. 2: 149. https://doi.org/10.3390/horticulturae8020149
APA StyleHazrati, S., Beidaghi, P., Beyraghdar Kashkooli, A., Hosseini, S. J., & Nicola, S. (2022). Effect of Harvesting Time Variations on Essential Oil Yield and Composition of Sage (Salvia officinalis). Horticulturae, 8(2), 149. https://doi.org/10.3390/horticulturae8020149