Nutrient Uptake and Yield of Chinese Cabbage (Brassica rapa L. Chinensis) Increased with Application of Macadamia Husk Compost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Experimental Design and Agronomic Practices
2.3. Number of Leaves, Leaf Area Index and Leaf Biomass
2.4. Root Length, Root Biomass, and Root to Leaf Ratio
2.5. Determination of Leaf Nutrient Concentration
2.6. Statistical Analysis
3. Results
3.1. Number of Leaves
3.2. Leaf Area Index
3.3. Leaf Biomass
3.4. Root Biomass, Root Length, and Root to Leaf Ratio
3.5. The Relationship between Root Growth and Leaves
3.6. Leaf Nutrient Concentration
3.6.1. Leaf N Concentration
3.6.2. Leaf P Concentration
3.6.3. Leaf K Concentration
3.6.4. The Concentration of Ca and Mg in the Leaf
3.6.5. The Concentration of Zn, Cu, Mn, and B in the Leaf
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Van Averbeke, W.; Netshithuthuni, C. Effect of irrigation scheduling on leaf yield of non-heading Chinese cabbage (Brassica rapa L. subsp. chinensis). S. Afr. J. Plant Soil. 2010, 27, 322–327. [Google Scholar] [CrossRef]
- Mukwirimbaa, G.M.; Kritzinge, Q.; Aveling, T. A survey of brassica vegetable smallholder farmers in the Gauteng and Limpopo provinces of South Africa. J. Agric. Rural Dev. Trop. Subtrop. 2016, 117, 35–44. [Google Scholar]
- Department of Agriculture, Forestry and Fisheries (DAFF). Chinese Cabbage (Brassica rapa L. Chinensis). 2013. Available online: https://www.nda.agric.za/docs/Brochures/chinese.pdf (accessed on 11 August 2018).
- Peyvast, G.; Abbassi, M. Effect of commercial compost on yield and nitrate content of Chinese cabbage. Hortic. Environ. Biol. 2006, 47, 123–125. [Google Scholar]
- Magnusson, M. Mineral fertilizers and green mulch in Chinese cabbage (Brassica pekinsensis (Lour.) Rupr): Effect on nutrient uptake, yield and internal tipburn. Acta Agric. Scand. Sect. B Plant Soil Sci. 2002, 52, 32–35. [Google Scholar]
- Kundhlande, G.; Groenewald, D.C.; Baiphethi, M.N.; Viljoen, M.N.; Botha, J.J.; van Rensburg, L.D.; Anderson, J.J. Socio-economic study water conservation techniques in semi-arid areas. In Water Research Commission Report; WRC Report No. 1267/1/04; Water Research Commission: Pretoria, South Africa, 2004. [Google Scholar]
- Ramaru, J.; Mamabolo, Z.; Lekgoro, J. Improving soil fertility management in South Africa: Learning through participatory extension approaches. In Managing Africa’s Soils No.19; Russell Press: Nottingham, UK, 2000. [Google Scholar]
- Jaja, E.T.; Barber, L.I. Organic and inorganic fertilizers in food production system in Nigeria. J. Biol. Agric. Hortic. 2017, 7, 2224–3208. [Google Scholar]
- Lusiba, S.; Odhiambo, J.; Ogola, J. Effect of biochar and phosphorus fertilizer application on soil fertility: Soil physical and chemical properties. Arch. Agron. Soil Sci. 2017, 63, 477–490. [Google Scholar] [CrossRef]
- Cox, J.; Van-Zwieten, L.; Ayres, M.; Morris, S. Macadamia Husk Compost Improves Soil Health in Sub-tropical Horticulture. In Proceedings of the 3rd Australian and New Zealand Soils Conference, ‘SuperSoil 2004’, Sydney, Australia, 5–9 December 2004. [Google Scholar]
- Tweib, S.A.; Rahman, R.A.; Kalil, M.S. A Literature Review on the Composting. Int. Conf. Environ. Ind. Innov. 2011, 12, 26–32. [Google Scholar]
- Nguyen, T.T.; Fuentes, S.; Marschner, P. Effect of incorporated or mulched compost on leaf nutrient concentrations and performance of Vitis vinifera cv. J. Soil Sci. Plant Nutr. 2013, 13, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.J.; Bernal, M.P. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in highly saline soil. Bioresour. Technol. 2008, 99, 396–403. [Google Scholar] [CrossRef]
- Oworu, O.O.; Dada, O.A.; Majekodunmi, O.E. Influence of compost on growth, nutrient uptake and dry matter partitioning of grain Amaranths (Amaranthus hypochondriacus L.). Libyan Agric. Res. Canter J. Int. 2010, 1, 375–383. [Google Scholar]
- Adamtey, N.; Cofie, O.; Ofosu-Budu, K.G.; Ofusu-Anim, J.; Laryea, K.B.; Forster, D. Effect of N-enriched co-compost on transpiration efficiency and water-use efficiency of maize (Zea mays L.) under controlled irrigation. Agric. Water Manag. 2010, 97, 995–1005. [Google Scholar] [CrossRef]
- Polat, E.; Onus, A.N.; Demir, H. The effects of spent mushroom compost on quality and productivity of cucumber (Cucumis sativas L.) grown in greenhouses. Afr. J. Biotech. 2009, 8, 176–180. [Google Scholar]
- Togun, A.O.; Akanbi, W.B.; Dris, R. Influence of compost and nitrogen fertilizer on growth, nutrient uptake and fruit yield of tomato (Lycopersicon esculentum). Field Crops Res. 2003, 2003 26, 98–105. [Google Scholar]
- Polat, E.; Onus, A.N.; Demir, H. The effects of spent mushroom compost on yield and quality in Lettuce growing. J. Fac. Agric. Akdeniz Univ. 2004, 17, 149–154. [Google Scholar]
- Anwar, Z.; Irshad, M.; Mahmood, Q.; Hafeex, F.; Bilal, M. Nutrient uptake and growth of spinach as affected by cow manure co-composted with poplar leaf litter. Int. J. Recycl. Org. Waste Agric. 2017, 6, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Adekayode, F.O.; Ogunkoya, M.O. Comparative effects of organic compost and NPK fertilizer on soil fertility, yield and quality of amaranths in southwest Nigeria. Int. J. Biol. Chem. Sci. 2011, 5, 490–499. [Google Scholar] [CrossRef] [Green Version]
- El-Quesni, F.E.M.; Hashish, K.I.; Kandil, M.M.; Mazher, A.A.M. Impact of some biofertilizers and compost on growth and chemical composition of Jatropha curcas L. World Appl. Sci. J. 2013, 21, 927–932. [Google Scholar]
- Gonzales, L.M.R.; Caralde, R.A.; Aban, M.L. Response of pechay (Brassica napus L.) to different level of compost fertilizer. Int. J. Sci. Res. Publ. 2015, 5, 2250–3153. [Google Scholar]
- Rady, M.M.; Semida, W.M.; Hemida, K.A.; Abdelhamid, M.T. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline. Int. J. Recycl. Org. Waste Agric. 2016, 5, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Bittenbender, H.C.; Hue, N.V.; Fleming, K.; Brown, H. Sustainability of organic fertilization of macadamia with macadamia husk-manure compost. Commun. Soil Sci. Plant Anal. 1988, 29, 409–419. [Google Scholar] [CrossRef]
- Maselesele, D.; Ogola, J.B.O.; Murovhi, R.N. Macadamia husk compost improved physical and chemical properties of sandy soil. Sustainability 2021, 13, 6997. [Google Scholar] [CrossRef]
- Fey, M.V. Soils of South Africa; Cambridge University Press: Cape Town, South Africa, 2010. [Google Scholar]
- Nkuna, T.R.; Odiyo, J.O. Relationship between temperature and rainfall variability in the Levubu sub-catchment, South Africa. Int. J. Environ. Sci. 2016, 1, 65–75. [Google Scholar]
- Tripathi, K.M.; Dhakal, D.D.; Sab, S.C.; Baral, D.R.; Sharma, M.D. Evaluation of vermicompost and chemical fertilizers on performance of Pak choi (Brassic rapa Cv. Hong Tae) and soil biological process. J. Instit. Agric. Anim. Sci. 2015, 33, 243–250. [Google Scholar]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Fraction of organic matter by particle size. In Laboratory Method of Soil and Plant Analysis: A Working Manual; TSBF-KARI UNESCO: Nairobi, Kenya, 1993; pp. 66–68. [Google Scholar]
- Motsara, M.R.; Roy, R.N. Guide to laboratory establishment for plant nutrients analysis. In FAO Fertilizer and Plant Nutrition Bulletin; Food and Agriculture Organization: Rome, Italy, 2008; p. 219. [Google Scholar]
- Malik, S.S.; Chauhan, R.C.; Laura, J.S.; Kapoor, T.; Abhilashi, R.; Sharma, N. Influence of organic and synthetic fertilizers on soil physical properties. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 802–810. [Google Scholar]
- Chimphango, S.B.M.; Ogola, J.B.O.; Maseko, S.; MacAlister, D.; Makonya, G.M. Balanced allocation of resources for acquisition of water and nutrients in field legumes. S. Afr. J. Bot. 2018, 115, 281–282. [Google Scholar] [CrossRef]
- Islam, M.M.; Karim, A.J.M.S.; Jahiruddin, M.; Majid, N.K.; Miah, M.G.; Ahmed, M.M.; Hakim, M.A. Effect of organic manure and chemical fertilizers on crops in radish-stem amaranth-Indian spinach cropping pattern in homestead area. Aust. J. Crop Sci. 2011, 5, 1370–1378. [Google Scholar]
- Liu, C.H.; Liu, Y.; Fan, C.; Kuang, S.Z. The effect of composted pineapple residue return on soil properties and the growth and yield of pineapple. J. Soil Sci. Plant Nutr. 2013, 13, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Kapourchal, A.; Pazira, E.; Homaee, M. Assessing radish (Raphanus sativus L.) potential for phytoremediation of lead polluted soils resulting from air pollution. Plant Soil Environ. 2009, 5, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Ogola, J.B.O.; Wheeler, T.R.; Harris, P.M. Water use of maize crops in response to nitrogen and irrigation. Field Crops Res. 2002, 78, 105–117. [Google Scholar] [CrossRef]
- Kiran, M.; Jilani, M.S.; Waseem, K.; Sohail, M. Effect of organic manures and inorganic fertilizers on growth and yield of radish (Raphanus sativus L.). Pak. J. Agric. Res. 2016, 29, 363–372. [Google Scholar]
- Adeniyan, O.A.; Ojo, A.O.; Akinbode, O.A.; Adediran, J.A. Comparative study of different organic manures and NPK fertilizer for improvement of soil chemical properties and dry matter yield of maize in two different soils. J. Soil Sci. Environ. Manag. 2011, 2, 9–13. [Google Scholar]
- Masarirambi, M.T.; Hlawe, M.M.; Oseni, O.T.; Thokhozile, E.S. Effects of organic fertilizers on growth, yield, quality and sensory evaluation of red lettuce (Lactuca sativa L.) Veneza Roxa. Agric. Biol. J. N. Am. 2010, 1, 1319–1324. [Google Scholar] [CrossRef]
- Mbatha, A.N.; Engelbretcht, G.M.; Ceronio, C.M. Response of carrot (Daucus carota L.) yield and quality to organic fertilizer. S. Afr. J. Plant Soil. 2014, 31, 1–6. [Google Scholar] [CrossRef]
- Golabi, M.H.; Denney, M.J.; Iyekar, C. Use of composted organic wastes as alternative to synthetic fertilizers for enhancing crop productivity and agricultural sustainability on the tropical Island of Guam. In Proceedings of the 13th International Soil Conservation Organization Conference, Brisbane, Australia, 1–6 July 2004; p. 234. [Google Scholar]
- Hossain, M.B.; Ryu, K.S. Effects of organic and inorganic fertilizers on lettuce (Lactuca sativa L.) and soil properties. J. Agric. Sci. 2017, 15, 93–102. [Google Scholar]
- Anguria, P.; Chemiming’wa, G.N.; Onwonga, R.N.; Ugen, M.A. Effect of organic manures on nutrient uptake and seed quality of Sesame. J. Agric. Sci. 2017, 9, 1916–9752. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.; Castillo, H.; Ojeda, D.; Arras, A.; Lopez, J.; Sanchez, E. The effect of vermicompost and compost on lettuce production. Chil. J. Agric. Res. 2016, 70, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Viera, J.L.V.; Nardi, K.T.; Silva, G.R.A.; Moreira, L.A.; Zavaschi, E.; Moura, T.A.; Otto, R. Nutrient uptake by high-yielding cotton crop in Brazil. Rev. Bras. Cienc. Solo. 2018, 42, e0170033. [Google Scholar] [CrossRef]
2018 | Max | Min | Mean | Rainfall | Relative |
---|---|---|---|---|---|
Month | Temp | Temp | Temp | (mm) | Humidity |
(°C) | (°C) | (°C) | (%) | ||
April | 26 | 16 | 21 | 25.32 | 68 |
May | 24 | 12 | 18 | 9.92 | 58 |
June | 24 | 12 | 18 | 3.14 | 50 |
July | 21 | 11 | 16 | 6.41 | 61 |
August | 27 | 15 | 21 | 2.23 | 49 |
Mean/Total | 24.4 | 13.2 | 18.8 | 47.02 | 57.2 |
2019 | |||||
April | 29 | 18 | 23.5 | 34.1 | 69 |
May | 28 | 16 | 22 | 6.3 | 56 |
June | 25 | 13 | 19 | 15.4 | 58 |
July | 27 | 14 | 20.5 | 1.9 | 40 |
August | 28 | 16 | 22 | 7.4 | 48 |
Mean/Total | 27.4 | 15.4 | 21.4 | 65.1 | 54.2 |
Treatments | Root Biomass | Root Length | Root/Shoot Ratio |
---|---|---|---|
(g m−2) | (cm) | ||
Year I (2018) | |||
Control | 0.30 ± 0.10c | 11.2 ± 1.20b | 0.01 ± 0.01 |
IF | 0.80 ± 0.36bc | 14.8 ± 1.02a | 0.20 ± 0.01 |
MHC1 | 1.08 ± 0.37b | 14.8 ± 0.45a | 0.02 ± 0.01 |
MHC2 | 1.36 ± 0.15a | 16.6 ± 1.15a | 0.02 ± 0.01 |
P (F-test) | p < 0.05 | p < 0.05 | p < 0.05 |
LSD (0.05) | 0.538 | 2.168 | 0.011 |
CV (%) | 30.4 | 7.6 | 30.12 |
Year II (2019) | |||
Control | 0.29 ± 0.06c | 11.5 ± 1.14c | 0.01 ± 0.00 |
IF | 0.82 ± 0.17b | 14.9 ± 0.79ab | 0.02 ± 0.01 |
MHC1 | 1.03 ± 0.12b | 14.0 ± 0.50b | 0.02 ± 0.00 |
MHC2 | 1.30 ± 0.16a | 16.2 ± 1.17a | 0.02 ± 0.00 |
P (F-test) | p < 0.05 | p < 0.05 | p < 0.05 |
LSD (0.05) | 0.266 | 2.041 | 0.01 |
Year | ns | ns | ns |
CV (%) | 15.4 | 7.23 | 28.57 |
Variables | Number of Leaves | Leaf Biomass (DW) | Leaf Area Index |
---|---|---|---|
Root biomass (DW) | 0.59 * | 0.50 * | 0.60 ** |
Root length | 0.61 ** | 0.65 ** | 0.61 ** |
Treatments | N | P | K | Ca | Mg | Zn | Cu | Mn | B |
---|---|---|---|---|---|---|---|---|---|
(mg kg−1 DW) | |||||||||
Fertilizer (F) | |||||||||
Control | 81 ± 22.2c | 8.5 ± 1.87c | 95 ± 15.6c | 54 ± 19.6c | 11 ± 3.6a | 38 ± 3.0 | 11 ± 2.1 | 52 ± 20.7a | 69 ± 32.7 |
IF | 194 ± 46.2b | 22 ± 7.7b | 241 ± 83.2b | 118 ± 36.2b | 23 ± 7.3b | 37 ± 4.5 | 11 ± 1.9 | 47 ± 17.1ab | 62 ± 28.5 |
MHC1 | 199 ± 102.1b | 24 ± 8.1b | 237 ± 113.1b | 138 ± 88.0c | 19 ± 5.6b | 38 ± 2.5 | 11 ± 2.6 | 46 ± 23.4ab | 61 ± 29.1 |
MHC2 | 240 ± 125.7a | 26 ± 7.5a | 283 ± 146.2a | 147 ± 63.6a | 32 ± 16.4c | 36 ± 4.1 | 10 ± 3.2 | 41 ± 10.2b | 60 ± 40.8 |
LSD (0.05) | 15.11 | 2.87 | 27.69 | 13.91 | 3.43 | 2.85 | 1.91 | 9.95 | 5.99 |
Harvesting time (HT) | |||||||||
28 DAT | 115 ± 45.3c | 19 ± 8.2c | 174 ± 67.3b | 74 ± 31.3b | 13 ± 5.5c | 36 ± 3.5 | 8.5 ± 1.44b | 29 ± 10.0c | 40 ± 6.0c |
26 DAT | 150 ± 56.3b | 17 ± 7.1b | 157 ± 69.2b | 90 ± 32.1b | 23 ± 10.0b | 36 ± 2.8 | 11 ± 1.8a | 46 ± 4.4b | 59 ± 21.0b |
74 DAT | 271 ± 111.8a | 24 ± 11.9a | 313 ± 148.0a | 178 ± 72.4a | 29 ± 14.5a | 40 ± 3.2 | 11 ± 2.9a | 65 ± 15.6a | 90 ± 21.2a |
LSD 0.05 | 13.09 | 2.49 | 23.97 | 12.05 | 2.96 | 2.46 | 1.651 | 8.63 | 5.18 |
p (F-test) | |||||||||
F | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | ns | ns | ns |
HT | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | p < 0.01 | p < 0.01 | p < 0.01 |
F*HT | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | ns | ns | ns |
CV (%) | 8.7 | 14.4 | 13.1 | 12.5 | 16.2 | 7.8 | 18.4 | 21.9 | 28.5 |
Treatments | N | P | K | Ca | Mg | Zn | Cu | Mn | B |
---|---|---|---|---|---|---|---|---|---|
(mg kg−1 DW) | |||||||||
Fertilizer | |||||||||
Control | 121 ± 35.9d | 13 ± 4.7c | 115 ± 29.4c | 59 ± 23.2d | 11 ± 2.5c | 38 ± 3.5 | 9.8 ± 2.37 | 51 ± 5.4 | 42 ± 5.9 |
NPK | 181 ± 103.4c | 17 ± 9.9c | 186 ± 89.3b | 93 ± 41.2c | 23 ± 12.9b | 39 ± 3.4 | 10 ± 2.4 | 61 ± 14.5 | 47 ± 10.2 |
MHC1 | 231 ± 63.9b | 24 ± 6.7b | 207 ± 51.8b | 127 ± 35.5b | 23 ± 10.1b | 38 ± 2.6 | 11 ± 1.9 | 46 ± 6.2 | 50 ± 5.0 |
MHC2 | 284 ± 63.6a | 33 ±14.3a | 296 ± 66.8a | 192 ± 54.4a | 29 ± 5.2a | 40 ± 2.9 | 11 ± 1.8 | 47 ± 4.3 | 51 ± 8.5 |
LSD (0.05) | 14.2 | 4.45 | 30.77 | 17.43 | 4.86 | 4.08 | 1.372 | 5.84 | 7.11 |
Harvesting time (HT) | |||||||||
28 DAT | 208 ± 71.2 | 20 ± 6.17 | 204 ± 72.2 | 105 ± 32.4b | 23 ± 11.4 | 39 ± 3.0 | 10 ± 2.3 | 47 ± 5.1b | 50 ± 9.1 |
46 DAT | 204 ± 62.8 | 22 ± 8.8 | 199 ± 67.7 | 128 ± 57.3b | 20 ± 8.3 | 38 ± 3.4 | 10 ± 2.6 | 49 ± 7.8ab | 48 ± 8.8 |
74 DAT | 203 ± 129.4 | 22 ± 18.5 | 199 ± 129.0 | 112 ± 88.5a | 20 ± 12.9 | 40 ± 2.9 | 11 ± 1.2 | 57 ± 12.7a | 51 ± 6.7 |
LSD 0.05 | 25.11 | 3.85 | 26.64 | 12.05 | 4.21 | 3.53 | 1.19 | 5.85 | 8.43 |
P (F-test) | |||||||||
F | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | ns | ns | ns |
HT | ns | ns | ns | p < 0.05 | ns | ns | ns | ns | ns |
F*HT | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | ns | ns | ns |
CV (%) | 14.2 | 20.5 | 15.4 | 12.5 | 19.6 | 5.6 | 13.1 | 11.3 | 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maselesele, D.; Ogola, J.B.O.; Murovhi, R.N. Nutrient Uptake and Yield of Chinese Cabbage (Brassica rapa L. Chinensis) Increased with Application of Macadamia Husk Compost. Horticulturae 2022, 8, 196. https://doi.org/10.3390/horticulturae8030196
Maselesele D, Ogola JBO, Murovhi RN. Nutrient Uptake and Yield of Chinese Cabbage (Brassica rapa L. Chinensis) Increased with Application of Macadamia Husk Compost. Horticulturae. 2022; 8(3):196. https://doi.org/10.3390/horticulturae8030196
Chicago/Turabian StyleMaselesele, Dembe, John B. O. Ogola, and Romeo N. Murovhi. 2022. "Nutrient Uptake and Yield of Chinese Cabbage (Brassica rapa L. Chinensis) Increased with Application of Macadamia Husk Compost" Horticulturae 8, no. 3: 196. https://doi.org/10.3390/horticulturae8030196
APA StyleMaselesele, D., Ogola, J. B. O., & Murovhi, R. N. (2022). Nutrient Uptake and Yield of Chinese Cabbage (Brassica rapa L. Chinensis) Increased with Application of Macadamia Husk Compost. Horticulturae, 8(3), 196. https://doi.org/10.3390/horticulturae8030196