Effect of CaCl2 Treatment on Enzymatic Browning of Fresh-Cut Luffa (Luffa cylindrica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Treatment
2.2. Treatment Method
2.3. Measurement of Browning
- (1)
- BI = (x − 0.31) × 100/0.172,
- (2)
- where x = a* + 1.75 × L*/5.645 × L* + a* − 3.012 × b*
- (3)
- %BI increase = (BIx − BI1)/BI1 × 100
2.4. Measurement of Antioxidant Capacity
2.5. Measurement of Activity of Browning Enzymes (PAL, PPO, SOD, and CAT)
2.6. Determination of MDA, H2O2, and Total Phenol Content
2.7. Ultrastructural Observation
2.8. Real-Time Quantitative PCR Analysis of Enzymatic Browning-Related Genes
2.9. Data Analysis
3. Results
3.1. Effect of CaCl2 Treatment on Browning of Fresh-Cut Luffa
3.2. Effect of CaCl2 Treatment on MDA and H2O2 in Fresh-Cut Luffa
3.3. Effect of CaCl2 Treatment on Antioxidant Capacity of Fresh-Cut Luffa
3.4. CaCl2 Treatment Prevented Phenolic Oxidation by Inhibiting PPO Activity
3.5. Effect of CaCl2 Treatment on Enzyme Activity and Gene Expression of SOD and CAT
3.6. Effect of CaCl2 Treatment on Enzyme Activity and Gene Expression of PAL
3.7. Effect of CaCl2 Treatment on the Ultrastructure of Fresh-Cut Luffa Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, H.S.; Kang, J.; Liu, J.T.; Chen, M.D.; Li, Y.P.; Wang, B.; Lin, B.Y.; Wen, Q.F. Cloning and expression analysis of polyphenol oxidase PPO gene family from Luffa cylindrical. J. Nucl. Agric. Sci. 2018, 32, 1502–1512. [Google Scholar] [CrossRef]
- Hai, Z.; Jian, L.; Qing, W.; Min, C.; Bin, W.; Qian, Z.; Zhu, X. De novo sequencing and analysis of the transcriptome during the browning of fresh-cut Luffa cylindrica ‘Fusi-3’ fruits. PLoS ONE 2017, 12, e0187117. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, X.; Yong, M.; Xiong, A.; Su, X. Analysis of changes in phenolic acids of Luffa cylindrica pulp during browning based on metabolomics. Sci. Agric. Sin. 2021, 54, 4869–4879. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, J.; Zhu, H.; Chen, M.; Wang, B.; Zhang, Q. Cloning and expression analysis of catalase CAT1 Gene from Luffa Luffa cylindrical. Acta Hortic. Sin. 2016, 43, 2039–2048. [Google Scholar] [CrossRef]
- Zhu, H.S.; Liu, J.T.; Chen, M.D.; Li, Y.P.; Wang, B.; Zhang, Q.R.; Ye, X.; Lin, H.; Wen, Q.F. Cloning and expression analysis of copper and zinc superoxide dismutase Cu/Zn-SOD gene family from Luffa cylindrical. Sci. Agric. Sin. 2017, 50, 3386–3399. [Google Scholar] [CrossRef]
- He, Q.; Luo, Y. Enzymatic browning and its control in fresh-cut produce. Stewart Postharvest Rev. 2007, 3, 1–7. [Google Scholar] [CrossRef]
- Yang, H.; Tian, T.; Gu, H.; Li, X.; Cai, G.; Sun, J.; Wu, D.; Lu, J. Analysis of factors related to browning of Dangshan pear (Pyrus spp.) wine. Food Chem. 2020, 308, 125665. [Google Scholar] [CrossRef]
- Torres, E.; Recasens, I.; Lordan, J.; Alegre, S. Combination of strategies to supply calcium and reduce bitter pit in ‘Golden Delicious’ apples. Sci. Hortic. 2017, 217, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Xie, J.; Wu, C.; He, J.; Wang, B. Effects of melatonin treatment on browning alleviation of fresh-cut foods. Food Biochem. 2021, 45, e13798. [Google Scholar] [CrossRef]
- Gao, H.; Chai, H.; Cheng, N.; Cao, W. Effects of 24-epibrassinolide on enzymatic browning and antioxidant activity of fresh-cut lotus root slices. Food Chem. 2017, 217, 45–51. [Google Scholar] [CrossRef]
- Jiang, Y.; Duan, X.; Qu, H.; Zheng, S. Browning: Enzymatic browning. Encycl. Food Health 2016, 508–514. [Google Scholar] [CrossRef]
- Sikora, M.; Swieca, M. Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chem. 2018, 239, 1160–1166. [Google Scholar] [CrossRef]
- Rouet-Mayer, M.A.; Ralambosoa, J.; Philippon, J. Roles of o-quinones and their polymers in the enzymic browning of apples. Phytochemistry 1990, 29, 435–440. [Google Scholar] [CrossRef]
- Banerjee, A.; Penna, S.; Variyar, P. Allyl isothiocyanate enhances the shelf life of minimally processed shredded cabbage. Food Chem. 2015, 183, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Bustos, M.C.; Mazzobre, M.F.; Buera, M.P. Stabilization of refrigerated avocado pulp: Effect of Allium and Brassica extracts on enzymatic browning. LWT—Food Sci. Technol. 2015, 61, 89–97. [Google Scholar] [CrossRef]
- Lee, S.-H.; Ahsan, N.; Lee, K.-W.; Kim, D.H.; Lee, D.-G.; Kwak, S.-S.; Kwon, S.-Y.; Kim, T.-H.; Lee, B.-H. Simultaneous overexpression of both CuZn-superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 2007, 164, 1626–1638. [Google Scholar] [CrossRef]
- Allen, R.D.; Webb, R.P.; Schake, S.A. Use of transgenic plants to study antioxidant defenses. Free Radic. Biol. Med. 1997, 23, 473–479. [Google Scholar] [CrossRef]
- Jiang, J. The Physio-Chemical Mechanism and Differential Expressions of Proteins for the Browning of Fresh-Cut Lotus Root. Ph.D. Thesis, Nanjing Agriculture University, Nanjing, China, 2011. [Google Scholar]
- Li, W.X.; Zhou, S.S.; Liu, J.; Wang, L.J.; Liu, S.T. Browning mechanism of Laiyang pears during micro-vacuum storage. Food Sci. 2013, 34, 266–270. [Google Scholar] [CrossRef]
- Fan, M.; Li, W.; Hu, X. Effect of micro-vacuum storage on active oxygen metabolism, internal browning and related enzyme activities in Laiyang pear (Pyrus bretschneideri Rehd). LWT—Food Sci. Technol. 2016, 72, 467–474. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Z.; Zheng, Y.; Jin, P. Effects of CaCl2 treatment alleviates chilling injury of loquat fruit (Eribotrya japonica) by modulating ROS homeostasis. Foods 2021, 10, 1662. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, L.; Zhao, G.; Shen, C.; Yan, H.; Guan, J.; Yang, K. The effects of modified atmosphere packaging on core browning and the expression patterns of PPO and PAL genes in ‘Yali’ pears during cold storage. LWT-Food Sci. Technol. 2015, 60, 1243–1248. [Google Scholar] [CrossRef]
- Antunes, M.D.; Dandlen, S.; Cavaco, A.M.; Miguel, G. Effects of postharvest application of 1-MCP and postcutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit. J. Agric. Food Chem. 2010, 58, 6173–6181. [Google Scholar] [CrossRef] [PubMed]
- Manganaris, G.A.; Vasilakakis, M.; Diamantidis, G.; Mignani, I.J.F.C. The effect of postharvest calcium application on tissue calcium concentration, quality attributes, the incidence of flesh browning and cell wall physicochemical aspects of peach fruits. Food Chem. 2007, 100, 1385–1392. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Q.; Zhou, X.; Wei, B.; Zhao, Y.; Ji, S. Calcium Treatment alleviates pericarp browning of ‘Nanguo’ pears by regulating the GABA shunt after cold storage. Front. Plant Sci. 2020, 11, 580986. [Google Scholar] [CrossRef]
- Ngamchuachit, P.; Sivertsen, H.K.; Mitcham, E.J.; Barrett, D.M. Effectiveness of calcium chloride and calcium lactate on maintenance of textural and sensory qualities of fresh-cut mangos. J. Food Sci. 2014, 79, C786–C794. [Google Scholar] [CrossRef]
- Sanchís, E.; Mateos, M.; Pérez-Gago, M.B. Physicochemical, sensory, and nutritional quality of fresh-cut “Rojo Brillante” persimmon affected by maturity stage and antibrowning agents. Food Sci. Technol. Int. 2016, 22, 574–586. [Google Scholar] [CrossRef]
- Løkke, M.M.; Seefeldt, H.F.; Skov, T.; Edelenbos, M. Color and textural quality of packaged wild rocket measured by multispectral imaging. Postharvest Biol. Technol. 2013, 75, 86–95. [Google Scholar] [CrossRef]
- Liu, C.; Liu, W.; Lu, X.; Chen, W.; Yang, J.; Zheng, L. Potential of multispectral imaging for real-time determination of colour change and moisture distribution in carrot slices during hot air dehydration. Food Chem. 2015, 195, 110–116. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, F.; Zhuo, Y.; Xue, T.; Jin, L.; Yan, J.; Kai, H.; Peng, L.; An, D.; Yu, H.; et al. Determining the nutritional value and antioxidant capacity of duckweed (Wolffia arrhiza) under artificial conditions. LWT—Food Sci. Technol. 2022, 153, 112477. [Google Scholar] [CrossRef]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-based DPPH Assay for Antioxidant Activity Analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Wicker, L. Anthocyanin Pigments in the Skin of Lychee Fruit. J. Food Sci. 1991, 56, 466–468. [Google Scholar] [CrossRef]
- Cao, J.K.; Jiang, W.B.; Zhao, Y.M. Experiments Guide of Physiological and Biochemical for Postharvest Fruits and Vegetables, 1st ed.; China Light Industry Press: Beijing, China, 2013. [Google Scholar]
- Maghoumi, M.; Gómez, P.A.; Mostofi, Y.; Zamani, Z.; Artés-Hernández, F.; Artés, F. Combined effect of heat treatment, UV-C and superatmospheric oxygen packing on phenolics and browning related enzymes of fresh-cut pomegranate arils. LWT—Food Sci. Technol. 2013, 2, 389–396. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Z.; Du, R. Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage. Acta Physiol. Plant 2015, 4, 74. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Zhou, S.H.; Guo, L.H. Inhibition of browning on the surface of peach slices by short-term exposure to nitric oxide and ascorbic acid. Food Chem. 2009, 114, 174–179. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Costanza, C.; Marco, L.; Luca, I.; Alberto, P.; Lucia, G. Suitability of Hydroponically-Grown Rumex acetosa L. as Fresh-Cut Produce. Horticulturae 2020, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Wei, B.; Gao, Z.; Zhou, Y.; Shi, F.; Zhou, X.; Zhou, Q.; Ji, S. Changes in membrane lipid composition and function accompanying chilling injury in bell peppers. Plant Cell Physiol. 2018, 59, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Ioannou, I.; Ghoul, M. Prevention of enzymatic browning in fruits and vegetables. Eur. Sci. J. 2013, 9, 311–341. [Google Scholar] [CrossRef]
- Dou, Y.; Chang, C.; Wang, J.; Cai, Z.; Zhang, W.; Du, H.; Gan, Z.; Wan, C.; Chen, J.; Zhu, L. Hydrogen sulfide inhibits enzymatic browning of fresh-cut Chinese water chestnuts. Front. Nutr. 2021, 8, 652984. [Google Scholar] [CrossRef]
- Qiao, L.; Han, X.; Wang, H.; Gao, M.; Tian, J.; Lu, L.; Liu, X. Novel alternative for controlling enzymatic browning: Catalase and its application in fresh-cut potatoes. J. Food Sci. 2021, 86, 3529–3539. [Google Scholar] [CrossRef]
- Xiao, Y.; He, J.; Zeng, J.; Yuan, X.; Zhang, Z.; Wang, B. Application of citronella and rose hydrosols reduced enzymatic browning of fresh-cut taro. J. Food Biochem. 2020, 44, e13283. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Zhao, X. Calcium maintained higher quality and enhanced resistance against chilling stress by regulating enzymes in reactive oxygen and biofilm metabolism of Chinese winter jujube fruit. J. Food Biochem. 2020, 44, e13161. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.; Bu, J.; Khan, N.M.; Khan, R.U.; Jiang, Z.; Mou, W.; Luo, Z.; Mao, L.; Ying, T. Integrated treatment of CaCl2, citric acid and sorbitol reduces loss of quality of button Mushroom (Agaricus Bisporus) during postharvest storage. J. Food Process. Preserv. 2015, 39, 2008–2016. [Google Scholar] [CrossRef]
- Kou, X.; Wu, M.; Li, L.; Wang, S.; Xue, Z.; Liu, B.; Fei, Y. Effects of CaCl2 dipping and pullulan coating on the development of brown spot on ‘Huangguan’ pears during cold storage. Postharvest Biol. Technol. 2015, 99, 63–72. [Google Scholar] [CrossRef]
- Bing, M.; Jian, X.; Shu, Z.; Ze, L. Effects of the Use of Different Temperature and Calcium Chloride Treatments during Storage on the Quality of Fresh-Cut “Xuebai” Cauliflowers. Foods 2022, 11, 442. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, T.; Zhang, P.; Wang, Z.Y. Melatonin attenuates postharvest physiological deterioration of cassava storage roots. J. Pineal Res. 2016, 60, 424–434. [Google Scholar] [CrossRef]
- Bhattacharjee, S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 2005, 102, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Bai, X.; Zhang, J.; Wang, Y.; Jiang, H.; Bi, Y. The induction of pre-harvest acetylsalicylic acid treatment on preharvest resistance of Hami melon fruit. J. Fruit Sci. 2018, 35, 222–230. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Xie, B.; Hu, S.; Zheng, Y.; Jin, P. Effects of exogenous calcium and calcium chelant on cold tolerance of postharvest loquat fruit. Sci. Hortic. 2020, 269, 109391. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.-W.; Zhou, B.; Liu, Y.-F.; Xia, X.-L.; Xiao, Z.-G.; Lu, F.; Ji, S.-J. Calcium inhibited peel browning by regulating enzymes in membrane metabolism of ‘Nanguo’ pears during post-ripeness after refrigerated storage. Sci. Hortic. 2019, 244, 15–21. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.O.; Smith, N.; Schroeder, D.; Han, J.T.; Lee, C.Y. Daily consumption of phenolics and total antioxidant capacity from fruits and vegetables in the American diet. J. Sci. Food Agric. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Adams, J.B.; Brown, H.M. Discoloration in raw and processed fruits and vegetables. Crit. Revi. Food Sci. 2007, 47, 319–333. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Zeng, T.; Nie, Q.; Zhang, F.; Zhu, L. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chem. 2015, 177, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yi, P.; Li, C.; Xin, M.; Sun, J.; He, X.; Sheng, J.; Zhou, Z.; Zheng, F.; Li, J.; et al. Influence of polysaccharide-based edible coatings on enzymatic browning and oxidative senescence of fresh-cut lettuce. Food Sci. Nutr. 2021, 9, 888–899. [Google Scholar] [CrossRef]
- Youryon, P.; Supapvanich, S.; Kongtrakool, P.; Wongs-Aree, C. Calcium chloride and calcium gluconate peduncle infiltrations alleviate the internal browning of Queen pineapple in refrigerated storage. Hortic. Environ. Biotechnol. 2017, 59, 205–213. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, W.; Liu, S.; Liu, C.; Zheng, L. Effects of melatonin treatment on the enzymatic browning and nutritional quality of fresh-cut pear fruit. Food Chem. 2019, 299, 125116. [Google Scholar] [CrossRef]
- Yao, M.; Ge, W.; Zhou, Q.; Zhou, X.; Luo, M.; Zhao, Y.; Wei, B.; Ji, S. Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chem. 2021, 352, 129458. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Sun, H.; Luo, M.; Zhou, X.; Zhou, Q.; Sun, Y.; Ge, W.; Wei, B.; Cheng, S.; Ji, S. Exogenous glycine betaine treatment alleviates low temperature-induced pericarp browning of ‘Nanguo’ pears by regulating antioxidant enzymes and proline metabolism. Food Chem. 2019, 306, 125626. [Google Scholar] [CrossRef] [PubMed]
- Habibi, F.; Ramezanian, A.; Guillén, F.; Martínez-Romero, D.; Serrano, M.; Valero, D. Susceptibility of blood orange cultivars to chilling injury based on antioxidant system, physiological and biochemical responses at different storage temperatures. Foods 2020, 9, 1609. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Li, X.; Xu, G.; Huo, Y.; Yang, H. Exogenous progesterone treatment alleviates chilling injury in postharvest banana fruit associated with induction of alternative oxidase and antioxidant defense. Food Chem. 2019, 286, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Liu, X.-H.; Zhang, R.-R.; Yan, Z.-M.; Xiong, A.-S.; Su, X.-J.S. Sequencing, assembly, annotation, and gene expression: Novel insights into browning-resistant Luffa cylindrica. PeerJ 2020, 8, e9661. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Li, J.; Ji, Y.; Han, C.; Jin, P.; Zheng, Y. Responses of fresh-cut strawberries to ethanol vapor pretreatment improved quality maintenance and associated antioxidant metabolism in gene expression and enzyme activity levels. J. Agri. Food. Chem. 2018, 66, 8382–8390. [Google Scholar] [CrossRef]
- Fischer, T.C.; Gosch, C.; Pfeiffer, J.; Halbwirth, H.; Halle, C.; Stich, K.; Forkmann, G. Flavonoid genes of pear (Pyrus communis). Trees 2007, 21, 521–529. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Dokhanieh, A.Y.; Hassanpour, H.; Fard, J.R. Enhancement of antioxidant capacity of cornelian cherry (Cornus mas) Fruit by postharvest calcium treatment. Sci. Hortic. 2013, 161, 160–164. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Wei, B.; Cheng, S.; Zhou, Q.; Ji, S. GABA application improves the mitochondrial antioxidant system and reduces peel browning in ‘Nanguo’ pears after removal from cold storage. Food Chem. 2019, 297, 124903. [Google Scholar] [CrossRef]
- Jiang, D.; Lu, B.; Liu, L.; Duan, W.; Meng, Y.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, J.; et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biol. 2021, 21, 331. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Li, C.; Xie, Z.; Wang, S.; Li, B. Effects of root zone restriction on soluble sugar content and ultrastructure of phloem in ‘Jiufeng’ grape fruit. Plant Physiol. 2016, 52, 1546–1554. [Google Scholar] [CrossRef]
- Zhou, H.; Ye, Z.; Wang, G.; Su, M.; Du, J.; Li, H. Effect of pre-harvest bagging on the ultrastructure of peel of yellow-peach pericarp during shelf life. J. Fruit Sci. 2016, 33, 1000–1006. [Google Scholar] [CrossRef]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Description |
---|---|---|---|
LcPAL1 | CGCTGGACCCAAGTACAGG | GGTTGACAGTGTCGACTGTGTCC | Phenylalanine ammonia-lyase 1 |
LcPAL2 | GCTCAATTTTCTGAGCTTGT | GGACGTGGCTTGTTAC | |
LcCAT1 | CTAGTGGGAAACTGCTAACT | GGATAACAGTGGAGAAACGT | Catalase isozyme 1 |
LcCAT2 | TCACCATAACAACCACATGAAG | CACACACCTTTCTCTCTTTCCG | Catalase |
LcSOD1 | CACAGGAAGATGGTGAAGG | CCAGCAGGGTTGAAATGT | Superoxide dismutase [Cu-Zn]-like |
LcSOD2 | CCACGCTCTTGGCGATACA | CCATGGTCCTTCTTCAATGGA | Predicted: superoxide dismutase [Cu-Zn] 2 |
LcSOD3 | CACTTCTCCATAGCAAATGC | GGTCAGGGAAGGCG | Predicted: superoxide dismutase [Cu-Zn] |
ACTIN | GTGTTCTTCGGAATGACTGG | ATCGTTTACGGCATGGACTA | reference gene |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Feng, C.; Wang, Y.; Gao, S.; Sun, P.; Yan, Z.; Su, X.; Sun, Y.; Zhu, Q. Effect of CaCl2 Treatment on Enzymatic Browning of Fresh-Cut Luffa (Luffa cylindrica). Horticulturae 2022, 8, 473. https://doi.org/10.3390/horticulturae8060473
Feng Y, Feng C, Wang Y, Gao S, Sun P, Yan Z, Su X, Sun Y, Zhu Q. Effect of CaCl2 Treatment on Enzymatic Browning of Fresh-Cut Luffa (Luffa cylindrica). Horticulturae. 2022; 8(6):473. https://doi.org/10.3390/horticulturae8060473
Chicago/Turabian StyleFeng, Yingna, Cui Feng, Yuanhua Wang, Shuai Gao, Pengpeng Sun, Zhiming Yan, Xiaojun Su, Ying Sun, and Qianqian Zhu. 2022. "Effect of CaCl2 Treatment on Enzymatic Browning of Fresh-Cut Luffa (Luffa cylindrica)" Horticulturae 8, no. 6: 473. https://doi.org/10.3390/horticulturae8060473
APA StyleFeng, Y., Feng, C., Wang, Y., Gao, S., Sun, P., Yan, Z., Su, X., Sun, Y., & Zhu, Q. (2022). Effect of CaCl2 Treatment on Enzymatic Browning of Fresh-Cut Luffa (Luffa cylindrica). Horticulturae, 8(6), 473. https://doi.org/10.3390/horticulturae8060473