Nutritional Composition and In Vitro Antioxidant Activities of Seed Kernel and Seed Oil of Balanites roxburghii: An Underutilized Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Proximate Analysis
2.4. Elemental Composition Analysis
2.5. Seed Oil Characterization
2.5.1. Physicochemical Characterization
2.5.2. Fatty Acid Profiling
2.6. Determination of Anti-Nutritional Factors
2.7. Total Phenolic Content Analysis
2.8. Antioxidant Activities
2.8.1. DPPH Radical Scavenging Activity
2.8.2. Total Antioxidant Activity (TAA)
2.8.3. Ferric Reducing Antioxidant Power (FRAP)
2.8.4. ABTS
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Elemental Composition Analysis
3.3. Physicochemical Properties of Oil
3.4. Fatty Acid Composition of Oil
3.5. Anti-Nutritional Components
3.6. Total Phenolic Content (TPC) and Antioxidant Activities of Seed Cake and Seed Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Report on Food Crises 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Padulosi, S.; Thompson, J.; Rudebjer, P. Fighting Poverty, Hunger and Malnutrition with Neglected and Underutilized Species (NUS): Needs, Challenges, and the Way Forward; Biodiversity International: Rome, Italy, 2013. [Google Scholar]
- Murthy, H.N.; Bapat, V.A. Importance of underutilized fruits and nuts. In Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry; Murthy, H.N., Bapat, V.A., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–19. [Google Scholar] [CrossRef]
- Sands, M.J.S. The desert date and its relatives: A revision of the genus Balanites. Kew Bull. 2001, 56, 1–128. [Google Scholar] [CrossRef]
- Yadav, G.G.; Murthy, H.N. Analysis of phenotypic variation and selection of superior genotypes of Balanites roxburghii Planch. from South India. Genet. Resour. Crop Evol. 2022, 69, 1993–2009. [Google Scholar] [CrossRef]
- Arora, A.; Tak, L. Balanites roxburghii: Physico-chemical properties and composition of fatty acid from the arid zone of Rajasthan. Int. J. Basic Appl. Chem. Sci. 2013, 3, 1–5. [Google Scholar]
- Elfeel, A.A. Variability in Balanites aegyptiaca var. aegyptiaca seed kernel oil, protein and minerals contents between and within locations. Agric. Biol. N. Am. 2010, 1, 170–174. [Google Scholar]
- Murthy, H.N.; Yadav, G.G.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants 2021, 10, 32. [Google Scholar] [CrossRef]
- Cooke, T. The Flora of the Presidency of Bombay; Taylor and Francis: London, UK, 1902; Volume 1. [Google Scholar]
- AOAC. Animal feed. In Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990. [Google Scholar]
- Hartree, E.F. Determination of protein: A modification of the lowry method that gives a linear photometric response. Anal. Biochem. 1972, 48, 422–427. [Google Scholar] [CrossRef]
- Sadashivam, S.; Manickam, A. Biochemical Methods, 3rd ed.; New Age International (P) Limited Publishers: New Delhi, India, 2008. [Google Scholar]
- FAO. Food Energy-Methods of Analysis and Conversion Factors; FAO: Rome, Italy, 2003. [Google Scholar]
- AOAC. Plants. In Official Methods of Analysis of the Association of Analytical Chemists, 17th ed.; Association of Official Analytical Chemists, Inc.: Arlington VA, USA, 2000. [Google Scholar]
- Fernandez-Hernandez, A.; Mateos, R.; Garcia-Mesa, J.A.; Beltran, G.; Fernandez-Escobar, R. Determination of mineral elements in fresh olive fruits by flame atomic spectrometry. Span. J. Agric. Res. 2010, 8, 1183–1190. [Google Scholar] [CrossRef]
- Liu, W.J.; Zeng, F.X.; Jiang, H. Determination of total nitrogen in solid samples by two-step digestion–ultraviolet spectrophotometry method. Commun. Soil Sci. Plant Anal. 2013, 44, 1080–1091. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemist’s Society; American Oil Chemist’s Society: Champaign, IL, USA, 2003. [Google Scholar]
- Chandrasekaram, K.; Ng, M.H.; Choo, Y.M.; Chuah, C.H. Effect of storage temperature on the stability of phytonutrients in palm concentrates. Am. J. Appl. Sci. 2009, 6, 529–533. [Google Scholar] [CrossRef]
- Rogers, E.J.; Rice, S.M.; Nicolosi, R.J.; Carpenter, D.R.; McClelland, C.A.; Romanczyk, L.J. Identification, and quantitation of γ-oryzanol components and simultaneous assessment of tocols in rice bran oil. J. Am. Oil Chem. Soc. 1993, 70, 301–307. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Hernández, J.; Paseiro-Losada, P.; López-Cervantes, J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed. Chromatogr. 2004, 18, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shang, C.; Maroof, M.A.S.; Biyashev, R.M.; Grabau, E.A.; Kwanyuen, P.; Burton, J.W.; Buss, G.R. A Modified colorimetric method for phytic acid analysis in soybean. Crop Sci. 2007, 47, 1797–1803. [Google Scholar] [CrossRef]
- Dye, W.B. Chemical studies on Halogeton glomeratus. Weeds 1956, 4, 55–60. [Google Scholar] [CrossRef]
- Bajaj, K.L.; Devsharma, A.K. A colorimetric method for the determination of tannins in tea. Microchim. Acta 1977, 68, 249–253. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dalawai, D.; Arer, I.; Karadakatti, P.; Hafiz, K. Nutritional value of underutilized fruit: Diospyros chloroxylon Roxb. (Green ebony persimmon). Int. J. Fruit Sci. 2022, 22, 249–263. [Google Scholar] [CrossRef]
- Manasa, V.; Chaudhari, S.R.; Tumaney, A.W. Spice fixed oils as a new source of γ-oryzanol: Nutraceutical characterization of fixed oils from selected spices. RSC Adv. 2020, 10, 43975–43984. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gunstone, F.D. (Ed.) Production, and trade of vegetable oils. In Vegetable Oils in Food Technology: Composition, Properties and Uses; CRC Press LLC: Boca Raton, FL, USA, 2002; pp. 1–17. [Google Scholar]
- Mohamed, A.M.; Wolf, W.; Spieß, W.E.L. Physical, morphological and chemical characteristics, oil recovery and fatty acid composition of Balanites aegyptiaca Del. kernels. Plant Foods Hum. Nutr. 2002, 57, 179–189. [Google Scholar] [CrossRef]
- Longvah, T.; Ananthan, R.; Bhaskaracharya, K.; Venkaiah, K. Indian Food Composition Tables; National Institute of Nutrition: Hyderabad, India, 2017. [Google Scholar]
- Khanvilkar, P.; Patel, G.; Nagar, P.S.; Shah, S.N. Balanites roxburghii plant oil as potential non-edible feedstock for biodiesel production. Energy Power 2016, 6, 21–27. [Google Scholar]
- Harris, G.K.; Marshall, M.R. Ash analysis. In Food Analysis. Food Science Text Series; Nielsen, S.S., Ed.; Springer International Publisher: Cham, Switzerland, 2017; pp. 287–297. [Google Scholar] [CrossRef]
- Zahir, E.; Saeed, R.; Hameed, M.A.; Yousuf, A. Study of physicochemical properties of edible oil and evaluation of frying oil quality by fourier transform-infrared (FT-IR) spectroscopy. Arab. J. Chem. 2017, 10, S3870–S3876. [Google Scholar] [CrossRef]
- Badifu, G.I.O. Unsaponifiable matter in oils from some species of Cucurbitaceae. J. Food Compos. Anal. 1991, 4, 360–365. [Google Scholar] [CrossRef]
- Gupta, M.K. Sunflower oil. In Vegetable Oils in Food Technology: Composition, Properties and Uses; Gunstone, F.D., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2002; pp. 128–156. [Google Scholar]
- Bai, G.; Ma, C.; Chen, X. Phytosterols in edible oil: Distribution, analysis, and variation during processing. Grain Oil Sci. Technol. 2021, 4, 33–44. [Google Scholar] [CrossRef]
- Baur, A.C.; Brandsch, C.; König, B.; Hirche, F.; Stangl, G.I. Plant oils as potential sources of vitamin D. Front. Nutr. 2016, 3, 29. [Google Scholar] [CrossRef]
- Savva, S.C.; Kafatos, A. Vegetable oils: Dietary importance. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 365–372. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Kaushik, G.; Singhal, P.; Chaturvedi, S. Food processing for increasing consumption: The case of legumes. In Food Processing for Increased Quality and Consumption; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Oxford, UK, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors, and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Shi, L.; Arntfield, S.D.; Nickerson, M. Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Res. Int. 2018, 107, 660–668. [Google Scholar] [CrossRef]
- Udensi, E.; Arisa, N.; Maduka, M. Effects of processing methods on the levels of some antinutritional factors in Mucuna flagellipes. Niger. Food J. 2009, 26, 2. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Nat. Prod. Commun. 2022, 17, 1934578X2110697. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sreeramulu, D.; Raghunath, M. Antioxidant and phenolic content of nuts, oil seeds, milk, and milk products commonly consumed in India. Food Nutr. Sci. 2011, 2, 422–427. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Zhang, X.; Chen, G.L.; Yu, J.; Yang, L.Q.; Gao, Y.Q. Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J. Funct. Foods 2016, 24, 359–372. [Google Scholar] [CrossRef]
- Christodouleas, D.; Papadopoulos, K.; Calokerinos, A.C. Determination of total antioxidant activity of edible oils as well as their aqueous and organic extracts by chemiluminescence. Food Anal. Methods 2011, 4, 475–484. [Google Scholar] [CrossRef]
Component | % Composition |
---|---|
Moisture | 12.87 ± 1.23 |
Fat | 43.20 ± 0.46 |
Protein | 10.96 ± 0.09 |
Carbohydrate | 5.74 ± 0.03 |
Ash | 4.60 ± 0.12 |
Fiber | 15.12 ± 1.21 |
Energy (Kcal/100 g) | 422.81 |
Element | Composition |
---|---|
Macroelements (mg/g) | |
Nitrogen | 28.40 |
Phosphorous | 7.62 |
Potassium | 14.00 |
Sulphur | 5.60 |
Sodium | 0.32 |
Calcium | 6.05 |
Magnesium | 6.00 |
Microelements (µg/g) | |
Boron | 28.96 |
Zinc | 431.00 |
Iron | 1419.00 |
Manganese | 44.50 |
Copper | 36.80 |
Parameter | Values |
---|---|
Color | Yellow |
State at room temperature | Liquid |
Density (g/cm3) | 0.915 |
Refractive index | 1.33 |
Free fatty acid content (%) | 0.31 ± 0.01 |
Peroxide value (meq O2/kg) | 69.98 ± 5.18 |
Iodine value (I2/100 g) | 81.19 ± 0.72 |
Unsaponification value (%) | 1.93 ± 0.14 |
Carotenoids (mg/kg) | 5.36 ± 0.39 |
Tocopherols (mg/100 g) | |
α | 7.29 ± 0.03 |
β + γ | 1.79 ± 0.01 |
δ | 0.72 ± 0.01 |
Phytosterols (mg/100 g) | |
Ergosterol | 5.16 ± 0.53 |
Stigmasterol + campesterol | 40.78 ± 1.60 |
β-Sitosterol | 126.90 ± 1.08 |
Squalene | 17.45 ± 0.03 |
Fatty Acid | % Composition |
---|---|
Palmitic acid (16:0) | 17.79 ± 0.15 |
Stearic acid (18:0) | 6.31 ± 0.01 |
Oleic acid (18:1) | 56.38 ± 0.28 |
Linoleic acid (18:2) | 18.77 ± 0.44 |
Linolenic acid (18:3) | 0.38 ± 0.03 |
1,9,17-Docosatriene (22:3) | 0.23 ± 0.03 |
Total saturated fatty acids (SFA) | 24.10 |
Total monounsaturated fatty acids (MUSFA) | 56.38 |
Total polyunsaturated fatty acids (PUSFA) | 19.38 |
Factor | Composition |
---|---|
Phytate (mg/g) | 21.71 ± 1.87 |
Oxalate (mg/g) | 32.01 ± 1.28 |
Tannins (mg TAE/g) | 1.99 ± 0.02 |
Activity | Seed Cake (for 1 g) | Seed Oil (for 100 g) |
---|---|---|
Total phenolic content (mg GAE/g) | 2.72 ± 0.03 | 8.90 ± 0.45 |
Antioxidant activities | ||
DPPH (mg GAE) | 0.65 ± 0.03 | 2.80 ± 0.07 |
TAA (mg AAE) | 20.27 ± 1.15 | 2.63 ± 0.07 |
FRAP (mM TE) | 117.9 ± 8.2 | 13.09 ± 1.56 |
ABTS (mM TE) | 178.7 ± 9.2 | 32.85 ± 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, G.G.; Murthy, H.N.; Dewir, Y.H. Nutritional Composition and In Vitro Antioxidant Activities of Seed Kernel and Seed Oil of Balanites roxburghii: An Underutilized Species. Horticulturae 2022, 8, 798. https://doi.org/10.3390/horticulturae8090798
Yadav GG, Murthy HN, Dewir YH. Nutritional Composition and In Vitro Antioxidant Activities of Seed Kernel and Seed Oil of Balanites roxburghii: An Underutilized Species. Horticulturae. 2022; 8(9):798. https://doi.org/10.3390/horticulturae8090798
Chicago/Turabian StyleYadav, Guggalada Govardhana, Hosakatte Niranjana Murthy, and Yaser Hassan Dewir. 2022. "Nutritional Composition and In Vitro Antioxidant Activities of Seed Kernel and Seed Oil of Balanites roxburghii: An Underutilized Species" Horticulturae 8, no. 9: 798. https://doi.org/10.3390/horticulturae8090798
APA StyleYadav, G. G., Murthy, H. N., & Dewir, Y. H. (2022). Nutritional Composition and In Vitro Antioxidant Activities of Seed Kernel and Seed Oil of Balanites roxburghii: An Underutilized Species. Horticulturae, 8(9), 798. https://doi.org/10.3390/horticulturae8090798