Evaluation of Electrostatic Spraying Equipment in a Greenhouse Pepper Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spray Application Equipment
- Hand-held electrostatic spray gun (Tecnostatic, Zaragoza, Spain), equipped with 3 electrostatic nozzles, connected by a double-tube hose to a central unit composed of a compressor and a boiler, which supply air and liquid to the nozzles as the operator moves between the crop lines (Figure 1).
- Hand-held spray gun (Figure 2) with two steel flat-fan nozzles (NOVI-F, Novifam, Almeria, Spain) connected to a cart equipped with a membrane pump (M-30, Imovilli Pompe s.r.l., Reggio Emilia, Italy) and a 150 L tank.
2.2. Experimental Design
2.3. Characterisation of the Plant Canopy
2.4. Measurement of Deposition in the Plant Canopy
2.5. Statistical Analysis
3. Results
3.1. Spray Deposition on the Crop Canopy
3.2. Losses to the Ground
4. Discussion
4.1. Plant Canopy Deposition
4.2. Losses to the Ground
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Giles, D.K.; Comino, J.A. Variable Flow Control for Pressure Atomization Nozzles. SAE Trans. 1989, 98, 237–249. [Google Scholar]
- Failla, S.; Romano, E. Effect of Spray Application Technique on Spray Deposition and Losses in a Greenhouse Vegetable Nursery. Sustainability 2020, 12, 7052. [Google Scholar] [CrossRef]
- Law, S.E. Agricultural Electrostatic Spray Application: A Review of Significant Research and Development during the 20th Century. J. Electrostat. 2001, 51–52, 25–42. [Google Scholar] [CrossRef]
- Grella, M.; Gallart, M.; Marucco, P.; Balsari, P.; Gil, E. Ground Deposition and Airborne Spray Drift Assessment in Vineyard and Orchard: The Influence of Environmental Variables and Sprayer Settings. Sustainability 2017, 9, 728. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of Pesticides on Environment. In Plant, Soil and Microbes: Volume 1: Implications in Crop Science; Springer: Cham, Switzerland, 2016; pp. 253–269. ISBN 9783319274553. [Google Scholar]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Velasco, L.; Ruiz, L.; Galipienso, L.; Rubio, L.; Janssen, D. A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture. Agronomy 2020, 10, 860. [Google Scholar] [CrossRef]
- Acebedo, M.M.; Diánez, F.; Santos, M. Almeria’s Green Pest Management Revolution: An Opportunity That Arose from a Food Safety Alert. Agronomy 2022, 12, 619. [Google Scholar] [CrossRef]
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System, COM/2020/381 Final. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 8 April 2021).
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—The European Green Deal, COM (2019) 640 Final. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 8 April 2021).
- CAGPDS (Andalusian Regional Government, Regional Ministry of Agriculture and Fishery). Summary of the Greenhouse Horticulture Crop Season. Almería 2020/21. (In Spanish). Available online: http://www.juntadeandalucia.es/agriculturaypesca/observatorio/servlet/FrontController?action=List&table=11030&subsector=20&page=1# (accessed on 24 February 2022).
- MAPA (Ministry of Agriculture, Fisheries and Food. Government of Spain). Statistics Yearbook 2020. (In Spanish). Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2020/ANUARIO/AE20.pdf (accessed on 20 April 2021).
- Valera-Martínez, D.L.; Belmonte-Ureña, L.J.; Molina-Aiz, F.D.; López-Martinez, A. Greenhouse Agriculture in Almeria. A Comprehensive Techno-Economic Analysis; Cajamar Caja Rural: Almeria, Spain, 2016; p. 408. ISBN 9788495531759. [Google Scholar]
- Li, Y.; Li, Y.; Pan, X.; Li, Q.X.; Chen, R.; Li, X.; Pan, C.; Song, J. Comparison of a New Air-Assisted Sprayer and Two Conventional Sprayers in Terms of Deposition, Loss to the Soil and Residue of Azoxystrobin and Tebuconazole Applied to Sunlit Greenhouse Tomato and Field Cucumber. Pest Manag. Sci. 2018, 74, 448–455. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.; Agüera, F.; Carvajal, F. Field Evaluation of a Self-Propelled Sprayer and Effects of the Application Rate on Spray Deposition and Losses to the Ground in Greenhouse Tomato Crops. Pest Manag. Sci. 2011, 67, 942–947. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.; Fernández, M. Comparative Spray Deposits by Manually Pulled Trolley Sprayer and a Spray Gun in Greenhouse Tomato Crops. Crop Prot. 2012, 31, 119–124. [Google Scholar] [CrossRef]
- Braekman, P.; Foqué, D.; van Labeke, M.-C.; Pieters, J.G.; Nuyttens, D. Influence of Spray Application Technique on Spray Deposition in Greenhouse Ivy Pot Plants Grown on Hanging Shelves. HortScience 2009, 44, 1921–1927. [Google Scholar] [CrossRef] [Green Version]
- Rincón, V.J.; Páez, F.C.; Sánchez-Hermosilla, J. Potential Dermal Exposure to Operators Applying Pesticide on Greenhouse Crops Using Low-Cost Equipment. Sci. Total Environ. 2018, 630, 1181–1187. [Google Scholar] [CrossRef]
- Patel, M.K. Technological Improvements in Electrostatic Spraying and Its Impact to Agriculture during the Last Decade and Future Research Perspectives—A Review. Eng. Agric. Environ. Food 2016, 9, 92–100. [Google Scholar] [CrossRef]
- Appah, S.; Wang, P.; Ou, M.X.; Gong, C.; Jia, W.D. Review of Electrostatic System Parameters, Charged Droplets Characteristics and Substrate Impact Behavior from Pesticides Spraying. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Esehaghbeygi, A.; Tadayyon, A.; Besharati, S. Comparison of Electrostatic and Spinning-Discs Spray Nozzles on Wheat Weeds Control. J. Am. Sci. 2010, 6, 529–533. [Google Scholar]
- Pascuzzi, S.; Cerruto, E. Spray Deposition in “Tendone” Vineyards When Using a Pneumatic Electrostatic Sprayer. Crop Prot. 2015, 68, 1–11. [Google Scholar] [CrossRef]
- Salcedo, R.; Llop, J.; Campos, J.; Costas, M.; Gallart, M.; Ortega, P.; Gil, E. Evaluation of Leaf Deposit Quality between Electrostatic and Conventional Multi-Row Sprayers in a Trellised Vineyard. Crop Prot. 2020, 127, 104964. [Google Scholar] [CrossRef]
- Neto, J.G.; da Cunha, J.P.A.R.; Almeida, V.V.; Alves, G.S. Spray Deposition on Coffee Leaves from Airblast Sprayers with and without Electrostatic Charge. Biosci. J. 2015, 31, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.; Singh, M.; Mishra, P.K.; Manes, G.S.; Sharma, K.; Mishra, A. Comparative Evaluation of Electrostatic Sprayer for Cotton Crop. Int. J. Bio-Resour. Stress Manag. 2016, 7, 1049–1053. [Google Scholar] [CrossRef]
- Joseph, S.V.; Bolda, M. Evaluating the Potential Utility of an Electrostatic Sprayer and a Tractor-Mounted Vacuum Machine for Lygus Hesperus (Hemiptera: Miridae) Management in California’s Coastal Strawberry. Crop Prot. 2018, 113, 104–111. [Google Scholar] [CrossRef]
- Kabashima, J.; Giles, D.K.; Parrella, M.P. Electrostatic Sprayers Improve Pesticide Efficacy in Greenhouses. Calif. Agric. 1995, 49, 31–35. [Google Scholar] [CrossRef]
- De Cerqueira, D.T.R.; Raetano, C.G.; Dal Pogetto, M.H.F.D.A.; Carvalho, M.M.; Prado, E.P.; Costa, S.Í.D.A.; Moreira, C.A.F. Optimization of Spray Deposition and Tetranychus Urticae Control with Air Assisted and Electrostatic Sprayer. Sci. Agric. 2017, 74, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Gil, E.; Balsari, P.; Gallart, M.; Llorens, J.; Marucco, P.; Andersen, P.G.; Fàbregas, X.; Llop, J. Determination of Drift Potential of Different Flat Fan Nozzles on a Boom Sprayer Using a Test Bench. Crop Prot. 2014, 56, 58–68. [Google Scholar] [CrossRef]
- Llop, J.; Gil, E.; Llorens, J.; Gallart, M.; Balsari, P. Influence of Air-Assistance on Spray Application for Tomato Plants in Greenhouses. Crop Prot. 2015, 78, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Rincón, V.J.; Grella, M.; Marucco, P.; Alcatrão, L.E.; Sanchez-Hermosilla, J.; Balsari, P. Spray Performance Assessment of a Remote-Controlled Vehicle Prototype for Pesticide Application in Greenhouse Tomato Crops. Sci. Total Environ. 2020, 726, 138509. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.C.; Pérez-Alonso, J.; Callejón-Ferre, Á.J. Evaluation of the Effect of Different Hand-Held Sprayer Types on a Greenhouse Pepper Crop. Agriculture 2021, 11, 532. [Google Scholar] [CrossRef]
- De Assunção, H.H.T.; Da Cunha, J.P.A.R.; Silva, S.M.; Alves, G.S.; Lemes, E.M. Spray Deposition on Maize Using an Electrostatic Sprayer. Eng. Agric. 2020, 40, 503–510. [Google Scholar] [CrossRef]
- Patel, M.K.; Praveen, B.; Sahoo, H.K.; Patel, B.; Kumar, A.; Singh, M.; Nayak, M.K.; Rajan, P. An Advance Air-Induced Air-Assisted Electrostatic Nozzle with Enhanced Performance. Comput. Electron. Agric. 2017, 135, 280–288. [Google Scholar] [CrossRef]
- Knoche, M. Effect of Droplet Size and Carrier Volume on Performance of Foliage-Applied Herbicides. Crop Prot. 1994, 13, 163–178. [Google Scholar] [CrossRef]
- Matthews, G.; Bateman, R.; Miller, P. Pesticide Application Methods; John Wiley & Sons: Hoboken, NJ, USA, 2014; p. 545. [Google Scholar]
- Maski, D.; Durairaj, D. Effects of Charging Voltage, Application Speed, Target Height, and Orientation upon Charged Spray Deposition on Leaf Abaxial and Adaxial Surfaces. Crop Prot. 2010, 29, 134–141. [Google Scholar] [CrossRef]
- Gan-Mor, S.; Ronen, B.; Ohaliav, K. The Effect of Air Velocity and Proximity on the Charging of Sprays from Conventional Hydraulic Nozzles. Biosyst. Eng. 2014, 121, 200–208. [Google Scholar] [CrossRef]
- Zhao, S.; Castle, G.S.P.; Adamiak, K. Factors Affecting Deposition in Electrostatic Pesticide Spraying. J. Electrostat. 2008, 66, 594–601. [Google Scholar] [CrossRef]
Equipment * | Pressure (bar) | Flow Rate (L min−1) | Forward Speed (m s−1) | Volume Rate (L ha−1) |
---|---|---|---|---|
ESG | 1.50 (air); 4.00 (liquid) | 0.82 | 0.68 | 201.16 |
ESG_WC | 1.50 (air); 4.00 (liquid) | 0.82 | 0.67 | 203.45 |
HHSG | 26.70 | 3.60 | 0.81 | 742.62 |
Parameter | Minimum | Maximum | Mean |
---|---|---|---|
Temperature (°C) | 20.7 | 23.9 | 22.3 |
Relative humidity (%) | 66 | 62 | 64 |
Wet Temperature 1 (°C) | 16.51 | 18.76 | 17.64 |
Equipment * | dn (µL cm−2) | CV (%) |
---|---|---|
ESG | 0.86 ± 0.51a | 59.35 |
ESG_WC | 0.54 ± 0.32b | 59.10 |
HHSG | 0.58 ± 0.34b | 57.89 |
Equipment * | Outer | Inner |
---|---|---|
ESG | 2.36 ± 0.38a | 1.64 ± 0.06a |
ESG_WC | 2.85 ± 0.31b | 2.17 ± 0.30ab |
HHSG | 3.66 ± 0.28c | 2.51 ± 0.44b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hermosilla, J.; Pérez-Alonso, J.; Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Agüera-Vega, F. Evaluation of Electrostatic Spraying Equipment in a Greenhouse Pepper Crop. Horticulturae 2022, 8, 541. https://doi.org/10.3390/horticulturae8060541
Sánchez-Hermosilla J, Pérez-Alonso J, Martínez-Carricondo P, Carvajal-Ramírez F, Agüera-Vega F. Evaluation of Electrostatic Spraying Equipment in a Greenhouse Pepper Crop. Horticulturae. 2022; 8(6):541. https://doi.org/10.3390/horticulturae8060541
Chicago/Turabian StyleSánchez-Hermosilla, Julián, José Pérez-Alonso, Patricio Martínez-Carricondo, Fernando Carvajal-Ramírez, and Francisco Agüera-Vega. 2022. "Evaluation of Electrostatic Spraying Equipment in a Greenhouse Pepper Crop" Horticulturae 8, no. 6: 541. https://doi.org/10.3390/horticulturae8060541
APA StyleSánchez-Hermosilla, J., Pérez-Alonso, J., Martínez-Carricondo, P., Carvajal-Ramírez, F., & Agüera-Vega, F. (2022). Evaluation of Electrostatic Spraying Equipment in a Greenhouse Pepper Crop. Horticulturae, 8(6), 541. https://doi.org/10.3390/horticulturae8060541