Unattended Trapping of Whiteflies Driven out of Tomato Plants onto a Yellow-Colored Double-Charged Dipolar Electric Field Screen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Management
2.2. Electric Field Screens
2.3. Capturing and Attracting Whiteflies
2.4. Attraction of Whiteflies Driven out of Tomato Plants by Mechanical Tapping
2.4.1. Construction of a Moving YDD-EFS with and without Plant-Touching Arms
2.4.2. Tracking of Whiteflies Driven out of Tomato Plants by Mechanical Tapping
2.4.3. Attraction of Flying Whiteflies to the YDD-EFS
2.4.4. Automatic Trapping of Whiteflies Driven out of Tomato Plants
2.5. Statistical Analysis
3. Results and Discussion
3.1. Ability of the YDD-EFS to Attract and Capture Whiteflies
3.2. Flush-and-Return Behavior of Plant-Residing Whiteflies after Plant Tapping
3.3. Distance between the YDD-EFS and an Infested Tomato Plant
3.4. Automatic Control of Whiteflies on Tomato Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prabhaker, N.; Coudriet, D.L.; Meyerdirk, D.E. Insecticide resistance in the sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodiae). J. Econ. Entomol. 1985, 78, 748–752. [Google Scholar] [CrossRef]
- Palumbo, J.C.; Horowitz, A.R.; Prabhaker, N. Insecticidal control and resistance management for Bemisia tabaci. Crop Prot. 2001, 20, 739–765. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Kontsedalov, S.; Ishaaya, I. Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabacci (Homoptera: Aleyrodidae). J. Econ. Entomol. 2004, 97, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Denholm, I. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Arc. Insect Biochem. Physiol. 2005, 58, 200–215. [Google Scholar] [CrossRef]
- Ferguson, J.S. Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to Cyromazine, Abamectin, and Spinosad. J. Econ. Entomol. 2004, 97, 112–119. [Google Scholar] [CrossRef]
- Wei, Q.-B.; Lei, Z.-R.; Nauen, R.; Cai, D.-C.; Gao, Y.-L. Abamectin resistance in strains of vegetable leafminer, Liriomyza sativae (Diptera: Agromyzidae) is linked to elevated glutathione S-transferase activity. Insect Sci. 2013, 13, 243–250. [Google Scholar] [CrossRef]
- Surjeet, K.; Jitender, K. Comparative biology of resistant and susceptible strains of Epilachna vigintioctopunctata (Fabricius) to malathion and endosulfan. J. Entomol. Res. 1997, 21, 303–306. [Google Scholar]
- Sheikh, K.; Desh, R. Efficacy of insecticides and biopesticides against hadda beetle, Henosepilachna vigintioctopunctata (fabricius) (coleoptera: Coccinellidae) on bitter gourd. Ind. J. Entomol. 2013, 75, 163–166. [Google Scholar]
- Hanif, M.U.; Raza, A.B.M.; Majeed, M.Z.; Arshad, M.; Ullah, M.I. Laboratory evaluation of selected differential chemistry and botanical insecticides against hadda beetle Epilachna vigintioctopunctata Fabricius (Coleoptera: Coccinellidae). Punjab Univ. J. Zool. 2021, 36, 185–191. [Google Scholar] [CrossRef]
- Otsu, Y.; Matsuda, Y.; Mori, H.; Ueki, H.; Nakajima, T.; Fujiwara, K.; Matsumoto, M.; Azuma, N.; Kakutani, K.; Nonomura, T.; et al. Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 2004, 14, 427–439. [Google Scholar] [CrossRef]
- Otsu, Y.; Matsuda, Y.; Shimizu, H.; Ueki, H.; Mori, H.; Fujiwara, K.; Nakajima, T.; Miwa, A.; Nonomura, T.; Sakuratani, Y.; et al. Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J. Appl. Entomol. 2003, 127, 441–446. [Google Scholar] [CrossRef]
- Otsu, Y.; Mori, H.; Komuta, K.; Shimizu, H.; Nogawa, S.; Matsuda, Y.; Nonomura, T.; Sakuratani, Y.; Tosa, Y.; Mayama, S.; et al. Suppression of leaf feeding and oviposition of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae) by chitinase gene-transformed phylloplane bacteria and their specific bacteriophages entrapped in alginate gel beads. J. Econ. Entomol. 2003, 96, 555–563. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, N.; Toyoda, H. Physical methods for electrical trap-and-kill fly traps using electrified insulated conductors. Insects 2022, 13, 253. [Google Scholar] [CrossRef]
- Jones, E.; Childers, R. Electric charge and electric field. In Physics, 3rd ed.; McGraw-Hill: Boston, MA, USA, 2002; pp. 495–525. [Google Scholar]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Kusakari, S.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. Eur. J. Plant Pathol. 2012, 134, 661–670. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy. J. Phys. Conf. Ser. 2015, 646, 0120031–0120034. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Toyoda, H. Practical application of an electric field screen to an exclusion of flying insect pests and airborne conidia from greenhouses with a good air penetration. J. Agric. Sci. 2012, 4, 51–60. [Google Scholar] [CrossRef]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Practical implementation of single-charged dipolar electric field screen. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 41–49. [Google Scholar]
- Nonomura, T.; Toyoda, H. Soil surface-trapping of tomato leaf-miner flies emerging from underground pupae with a simple electrostatic cover of seedbeds in a greenhouse. Insects 2020, 11, 878. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Prevention of whitefly entry from a greenhouse entrance by furnishing an airflow-oriented pre-entrance room guarded with electric field screens. J. Agric. Sci. 2014, 6, 172–184. [Google Scholar] [CrossRef]
- Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. An oppositely charged insect exclusion screen with gap-free multiple electric fields. J. Appl. Phys. 2012, 112, 116103. [Google Scholar] [CrossRef]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Exclusion of whiteflies from a plastic hoop greenhouse by a bamboo blind-type electric field screen. J. Agric. Sci. 2020, 12, 50–60. [Google Scholar]
- Takikawa, Y.; Nonomura, T.; Sonoda, T.; Matsuda, Y. Developing a phototactic electrostatic insect trap targeting whiteflies, leafminers, and thrips in greenhouses. Insects 2021, 12, 960. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Osamura, K.; Toyoda, H. Remote-controlled monitoring of flying pests with an electrostatic insect capturing apparatus carried by an unmanned aerial vehicle. Agriculture 2021, 11, 176. [Google Scholar] [CrossRef]
- Toyoda, H.; Matsuda, Y. Basic concepts for constructing an electric field screen. In Electric Field Screen: Principles and Applications; Toyoda, H., Ed.; Nobunkyo Production: Tokyo, Japan, 2015; pp. 3–17. [Google Scholar]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Xie, W.; Wu, Q.; Wang, S.; Jiaol, X.; Guo, L.; Zhou, X.; Zhang, Y. Transcriptome analysis of host-associated differentiation in Bemisia tabaci (Hemiptera: Aleyrodidae). Front. Physiol. 2014, 5, 487. [Google Scholar] [CrossRef]
- Munsell Color Company. Munsell Hue Circle Poster. Available online: https://munsell.com/color-blog/munsell-hue-circle-poster/ (accessed on 21 August 2022).
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Toyoda, H. Elimination of whiteflies colonizing greenhouse tomato plants using an electrostatic flying insect catcher. Int. J. Curr. Adv. Res. 2017, 6, 5517–5521. [Google Scholar]
- Shimoda, M. Recent advances in the optical control of insect pests using light and color. In Proceedings of the 2018 International Symposium on Proactive Technologies for Enhancement of Integrated Pest Management of Key Crops, Taichung, Taiwan, 3–5 April 2018; pp. 87–98. [Google Scholar]
- Hoelmer, K.M.; Simmons, A.M. Yellow sticky trap catches of parasitoids of Bemisia tabaci (Hemiptera: Aleyrodidae) in vegetable crops and their relationship to in-field populations. Environ. Entomol. 2008, 37, 391–399. [Google Scholar] [CrossRef]
- Moreau, T.L.; Isman, M.B. Trapping whiteflies? A comparison of greenhouse whitefly (Trialeurodes vaporariorum) responses to trap crops and yellow sticky traps. Pest Manag. Sci. 2011, 67, 408–413. [Google Scholar] [CrossRef]
- Lu, Y.; Bei, Y.; Zhang, J. Are yellow sticky traps an effective method for control of sweet potato whitefly, Bemisia tabaci, in the greenhouse or field? J. Insect Sci. 2012, 12, 113. [Google Scholar] [CrossRef]
- Halliday, D.; Resnick, R.; Walker, J. Electric discharge and electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds.; John Wiley & Sons: New York, NY, USA, 2005; pp. 561–604. [Google Scholar]
Experiments | First Round | Second Round | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | A + E | |
1 | 94 | 2 | 4 | 2 | 2 | 96 |
2 | 92 | 8 | 0 | 8 | 8 | 100 |
3 | 100 | 0 | 0 | n.c. | n.c. | n.c. |
4 | 100 | 0 | 0 | n.c. | n.c. | n.c. |
5 | 90 | 2 | 8 | 2 | 2 | 92 |
6 | 93 | 6 | 1 | 6 | 6 | 99 |
7 | 100 | 0 | 0 | n.c. | n.c. | n.c. |
8 | 88 | 9 | 3 | 9 | 9 | 97 |
9 | 96 | 4 | 0 | 4 | 4 | 100 |
10 | 100 | 0 | 0 | n.c. | n.c. | n.c. |
Average % and S.D. | 95.3 ± 1.3 | 3.1 ± 0.3 | 1.6 ± 0.1 | - | 100 | 97.3 ± 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takikawa, Y.; Matsuda, Y.; Kakutani, K.; Nonomura, T.; Toyoda, H. Unattended Trapping of Whiteflies Driven out of Tomato Plants onto a Yellow-Colored Double-Charged Dipolar Electric Field Screen. Horticulturae 2022, 8, 764. https://doi.org/10.3390/horticulturae8090764
Takikawa Y, Matsuda Y, Kakutani K, Nonomura T, Toyoda H. Unattended Trapping of Whiteflies Driven out of Tomato Plants onto a Yellow-Colored Double-Charged Dipolar Electric Field Screen. Horticulturae. 2022; 8(9):764. https://doi.org/10.3390/horticulturae8090764
Chicago/Turabian StyleTakikawa, Yoshihiro, Yoshinori Matsuda, Koji Kakutani, Teruo Nonomura, and Hideyoshi Toyoda. 2022. "Unattended Trapping of Whiteflies Driven out of Tomato Plants onto a Yellow-Colored Double-Charged Dipolar Electric Field Screen" Horticulturae 8, no. 9: 764. https://doi.org/10.3390/horticulturae8090764
APA StyleTakikawa, Y., Matsuda, Y., Kakutani, K., Nonomura, T., & Toyoda, H. (2022). Unattended Trapping of Whiteflies Driven out of Tomato Plants onto a Yellow-Colored Double-Charged Dipolar Electric Field Screen. Horticulturae, 8(9), 764. https://doi.org/10.3390/horticulturae8090764