Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review
Abstract
:1. Introduction
2. Protective Mechanisms of Earthworm against Diseases
3. Coelomic Fluid: Secretion and Biology
4. Antifungal Activities of Coelomic Fluid and Skin Secretion of Earthworms
5. Vermicompost: Antifungal Efficiency
6. Vermiwash as Antifungal Agent
7. Tissue Homogenate (G-90) of Earthworms: Antifungal Activity
8. Decomposer Bacteria of Vermicompost/Vermiwash as Antifungal Agents
9. Future Perspective
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Sabagh, A.; Omar, A.; Saneoka, H.; Barutçular, C. Some of nutritive value of canola (Brassica napus L.) as affected by organic and inorganic fertilizer. In Proceedings of the 2nd ICSAE 2015, International Conference on Sustainable Agriculture and Environment, Konya, Turkey, 30 September–3 October 2015; pp. 648–653. [Google Scholar]
- Nadana, G.R.V.; Rajesh, C.; Kavitha, A.; Sivakumar, P.; Sridevi, G.; Palanichelvam, K. Induction of growth and defense mechanism in rice plants towards fungal pathogen by eco-friendly coelomic fluid of earthworm. Environ. Technol. Innov. 2020, 19, 101011. [Google Scholar] [CrossRef]
- Ansari, A.A.; Jaikishun, S. An investigation into the vermicomposting of sugarcane bagasse and rice straw and its subsequent utilization in cultivation of Phaseolus vulgaris L. in Guyana. Am.-Eurasian J. Agric. Environ. Sci. 2010, 8, 666–671. [Google Scholar]
- Ansari, A.A.; Pereira, M.; Jaikishun, S. Effect of Vermiwash Obtained from Different Sources (Neem, Rice Straw and Bagasse) and Standardised Hydroponics Solution on the Growth of Colocasia esculenta (Australian Poi) in Guyana. J. Exp. Agric. Int. 2015, 7, 275–283. [Google Scholar] [CrossRef]
- Weltzien, H.C. Biocontrol of foliar fungal diseases with compost extracts. In Microbial Ecology of Leaves; Springer: New York, NY, USA, 1991; pp. 430–450. [Google Scholar]
- Hoitink, H.A.J.; Stone, A.G.; Han, D.Y. Suppression of plant diseases by composts. HortScience 1997, 32, 184–187. [Google Scholar] [CrossRef]
- Gudeta, K.; Julka, J.M.; Kumar, A.; Bhagat, A.; Kumari, A. Vermiwash: An agent of disease and pest control in soil, a review. Heliyon 2021, 7, e06434. [Google Scholar] [CrossRef]
- Vaillier, J.; Cadoret, M.A.; Roch, P.; Valembois, P. Protein analysis of earthworm coelomic fluid. III. Isolation and characterization of several bacteriostatic molecules from Eisenia fetida andrei. Dev. Comp. Immunol. 1985, 9, 11–20. [Google Scholar] [CrossRef]
- Gupta, S.; Yadav, S. Immuno-defense strategy in earthworms: A review article. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 1022–1035. [Google Scholar] [CrossRef] [Green Version]
- Aghamohammadi, Z.; Etesami, H.; Alikhani, H.A. Vermiwash allows reduced application rates of acaricidea zocyclotin for the control of two spotted spider mite, Tetranychus urticae Koch, on bean plant (Phaseolus vulgaris L.). Ecol. Eng. 2016, 93, 234–241. [Google Scholar] [CrossRef]
- Tripathi, Y.C.; Hazarika, P.; Pandey, B.K. Vermicomposting: An ecofriendly approach to sustainable agriculture. In Verms and Vermitechnology; APH Publishing Corporation: New Delhi, India, 2005; pp. 23–39. [Google Scholar]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef]
- Oerke, E.C.; Dehne, H.W.; Schönbeck, F.; Weber, A. Crop Production and Crop Protection; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Majeed, A.; Muhammad, Z.; Ullah, Z.; Ullah, R.; Ahmad, H. Late blight of potato (Phytophthora infestans) I: Fungicides application and associated challenges. Turk. Tarim Gida Bilim Teknol. Derg. 2017, 5, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Bottalico, A. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 1998, 80, 85–103. Available online: https://www.jstor.org/stable/41997909 (accessed on 5 October 2021).
- Viswanthan, R. Red rot of sugarcane (Colletotrichum falcatum Went). CAB Rev. 2021, 16, 23. [Google Scholar]
- Becker-Ritt, A.B.; Carlini, C.R. Fungitoxic and insecticidal plant polypeptides. Pept. Sci. 2012, 98, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.D.; Perfect, J.R. Antifungal resistance trends towards the year 2000. Drugs 1997, 54, 657–678. [Google Scholar] [CrossRef] [PubMed]
- Torres-Calzada, C.; Tapia-Tussell, R.; Higuera-Ciapara, I.; Perez-Brito, D. Morphological, pathological and genetic diversity of Colletotrichum species responsible for anthracnose in papaya (Carica papaya L.). J. Invertebr. Pathol. 2013, 135, 67–79. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Zhong, J.; Zhu, Z.; Liu, J.; Wang, W. A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen). Peptides 2011, 32, 1146–1150. [Google Scholar] [CrossRef]
- Massicotte, R.; Robidoux, P.Y.; Sauvé, S.; Flipo, D.; Mathiot, A.; Fournier, M.; Trottier, B. Immunotoxicological response of the earthworm Lumbricus terrestris following exposure to cement kiln dusts. Ecotoxicol. Environ. Saf. 2004, 59, 10–16. [Google Scholar] [CrossRef]
- Ghosh, S. Environmental pollutants, pathogens and immune system in earthworms. Environ. Sci. Pollut. Res. 2018, 25, 6196–6208. [Google Scholar] [CrossRef]
- Cooper, E.L.; Kvell, K.; Engelmann, P.; Nemeth, P. Still waiting for the toll? Immunol. Lett. 2006, 104, 18–28. [Google Scholar] [CrossRef]
- Yadav, S. Screening of Immunocompetent Coelomic Cells in Earthworms. Int. J. Sci. 2016, 5, 43–51. [Google Scholar] [CrossRef]
- Prakash, M.; Gunasekaran, G. Antibacterial activity of the indigenous earthworms Lampito mauritii (Kinberg) and Perionyx excavatus (Perrier). J. Integr. Complement Med. 2011, 17, 167–170. [Google Scholar]
- Kobayashi, H.; Ohta, N.; Umeda, M. Biology of lysenin, a protein in the coelomic fluid of the earthworm Eisenia foetida. Int. Rev. Cytol. 2004, 236, 45–99. [Google Scholar] [PubMed]
- Patil, R.; Biradar, M. Earthworm’s coelomic fluid: Extraction and importance. Int. J. Adv. Res. Sci. Technol. 2017, 2, 1–4. [Google Scholar]
- Laverack, M.S. The Physiology of Earthworms: International Series of Monographs on Pure and Applied Biology: Zoology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bilej, M.; Procházková, P.; Šilerová, M.; Josková, R. Earthworm immunity. Invertebr. Immun. 2010, 708, 66–79. [Google Scholar] [CrossRef]
- Fiołka, M.J.; Czaplewska, P.; Macur, K.; Buchwald, T.; Kutkowska, J.; Paduch, R.; Urbanik-Sypniewska, T. Anti-Candida albicans effect of the protein-carbohydrate fraction obtained from the coelomic fluid of earthworm Dendrobaena veneta. PLoS ONE 2019, 14, e0212869. [Google Scholar] [CrossRef]
- Li, C.; Chen, M.; Li, X.; Yang, M.; Wang, Y.; Yang, X. Purification and function of two analgesic and anti-inflammatory peptides from coelomic fluid of the earthworm, Eisenia foetida. Peptides 2017, 89, 71–81. [Google Scholar] [CrossRef]
- Beschin, A.; Bilej, M.; Hanssens, F.; Raymakers, J.; Van Dyck, E.; Revets, H.; Timmermans, M. Identification and Cloning of a Glucan-and Lipopolysaccharide-binding Protein from Eisenia foetida Earthworm Involved in the Activation of Prophenoloxidase Cascade. J. Biol. Chem. 1998, 273, 24948–24954. [Google Scholar] [CrossRef] [Green Version]
- Lange, S.; Kauschke, E.; Mohrig, W.; Cooper, E.L. Biochemical characteristics of Eiseniapore, a pore-forming protein in the coelomic fluid of earthworms. Eur. J. Biochem. 1999, 262, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Cooper, E.L.; Kauschke, E.; Cossarizza, A. Annelid humoral immunity: Cell lysis in earthworms. In Phylogenetic Perspectives on the Vertebrate Immune System; Springer: Berlin/Heidelberg, Germany, 2001; pp. 169–183. [Google Scholar]
- Field, S.G.; Kurtz, J.; Cooper, E.L.; Michiels, N.K. Evaluation of an innate immune reaction to parasites in earthworms. J. Invertebr. Pathol. 2004, 86, 45–49. [Google Scholar] [CrossRef]
- Kauschke, E.; Mohrig, W.; Cooper, E.L. Coelomic fluid proteins as basic components of innate immunity in earthworms. Eur. J. Soil Biol. 2007, 43, S110–S115. [Google Scholar] [CrossRef]
- Bilej, M.; De Baetselier, P.; Beschin, A. Antimicrobial defense of the earthworm. Folia Microbiol. 2000, 45, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Liu, X.; Ge, F.; Zheng, T. Reconfirmation of antimicrobial activity in the coelomic fluid of the earthworm Eisenia fetida andrei by colorimetric assay. J. Biosci. 2003, 28, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, C.; Rajamanikkam, K.; Vadivu, G.N.R.; Palanichelvam, K. Coelomic Fluid of Earthworm, Eudrilus Eugeniae, Inhibits the Growth of Fungal Hyphae, in Vitro. Int. J. Eng. Adv. Technol. 2019, 9, 792–796. [Google Scholar]
- Sethulakshmi, K.C.; Ranilakshmi, K.C.; Thomas, A.P. Antibacterial and antifungal potentialities of earthworm Eudrilus eugeniae paste and coelomic fluid. Asian J. Biol. 2018, 5, 2456–7124. [Google Scholar] [CrossRef]
- Ballarin, L.; Cammarata, M. (Eds.) Lessons in Immunity: From Single-Cell Organisms to Mammals; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Plavšin, I.; Velki, M.; Ečimović, S.; Vrandečić, K.; Ćosić, J. Inhibitory effect of earthworm coelomic fluid on growth of the plant parasitic fungus Fusariumo xysporum. Eur. J. Soil Biol. 2017, 78, 1–6. [Google Scholar] [CrossRef]
- Ečimović, S.; Vrandečić, K.; Kujavec, M.; Žulj, M.; Ćosić, J.; Velki, M. Antifungal Activity of Earthworm Coelomic Fluid Obtained from Eisenia andrei, Dendrobaena veneta and Allolobophora chlorotica on Six Species of Phytopathogenic Fungi. Environments 2021, 8, 102. [Google Scholar] [CrossRef]
- Jorge-Escudero, G.; Pérez, C.A.; Friberg, H.; Söderlund, S.; Vero, S.; Garmendia, G.; Lagerlöf, J. Contribution of anecic and epigeic earthworms to biological control of Fusarium graminearum in wheat straw. Appl. Soil Ecol. 2021, 166, 103997. [Google Scholar] [CrossRef]
- Kinay, P.; Mansour, M.F.; Gabler, F.M.; Margosan, D.A.; Smilanick, J.L. Characterization of fungicide-resistant isolates of Penicillium digitatum collected in California. Crop Prot. 2007, 26, 647–656. [Google Scholar] [CrossRef]
- Pérez-García, A.; Romero, D.; De Vicente, A. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 2011, 22, 187–193. [Google Scholar] [CrossRef]
- You, X.; Wakana, D.; Ishikawa, K.; Hosoe, T.; Tojo, M. Antifungal activity of compounds isolated from bamboo vermicompost against Rhizoctonia solani AG1-IB. Adv. Microbiol. 2019, 9, 957. [Google Scholar] [CrossRef] [Green Version]
- Akinnuoye-Adelabu, D.B.; Hatting, J.; de Villiers, C.; Terefe, T.; Bredenhand, E. Effect of red worm extracts against Fusarium root rot during wheat seedling emergence. Agron. J. 2019, 111, 2610–2618. [Google Scholar] [CrossRef]
- Naidu, Y.; Meon, S.; Siddiqui, Y. In vitro and in vivo evaluation of microbial-enriched compost tea on the development of powdery mildew on melon. BioControl 2012, 57, 827–836. [Google Scholar] [CrossRef]
- Özer, N.; Köycü, N.D. The ability of plant compost leachates to control black mold (Aspergillus niger) and to induce the accumulation of antifungal compounds in onion following seed treatment. BioControl 2006, 51, 229–243. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Sun, Z.J.; Wang, C.; Li, S.J.; Liu, Y.Z. Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. Acta Biochim. Biophys. Sin. 2004, 36, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.H.; Meghvansi, M.K.; Gupta, R.; Chaudhary, K.K.; Prasad, K.; Siddiqui, S.; Varma, A. Combining application of vermiwash and Arbuscular Mycorrhizal fungi for effective plant disease suppression. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Springer: Cham, Switzerland, 2015; pp. 479–493. [Google Scholar]
- Hong, S.W.; Lee, J.S.; Chung, K.S. Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (Eisenia fetida) in vermicompost. Bioresour. Technol. 2011, 102, 6344–6347. [Google Scholar] [CrossRef]
- Thilagavathi, R.; Rajendran, L.; Nakkeeran, S.; Raguchander, T.; Balakrishnan, A.; Samiyappan, R. Vermicompost-based bioformulation for the management of sugarbeet root rot caused by Sclerotiumrolfsii. Arch. Phytopathol. Pflanzenschutz. 2012, 45, 2243–2250. [Google Scholar] [CrossRef]
- Imran, M.; Abo-Elyousr, K.A.; Mousa, M.A.; Saad, M.M. A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato. Eur. J. Soil Biol. 2022, 162, 63–77. [Google Scholar] [CrossRef]
- Hrženjak, T.; Hrženjak, M.; Kašuba, V.; Efenberger-Marinculić, P.; Levanat, S. A new source of biologically active compounds-earthworm tissue (Eisenia foetida, Lumbricus rubelus). Comp. Biochem. Physiol. Comp. Physiol. 1992, 102, 441–447. [Google Scholar] [CrossRef]
- Vasanthi, K.; Chairman, K.; Singh, A.R. Antimicrobial activity of earthworm (Eudrilus eugeniae) paste. Afr. J. Environ. Sci. Technol. 2013, 7, 789–793. [Google Scholar]
- Senthil, V.; Sivakami, R. Evaluation of Antimicrobial Activity of Earthworm Lampito mauritii Paste against Bacteria and Fungi. Int. J. Curr. Res. Acad. Rev. 2018, 6, 40–44. [Google Scholar] [CrossRef]
- Mu, J.; Li, X.; Jiao, J.; Ji, G.; Wu, J.; Hu, F.; Li, H. Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biol. Control 2017, 112, 49–54. [Google Scholar] [CrossRef]
- Yasir, M.; Aslam, Z.; Kim, S.W.; Lee, S.W.; Jeon, C.O.; Chung, Y.R. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour. Technol. 2009, 100, 4396–4403. [Google Scholar] [CrossRef]
- Kalantari, S.; Marefat, A.; Naseri, B.; Hemmati, R. Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Trop. Plant Pathol. 2018, 43, 499–505. [Google Scholar] [CrossRef]
- Dowling, D.N.; O’Gara, F. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 1994, 12, 133–141. [Google Scholar] [CrossRef]
- Sulaiman, I.S.C.; Mohamad, A. The use of vermiwash and vermicompost extract in plant disease and pest control. In Natural Remedies for Pest, Disease and Weed Control; Academic Press: Cambridge, MA, USA, 2020; pp. 187–201. [Google Scholar]
- Thomashow, L.S.; Weller, D.M. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 1988, 170, 3499–3508. [Google Scholar] [CrossRef] [Green Version]
- Howell, C.R.; Stipanovic, R.D. Suppression of Pythiumultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 1980, 70, 712–715. [Google Scholar] [CrossRef]
- Shanahan, P.; O’Sullivan, D.J.; Simpson, P.; Glennon, J.D.; O’Gara, F. Isolation of 2, 4-diacetylphloroglucinol from a Fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 1992, 58, 353–358. [Google Scholar] [CrossRef] [Green Version]
Type of Coelomocytes | Shape | Descriptions | Function |
---|---|---|---|
Amoebocytes/granulocytes/phagocytes | Large in size and spherical in shape | Helps in removing harmful microbes. | |
Mucocytes | Elongated and its narrow end bears nucleus | Secretes mucus to keep the skin hydrated for respiratory and other physiological purposes. | |
Circular cells | Nucleated, circular in shape | Functions of these cells are not known. | |
Chloragogen cells or yellow cells | Vary in shape | Acts as trophocytes, participates in circulation of nutrients to different cells and organs of the body. |
Fungal Species | MTCC Number | Growth in Control | Growth with Coelomocytes |
---|---|---|---|
Verticillium dahliae | 9998 | + + + | + |
Aspergillus flavus | 873 | + + + | + |
Rhizoctonia solani | 4634 | + + + | + |
Fusarium oxysporum | 284 | + + + | + |
Earthworm’s Species | Fungal Species | Results | References |
---|---|---|---|
Eudrilus eugeniae | Rhizoctonia solani | Reduced disease index | [2] |
Eisenia fetida | Fusarium oxysporum | Reduction of fungal growth | [42] |
E. eugeniae | Aspergillus niger | Inhibited fungal growth | [40] |
E. eugeniae | Rhizoctonia solani | Inhibited fungal growth | [39] |
Lumbricus rubellus | Fusarium graminearum | Reduced its germination | [44] |
Fungal Species | Zone of Inhibition of Fungal Growth under Different Concentrations (Mean ± SD) of Earthworm’s Paste | |
---|---|---|
50 µL | 100 µL | |
Aspergillus niger (NCIM-501) | 11.00 ± 0.57 | 13.33 ± 0.33 |
A. flavus (Local isolate) | 10.33 ± 0.33 | 15.00 ± 0.57 |
Penicillium notatum (Local isolate) | 10.66 ± 0.33 | 14.33 ± 0.33 |
Fungal Species | Concentration of Earthworm Paste and Zone of Inhibition in mm (Mean ± SE) | |||||
---|---|---|---|---|---|---|
25 μL | 50 μL | 100 μL | 150 μL | 200 μL | Fucanazole 20 μL | |
A. niger | 1.2 ± 0.22 | 4.6 ± 0.72 | 8.6 ± 0.64 | 12.8 ± 0.64 | 11.6 ± 0.92 | 12.4 ± 0.52 |
P. citrinum | 1.4 ± 0.40 | 4.8 ± 0.60 | 9.8 ± 0.72 | 12.2 ± 0.78 | 14.8 ± 0.92 | 16.4 ± 0.49 |
A. nidulans | 2.2 ± 0.34 | 5.8 ± 0.94 | 9.6 ± 0.98 | 13.0 ± 0.72 | 13.8 ± 0.92 | 14.6 ± 0.29 |
C. herbarium | 2.4 ± 0.36 | 5.8 ± 0.82 | 9.8 ± 0.72 | 12.0 ± 0.64 | 13.4 ± 0.92 | 13.8 ± 0.20 |
Fungal Disease | Metabolites | Pathogen | References |
---|---|---|---|
Black root-rot of tobacco | Hydrogen cyanide 2,4-2, 4 Diacetylphloroglucinol | Thielaviopsis basicola | [62] |
Take-all of wheat | Phenazines C-Acelyphloroglucinols | Gaeumannomyces graminis Var. tritici | [64] |
Pre-emergent damping-off of cotton; Sugar beet | Oomycin Pyoluteorin 2, 4 Diacetylphloroglucinol | Pythium spp. | [65,66] |
Tan spot of wheat | Pyrrolnitrin | Pyrenophora triticirepentis | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudeta, K.; Bhagat, A.; Julka, J.M.; Sinha, R.; Verma, R.; Kumar, A.; Kumari, S.; Ameen, F.; Bhat, S.A.; Amarowicz, R.; et al. Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. Horticulturae 2022, 8, 311. https://doi.org/10.3390/horticulturae8040311
Gudeta K, Bhagat A, Julka JM, Sinha R, Verma R, Kumar A, Kumari S, Ameen F, Bhat SA, Amarowicz R, et al. Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. Horticulturae. 2022; 8(4):311. https://doi.org/10.3390/horticulturae8040311
Chicago/Turabian StyleGudeta, Kasahun, Ankeet Bhagat, Jatinder Mohan Julka, Reshma Sinha, Rachna Verma, Arun Kumar, Shailja Kumari, Fuad Ameen, Sartaj Ahmad Bhat, Ryszard Amarowicz, and et al. 2022. "Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review" Horticulturae 8, no. 4: 311. https://doi.org/10.3390/horticulturae8040311
APA StyleGudeta, K., Bhagat, A., Julka, J. M., Sinha, R., Verma, R., Kumar, A., Kumari, S., Ameen, F., Bhat, S. A., Amarowicz, R., & Sharma, M. (2022). Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. Horticulturae, 8(4), 311. https://doi.org/10.3390/horticulturae8040311