Evaluation of Proline-Coated Chitosan Nanoparticles on Decay Control and Quality Preservation of Strawberry Fruit (cv. Camarosa) during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. Fruit Materials
2.3. Preparation of Coating Treatment Solutions
2.4. Measurement of Weight Loss
2.5. Decay Incidence
2.6. Firmness
2.7. Total Soluble Solids (TSS) and Titratable Acidity (TA)
2.8. Hydrogen Peroxide (H2O2) and Malondialdehyde (MDA) Contents
2.9. Determination of Ascorbic Acid Content
2.10. Measurement of Total Phenolic, Flavonoids and Anthocyanin Content
2.11. Enzyme Assay
2.11.1. Extraction of Samples
2.11.2. Superoxide Dismutase (SOD) Activity
2.11.3. CAT Activity
2.12. Measurement of Antioxidant Capacity
2.13. Statistical Analysis
3. Results and Discussion
3.1. Characterization of CTS-Pro NPs
3.2. Weight Loss and Decay Percentage
3.3. Firmness, TSS and TA
3.4. Ascorbic Acid Content
3.5. Hydrogen Peroxide (H2O2) and Malondialdehyde (MDA) Content
3.6. Total Phenolic Content
3.7. Total Flavonoids
3.8. Total Anthocyanin Content
3.9. Antioxidant Enzyme Activities
3.10. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruit by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food. Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef] [PubMed]
- Buendia, B.; Gil, M.I.; Tudela, J.A.; Gady, A.L.; Medina, J.J.; Soria, C.; López, J.B.; Tomás-Barberán, F.A. HPLC-MS analysis of proanthocyanin oligomers and other phenolics in 15 strawberry cultivars. J. Agric. Food Chem. 2010, 58, 3916–3926. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, H.; Sheng, K.; Liu, W.; Zheng, L. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biol. Technol. 2018, 139, 47–55. [Google Scholar] [CrossRef]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruit: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef]
- Rux, G.; Mahajan, P.V.; Linke, M.; Pant, A.; Sangerlaub, S.; Caleb, O.J.; Geyer, M. Humidity-regulating trays: Moisture absorption kinetics and applications for fresh produce packaging. Food. Bioprocess Technol. 2016, 9, 709–716. [Google Scholar] [CrossRef]
- Nguyen, L.P.L.; Visy, A.; Baranyai, L.; Friedrich, L.; Mahajan, P.V. Application of hue spectra fingerprinting during cold storage and shelf-life of packaged sweet cherry. J. Food. Meas. Charact. 2002, 14, 2689–2702. [Google Scholar] [CrossRef]
- Nguyen, L.P.L.; Szabo, G.; Hitka, G.; Zsom, T.; Toth, A.; Nemeth, C.; Kokai, Z. Effect of ethylene absorber on banana during storage. Acta Hortic. 2018, 1216, 55–58. [Google Scholar] [CrossRef]
- Nguyen, L.P.L.; Zsom, T.; Sao Dam, M.; Baranyai, L.; Hitka, G. Comparison of 1-MCP treatment on four melon cultivars using different temperatures. J. Appl. Bot. Food Qual. 2020, 93, 122–129. [Google Scholar]
- Baranyai, L.; Nguyen, L.L.P.; Sao Dam, M.; Zsom, T.; Hitka, G. Evaluation of precooling temperature and 1-MCP treatment on quality of ‘Golden Delicious’ apple. J. Appl. Bot. Food Qual. 2020, 93, 130–135. [Google Scholar]
- Hazarika, T.K.; Lalrinfeli, L.; Lalchhnmawia, J.; Mandal, D. Alteration of quality attributes and shelf-life in strawberry (Fragaria x ananssa) fruit during storage as influence by edible coating. Indian. J. Agri. Sci. 2019, 89, 28–34. [Google Scholar]
- Jesus Filho, M.D.; Scolforo, C.Z.; Saraiva, S.H.; Pinheiro, C.J.G.; Silva, P.I.; Della Lucia, S.M. Physicochemical, microbiological and sensory acceptance alterations of strawberries caused by gamma radiation and storage time. Sci. Hortic. 2018, 238, 187–194. [Google Scholar] [CrossRef]
- Arnon, H.; Zaitsev, Y.; Porat, R. Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest. Biol. Technol. 2014, 87, 21–26. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.L.; Mercado-Silva, E.; Del Real, L.A.; Gutierrez-Cortez, E.; Cornejo-Villegas, M.A.; Quintanar-Guerrero, D. The effect of nano coatings with a-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “red delicious” apples. Innov. Food. Sci. Emerg. Technol. 2014, 22, 188–196. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of proteins drug: Alginate and chitosan—A review. J. Control Release 2006, 114, 1–14. [Google Scholar] [CrossRef]
- Adiletta, G.; Zampella, L.; Coletta, C.; Petriccione, M. Chitosan coating to preserve the qualitative traits and improve antioxidant system in fresh figs (Ficus carica L.). Agriculture 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Li, W.; Wang, Q.; Li, X.; Xu, Q.; Guo, X. Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruit and vegetables. Molecules 2019, 24, 1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatri, D.; Panigrahi, J.; Prajapati, A.; Bariya, H. Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Sci. Hortic. 2020, 259, 108837. [Google Scholar] [CrossRef]
- Rahman, M.; Akter Mukta, J.; As Sabir, A.; Rani Gupta, D.; Mohi-Ud-Din, M.; Hasanuzzaman, M.; Miah, M.G.; Rahman, M.; Islam, M.T. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS ONE 2018, 13, 1–14. [Google Scholar] [CrossRef]
- Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.S.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods 2015, 4, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Hesami, A.; Kavoosi, S.; Khademi, R.; Sarikhani, S. Effect of chitosan coating and storage temperature on shelf-life and fruit quality of Ziziphus mauritiana. Intern. J. Fruit Sci. 2021, 21, 509–518. [Google Scholar] [CrossRef]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as a preservative for fruit and vegetables: A review on chemistry and antimicrobial properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Dam, M.S.; To, X.T.; Le, Q.T.P.; Nguyen, L.L.P.; Friedrich, L.; Hitka, G.; Zsom, T.; Thi Nguyen, T.C.; Huynh, C.Q.; Thitran, M.D.; et al. Postharvest quality of hydroponic strawberry coated with chitosan-calcium gluconate. Prog. Agric. Engin. Sci. 2020, 16, 141–151. [Google Scholar] [CrossRef]
- Hu, D.; Wang, H.; Wang, L. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. Food Sci. Technol. 2016, 65, 398–405. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, S.; Ren, Y.; Li, H.; Zhang, X.; Di, J. Jujube preservation using chitosan film with nano-silicon dioxide. J. Food Eng. 2012, 113, 408–414. [Google Scholar] [CrossRef]
- Shi, S.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J. Food Eng. 2013, 118, 125–131. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. N. Y. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Signorelli, S. The fermentation analogy: A point of view for understanding the intriguing role of proline accumulation in stressed plants. Frontiers. Front. Plant Sci. 2016, 7, 1339. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, K.; de Campos, M.K.; Domingues, D.S.; Pereira, L.F.; Vieira, L.G. The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep. 2013, 40, 3269–3279. [Google Scholar] [CrossRef]
- Hoque, M.A.; Banu, M.N.A.; Nakamura, Y.; Shimoishi, Y.; Murata, Y. Proline and glycine betaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J. Plant Physiol. 2008, 165, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Mohammadrezakhani, S.; Hajilou, J.; Rezanejad, F.; Zaare-Nahandi, F. Assessment of exogenous application of proline on antioxidant compounds in three Citrus species under low temperature stress. J. Plant Interact. 2019, 14, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Lopez, G.; Ventura-Aguilar, R.I.; Correa-Pacheco, Z.N.; Bautista-Banos, S.; Barrera-Necha, L.L. Nanostructured chitosan edible coating loaded with a-pinene for the preservation of the postharvest quality of Capsicum annum L. and Alternaria alternate control. Inter. J. Biol. Macro. 2020, 165, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, H. Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Sci. Hortic. 2017, 224, 367–373. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Razavi, F.; Rabiei, V.; Gohari, G.; Palou, L. Application of Glycine betaine coated chitosan nanoparticles alleviate chilling injury and maintain quality of plum (Prunus domestica L.) fruit. Intern. J. Biol. Macromol. 2022, 207, 965–977. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Fard, J.R. Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruit (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem. 2017, 221, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Muñoz, P.; Almenar, E.; Ocio, M.J.; Gavara, R. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol. Technol. 2006, 39, 247–253. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, T.; Zhang, P.; Wang, Z.Y. Melatonin attenuates postharvest physiological deterioration of cassava storage roots. J. Pineal. Res. 2016, 60, 424–434. [Google Scholar] [CrossRef]
- Saini, R.S.; Sharma, K.D.; Kaushik, R.A.; Dhankhar, O.P. Laboratory manual analytical techniques in horticulture. Agrobios (India). IST Edition 2006, 2, 12–26. [Google Scholar]
- Pineli, L.O.; Moretti, C.L.; Dos Santos, M.S.; Campos, A.B.; Brasileiro, A.V.; Cordova, A.C.; Chiarello, M.D. Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. J. Food Comp. Anal. 2011, 24, 11–16. [Google Scholar] [CrossRef]
- Chen, L.; Han, Y.; Jiang, H.; Korpelainen, H.; Li, C. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J. Exp. Bot. 2011, 62, 5037–5050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.; Khan, A.S.; Malik, A.U.; Shahid, M. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruit. Food Chem. 2016, 206, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Dhital, R.; Mora, N.B.; Watson, D.G.; Kohli, P.; Choudhary, R. Efficacy of limonene nano coatings on post-harvest shelf life of strawberries. LWT-Food. Sci. Technol. 2018, 97, 124–134. [Google Scholar] [CrossRef]
- Romanazzi, G. Chitosan treatment for the control of postharvest decay of table grapes, strawberries and sweet cherries. Fresh Prod. 2010, 4, 111–115. [Google Scholar]
- Li, H.Y.; Wang, F.; Liu, Y.; Yang, Z.; Wu, H.; Cai, Q.; Zhang, Y.; Li, P. Effects of chitosan on control of postharvest blue mold decay of apple fruit and the possible mechanisms involved. Sci. Hort. 2015, 186, 77–83. [Google Scholar] [CrossRef]
- Camatari, F.O.D.S.; Santana, L.C.L.D.A.; Carnelossi, M.A.G.; Alexandre, A.P.S.; Nunes, M.L.; Goulart, M.O.F.; Narain, N.; Silva, M.A.A.P.D. Impact of edible coatings based on cassava starch and chitosan on the post-harvest shelf life of mango (Mangifera indica) ‘Tommy Atkins’ fruit. Food Sci. Technol. 2018, 38, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Youssef, K.; Hashim, A.F. Inhibitory Effect of Clay/Chitosan Nanocomposite against Penicillium digitatum on Citrus and Its Possible Mode of Action. Jordan J. Biol. Sci. 2020, 13, 349–355. [Google Scholar]
- Pasquariello, M.S.; Rega, P.; Migliozzi, T.; Capuano, L.R.; Scortichini, M.; Petriccione, M. Effect of cold storage and shelf life on physiological and quality traits of early ripening pear cultivars. Sci. Hortic. 2013, 162, 341–350. [Google Scholar] [CrossRef]
- Ahmadi-Afzadi, M.; Tahir, I.; Nybom, H. Impact of harvesting time and fruit firmness on the tolerance to fungal storage diseases in an apple germplasm collection. Postharvest. Biol. Technol. 2013, 82, 51–58. [Google Scholar] [CrossRef]
- Zhong, Q.; Xia, W. Effect of 1-methylcyclopropene and/or chitosan coating treatments on storage life and quality maintenance of Indian jujube fruit. Food Sci. Technol. 2007, 40, 404–411. [Google Scholar]
- Aleryani-Raqeeb, A.; Mahmud, T.M.M.; Omar, S.R.S.; Zaki, A.R.M. Effect of calcium infiltration and chitosan coating on storage life and quality characteristics during storage of papaya (Carica papaya L.). Int. J. Agric. Res. 2008, 3, 296–306. [Google Scholar]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food. Sci. Technol. 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Nguyen, H.V.H.; Nguyen, D.H.H. Effects of nano-chitosan and chitosan coating on the postharvest quality, polyphenol oxidase activity and malondialdehyde content of strawberry (Fragaria x ananassa Duch.). J. Hort. Postharvest Res. 2020, 3, 11–24. [Google Scholar]
- Kittur, F.S.; Saroja, N.; Tharanathan, H.R.N. Polysaccharide-based composite coating formulations for shelf-life extension of fresh banana and mango. Eur. Food Res. Technol. 2001, 213, 306–311. [Google Scholar] [CrossRef]
- Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Li, L. The effect of the layer-bylayer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Sogvar, O.B.; Saba, M.K.; Emamifar, A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol. 2016, 114, 29–35. [Google Scholar] [CrossRef]
- Davey, M.W.; Van Montagu, M.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Suekawa, M.; Fujikawa, Y.; Inoue, A.; Kondo, T.; Uchida, E.; Koizumi, T.; Esaka, M. High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruit. Biosci. Biotech. Biochem. 2019, 83, 1713–1716. [Google Scholar] [CrossRef]
- Gao, S.P.; Hu, K.D.; Hu, L.Y.; Li, Y.H.; Han, Y.; Wang, H.L.; Ly, K.; Liu, Y.S.; Zhang, H. Hydrogen sulfide delays postharvest senescence and plays an antioxidative role in fresh-cut kiwifruit. Hort. Sci. 2013, 48, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Amal, S.; Atress, M.M.; El-Mogy, H.E.; Aboul-Anean, B.W. Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. J. Hortic. Sci. Ornam. Plants 2010, 2, 88–97. [Google Scholar]
- Khodaei, D.; Zohreh Hamidi-Esfahani, Z.; Edris Rahmati, E. Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS J. 2021, 23, 17–23. [Google Scholar] [CrossRef]
- Belal Abu Salha, B.; Gedanken, A. Extending the Shelf Life of Strawberries by the Sonochemical Coating of their Surface with Nanoparticles of an Edible Anti-Bacterial Compound. Applied Nano. 2021, 2, 2. [Google Scholar] [CrossRef]
- Mandal, D.; Sahu, C.; Bagchi, S.; Das, A. KKinetics and mechanism of the tropospheric oxidation of vinyl acetate initiated by OH radical: A theoretical study. J. Phys. Chem. 2013, 117, 3739–3750. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Peng, X.; Luo, Y.; Wang, J.; Guo, X.; Huang, K. Physiological and biochemical responses of grapefruit seed extract dip on ‘redglobe’ grape. LWT-Food Sci. Technol. 2009, 42, 471–476. [Google Scholar] [CrossRef]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. 2012, 144, 172–178. [Google Scholar] [CrossRef]
- Kumar, P.; Sethia, S.; Sharma, R.; Srivastav, M.; Varghesec, E. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Sci. Horticulturae 2017, 226, 104–109. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-mansy, H.A.; Soliman, S.A. Effect of chitosan–olive oil processing residues coatings on keeping quality of cold-storage strawberry (Fragaria ananassa var. festival). J. Food Qual. 2016, 39, 504–515. [Google Scholar] [CrossRef]
- Resende, N.S.; Gonçalves, G.A.S.; Reis, K.C.; Tonoli, G.H.D.; Boas, E. Chitosan/Cellulose Nanofibril Nanocomposite and Its Effect on Quality of Coated Strawberries. J. Food Qual. 2018, 2018, 233–254. [Google Scholar] [CrossRef] [Green Version]
- Jongsri, P.; Wangsomboondee, T.; Rojsitthisak, P.; Seraypheap, K. Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT-Food Sci. Technol. 2016, 73, 28–36. [Google Scholar] [CrossRef]
- Addai, Z.R.; Abdullah, A.; Mutalib, S.A. Influence of ripening stages on antioxidant properties of papaya fruit (Carica papaya L.). In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; Volume 1571, pp. 696–701. [Google Scholar]
- Firdous, N.; Khan, M.R.; Butt, M.S.; Shahid, M. Application of Aloe vera gel based edible coating to maintain postharvest quality of tomatoes. Pak. J. Agric. Sci. 2020, 57, 245–249. [Google Scholar]
- Wang, S.Y.; Gao, H. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (fragaria x aranassa duch.). LWT-Food Sci. Technol. 2013, 52, 71–79. [Google Scholar] [CrossRef]
- Ananga, A.; Georgiev, V.; Ochieng, J.; Phills, B.; Tsolova, V. Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. Mediterr. Genet. Code-Grapevine Olive 2013, 1, 247–287. [Google Scholar]
- Vargas, M.; Albors, A.; Chiralt, A.; GonzalezMartinez, C. Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biol. Technol. 2006, 41, 164–171. [Google Scholar] [CrossRef]
- Van, T.B.; Duyen, H.H.; Ha, V.H. Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biol. Technol. 2020, 162, 103–111. [Google Scholar]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalyses. Cellular. Molecul. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef]
- Nasr, F.; Pateiro, M.; Rabiei, V.; Razavi, F.; Formaneck, S.; Gohari, G.; Lorenzo, J.M. Chitosan-phenylalanine nanoparticles (Cs-Phe Nps) extend the postharvest life of persimmon (Diospyros kaki) fruits under chilling stress. Coatings 2021, 11, 819. [Google Scholar] [CrossRef]
- Molamohammadi, H.; Pakkish, Z.; Akhavan, H.R.; Saffari, V.R. Effect of salicylic acid incorporated chitosan coating on shelf life extension of fresh in-hull pistachio fruit. Food Bioprocess Technol. 2020, 13, 121–131. [Google Scholar] [CrossRef]
- Kumar, N.; Pal, M.; Singh, A.; SaiRam, R.K.; Srivastava, G.C. Exogenous proline alleviates oxidative stress and increase vase life in rose (Rosa hybrida L.‘Grand Gala’). Sci. Hortic. 2010, 127, 79–85. [Google Scholar] [CrossRef]
- Gohari, G.; Molaei, S.; Kheiry, A.; Ghafouri, M.; Razavi, F.; Lorenzo, J.M.; Juárez-Maldonado, A. Exogenous application of proline and L-cysteine alleviates internal browning and maintains eating quality of cold stored flat ‘Maleki’ peach fruit. Horticulturae 2021, 7, 469. [Google Scholar] [CrossRef]
Treatments | Storage (Days) | Decay (%) | Weight Loss (%) | Firmness (N) | TSS (Brix) | TA (g 100 g−1) | Ascorbic Acid (mg 100 g−1) |
---|---|---|---|---|---|---|---|
Control | 3 | 0 | 0 | 3.4 ± 0.14 bc | 3.3 ± 0.17 g | 0.97 ± 0.02 fg | 72 ± 2.56 a |
6 | 9 ± 0.83 f | 8 ± 0.32 fghi | 3.5 ± 0.15 bc | 7.3 ± 0.27 a | 1.24 ± 0.02 ab | 54.8 ± 2.19 cde | |
9 | 31 ± 1.91 c | 12 ± 0.72 bc | 2.9 ± 0.13 de | 7.3 ± 0.21 a | 0.91 ± 0.04 gh | 44.3 ± 2.4 h | |
12 | 58 ± 2.25 a | 16 ± 1.43 a | 1 ± 0.14 g | 4.5 ± 0.21 f | 0.7 ± 0.01 i | 18.2 ± 1.51 j | |
Pro 1 mM | 3 | 0 | 0 | 3.6 ± 0.2 b | 4.7 ± 0.27 f | 0.86 ± 0.02 h | 63.7 ± 2 b |
6 | 18 ± 1.15 de | 11 ± 0.66 bcd | 2.8 ± 0.11 de | 7 ± 0.3 ab | 1.14 ± 0.03 cd | 56 ± 1.99 cd | |
9 | 20 ± 1.73 de | 10 ± 1.15 cdef | 2.8 ± 0.15 de | 6.8 ± 0.34 abc | 1.27 ± 0.02 ab | 49 ± 2.3 efgh | |
12 | 44 ± 2.48 b | 13 ± 1.15 b | 2.1 ± 0.14 f | 6 ± 0.28 cd | 0.92 ± 0.01 gh | 28.2 ± 0.98 i | |
Pro 5 mM | 3 | 0 | 0 | 3 ± 0.14 de | 4.7 ± 0.2 f | 0.91± 0.02 gh | 58.7 ± 1.44 bc |
6 | 0 | 7 ± 0.99 ghi | 3.1 ± 0.07 cd | 7 ± 0.25 ab | 1.09 ± 0.01 de | 51.2 ±1.58 defg | |
9 | 22 ± 2 d | 9 ± 0.66 efgh | 3.5 ± 0.17 bc | 5.9 ± 0.28 de | 0.99 ± 0.04 fg | 51 ± 0.57 defg | |
12 | 43 ± 1.8 b | 11 ±0.92 bcde | 1.8 ± 0.12 f | 4.8 ± 0.3 f | 0.92 ± 0.01 gh | 19.3 ± 1.82 j | |
CTS-Pro NPs | 3 | 0 | 0 | 3.7 ± 0.16 ab | 4.9 ± 0.2 f | 1.02 ± 0.03 ef | 50.7 ±2.72 efgh |
6 | 0 | 7 ± 0.99 ghi | 3.8 ± 0.14 ab | 7.2 ± 0.18 a | 1.09 ± 0.04 de | 47.7 ± 2.18 fgh | |
9 | 10 ± 1.29 f | 6 ± 1.15 i | 3 ± 0.1 de | 6.3 ± 0.21 bcd | 1.21 ± 0.02 bc | 45 ± 2 gh | |
12 | 16 ± 2.19 e | 9 ± 0.73 defg | 2.6 ± 0.08 e | 5.2 ± 0.11 ef | 0.94 ± 0.02 fgh | 31.9 ± 0.95 i | |
CTS-0.1% | 3 | 0 | 0 | 4 ± 0.11 a | 5.9 ± 0.35 de | 0.94 ± 0.02 fgh | 47.7 ± 1.44 fgh |
6 | 0 | 6 ± 0.99 i | 3.4 ± 0.15 bc | 7.6 ± 0.31 a | 1.33 ± 0.03 a | 52.3 ± 2 def | |
9 | 18 ± 1.32 de | 7 ± 0.57 hi | 3.5 ± 0.08 bc | 5.8 ± 0.25 de | 0.93 ± 0.01 fgh | 48 ± 2.3 fgh | |
12 | 16 ± 2.3 e | 8 ± 0.37 efghi | 2.8 ± 0.06 de | 5.1 ± 0.2 ef | 0.89 ± 0.03 gh | 31 ± 2.3 i | |
Significant | df | ||||||
Time | 3 | ** | ** | ** | ** | ** | ** |
Treatment | 4 | ** | ** | ** | ** | ** | ** |
T × T | 12 | ** | ** | ** | ** | ** | ** |
Traits | Ascorbic Acid (mg 100 g−1) | Firmness (N) | TSS (Brix) | MDA (nmol g−1) | H2O2 (nmol g−1) | Flavonoid (mg 100 g−1 FW) | Anthocyanin (mg 100 g−1 FW) |
---|---|---|---|---|---|---|---|
Value | 72 | 3.9 | 4.8 | 37.5 | 2.64 | 6.8 | 46.5 |
Traits | Phenol (mg 100 g−1 FW) | Antioxidant capacity (%) | CAT (U g−1 FW) | SOD (U g−1 FW) | |||
Value | 116 | 91.5 | 43 | 9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahmani, R.; Razavi, F.; Mortazavi, S.N.; Gohari, G.; Juárez-Maldonado, A. Evaluation of Proline-Coated Chitosan Nanoparticles on Decay Control and Quality Preservation of Strawberry Fruit (cv. Camarosa) during Cold Storage. Horticulturae 2022, 8, 648. https://doi.org/10.3390/horticulturae8070648
Bahmani R, Razavi F, Mortazavi SN, Gohari G, Juárez-Maldonado A. Evaluation of Proline-Coated Chitosan Nanoparticles on Decay Control and Quality Preservation of Strawberry Fruit (cv. Camarosa) during Cold Storage. Horticulturae. 2022; 8(7):648. https://doi.org/10.3390/horticulturae8070648
Chicago/Turabian StyleBahmani, Reza, Farhang Razavi, Seyed Najmmaddin Mortazavi, Gholamreza Gohari, and Antonio Juárez-Maldonado. 2022. "Evaluation of Proline-Coated Chitosan Nanoparticles on Decay Control and Quality Preservation of Strawberry Fruit (cv. Camarosa) during Cold Storage" Horticulturae 8, no. 7: 648. https://doi.org/10.3390/horticulturae8070648
APA StyleBahmani, R., Razavi, F., Mortazavi, S. N., Gohari, G., & Juárez-Maldonado, A. (2022). Evaluation of Proline-Coated Chitosan Nanoparticles on Decay Control and Quality Preservation of Strawberry Fruit (cv. Camarosa) during Cold Storage. Horticulturae, 8(7), 648. https://doi.org/10.3390/horticulturae8070648