Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus mauritiana)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Materials, and Experimental Design
2.2. Tree Vegetative Growth
2.3. Physiological Parameters
2.4. Fruit Yield and Quality at Harvest
2.5. Fruit Shelf-Life
2.6. Statistical Data Analysis
3. Results
3.1. Effects on Tree Vegetative Growth and Physiological Parameters
3.2. Effects on Fruit Yield and Quality
3.3. Effects on Fruit Shelf-Life
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janick, J.; Paull, R.E. The Encyclopedia of Fruit and Nuts; CABI Publishing: Wallingford, UK, 2008. [Google Scholar]
- Meena, V.S.; Gora, J.S.; Singh, A.; Ram, C.; Meena, N.K.; Pratibha; Rouphael, Y.; Basile, B.; Kumar, P. Underutilized Fruit Crops of Indian Arid and Semi-Arid Regions: Importance, Conservation and Utilization Strategies. Horticulturae 2022, 8, 171. [Google Scholar] [CrossRef]
- Lal, G.; Fageria, M.; Narendra, K.G.; Dhaka, R.; Khandelwal, S. Shelf-life and quality of ber (Ziziphus mauritiana Lamk) fruits after postharvest water dipping treatments and storage. J. Hortic. Sci. Biotechnol. 2002, 77, 576–579. [Google Scholar] [CrossRef]
- Anjum, M.A.; Rauf, A.; Bashir, M.A.; Ahmad, R. The evaluation of biodiversity in some indigenous indian jujube (Zizyphus mauritiana) germplasm through physico-chemical analysis. Acta Sci. Pol. Hortorum Cultus 2018, 17, 39–52. [Google Scholar] [CrossRef]
- Meghwal, P.R.; Singh, A.; Singh, D. Underutilized Fruits and Vegetables in Hot Arid Regions of India: Status and Prospects: A Review. Agric. Rev. 2021, 43, 38–45. [Google Scholar] [CrossRef]
- Meena, S.; Meena, H.; Meena, R. Diversified uses of ber (Ziziphus spp.). Pop. Kheti 2014, 2, 154–159. [Google Scholar]
- Feyssa, D.H.; Njoka, J.T.; Asfaw, Z.; Nyangito, M.M. Wild Edible Fruits of Importance for Human Nutrition in Semiarid Parts of East Shewa Zone, Ethiopia: Associated Indigenous Knowledge and Implications to Food Security. Pak. J. Nutr. 2010, 10, 40–50. [Google Scholar] [CrossRef]
- Sharif, N.; Jaskani, M.J.; Abbas Naqvi, S.; Awan, F.S. Exploitation of diversity in domesticated and wild ber (Ziziphus mauritiana Lam.) germplasm for conservation and breeding in Pakistan. Sci. Hortic. 2019, 249, 228–239. [Google Scholar] [CrossRef]
- Singh, A.; Singh, R.K.; Kumar, A.; Kumar, A.; Kumar, R.; Kumar, N.; Sheoran, P.; Yadav, R.; Sharma, D. Adaptation to social-ecological stressors: A case study with Indian jujube (Ziziphus mauritiana Lam.) growers of north-western India. Environ. Dev. Sustain. 2021, 23, 3265–3288. [Google Scholar] [CrossRef]
- Singh, R.S.; Singh, A.K.; Singh, S.; Yadav, V. Underutilized Fruits of Hot arid region. In Biodiversity in Horticultural Crops; Peter, K., Abraham, Z., Eds.; Daya Books: New Delhi, India, 2007; Volume 1, pp. 75–92. [Google Scholar]
- Pandey, R.; Pathak, R.; Singh, I. Effect of pruning intensity on vegetative and reproductive growth in ber (Zizyphus mauritiana). Indian J. Hortic. 1998, 55, 306–313. [Google Scholar]
- Gill, K.; Bal, J. Influence of pruning severity and time on yield and fruit quality of ber cv. Umran. Indian J. Hortic. 2006, 63, 162–165. [Google Scholar]
- Syamal, M.; Rajput, C. Effect of Pruning on Growth, Fruiting and Fruit Quality of Ber (Zizyphus mauritiana Lam.). Indian J. Hortic. 1989, 46, 364–367. [Google Scholar]
- Singh, R.; Bal, J. Pruning in ber (Ziziphus mauritiana Lamk)-A review. Agric. Rev. 2008, 29, 61. [Google Scholar]
- Pasala, R.K.; Minhas, P.S.; Wakchaure, G.C. Plant bioregulators: A stress mitigation strategy for resilient agriculture. In Abiotic Stress Management for Resilient Agriculture; Springer: Berlin/Heidelberg, Germany, 2017; pp. 235–259. [Google Scholar]
- Rademacher, W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Waqas, M.A.; Kaya, C.; Riaz, A.; Farooq, M.; Nawaz, I.; Wilkes, A.; Li, Y. Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front. Plant Sci. 2019, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 2020, 36, 1. [Google Scholar] [CrossRef]
- Amin, A.; AA, A.E.-K.; Abouziena, H.; El-Awadi, M.; Gharib, F. Effects of benzoic acid and thiourea on growth and productivity of wheat (Triticum aestivum L.) plants. Int. Sci. Res. J. 2016, 72, 132–149. [Google Scholar]
- Garg, B.; Burman, U.; Kathju, S. Influence of thiourea on photosynthesis, nitrogen metabolism and yield of clusterbean (Cyamopsis tetragonoloba (L.) Taub.) under rainfed conditions of Indian arid zone. Plant Growth Regul. 2006, 48, 237–245. [Google Scholar]
- Khanna, P.; Kaur, K.; Gupta, A.K. Root biomass partitioning, differential antioxidant system and thiourea spray are responsible for heat tolerance in spring maize. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 351–359. [Google Scholar] [CrossRef]
- Yadav, P.V.; Kumari, M.; Meher, L.C.; Arif, M.; Ahmed, Z. Chemical seed priming as an efficient approach for developing cold tolerance in Jatropha. J. Crop Improv. 2012, 26, 140–149. [Google Scholar] [CrossRef]
- Wang, L.-J.; Fan, L.; Loescher, W.; Duan, W.; Liu, G.-J.; Cheng, J.-S.; Luo, H.-B.; Li, S.-H. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 2010, 10, 34. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Huang, M.; Cai, J.; Zhou, Q.; Dai, T.; Cao, W.; Jiang, D. Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front. Plant Sci. 2018, 9, 1137. [Google Scholar] [CrossRef] [PubMed]
- Aghaeifard, F.; Babalar, M.; Fallahi, E.; Ahmadi, A. Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria × Ananassa duch.) cv. Camarosa. J. Plant Nutr. 2016, 39, 1821–1829. [Google Scholar] [CrossRef]
- Asghari, M.; Aghdam, M.S. Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci. Technol. 2010, 21, 502–509. [Google Scholar] [CrossRef]
- Mala, R. Nutrient content of important fruit trees from arid zone of Rajasthan. J. Hortic. For. 2009, 1, 103–108. [Google Scholar]
- Corrado, G.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Zarrelli, A.; Giannini, P.; Ritieni, A.; De Pascale, S.; Kyriacou, M.C.; Rouphael, Y. Productive and morphometric traits, mineral composition and secondary metabolome components of borage and purslane as underutilized species for microgreens production. Horticulturae 2021, 7, 211. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef]
- Kavanagh, F. Official Methods of Analysis of the AOAC; Horwitz, W., Ed.; The Association of Official Analytical Chemists, VA: Rockville, MD, USA, 1981; Volume 70, p. 1038. [Google Scholar]
- Rangana, S. Manual of Analysis of Fruit and Vegetable Products; Tata McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A Colorimetric Method for the Determination of Sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Marsal, J.; Behboudian, M.; Mata, M.; Basile, B.; Del Campo, J. Fruit thinning in ‘Conference’pear grown under deficit irrigation to optimise yield and to improve tree water status. J. Hortic. Sci. Biotechnol. 2010, 85, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Shashi; Garhwal, O.; Choudhary, M.; Jakhar, M. Effect of pruning time and bio-regulators on growth and yield of ber in semi-arid zone of Rajasthan. J. Pharmacogn. Phytochem. 2020, 9, 168–172. [Google Scholar]
- Caccavello, G.; Giaccone, M.; Scognamiglio, P.; Forlani, M.; Basile, B. Influence of intensity of post-veraison defoliation or shoot trimming on vine physiology, yield components, berry and wine composition in Aglianico grapevines. Aust. J. Grape Wine Res. 2017, 23, 226–239. [Google Scholar] [CrossRef]
- Caccavello, G.; Giaccone, M.; Scognamiglio, P.; Mataffo, A.; Teobaldelli, M.; Basile, B. Vegetative, yield, and berry quality response of aglianico to shoot-trimming applied at three stages of berry ripening. Am. J. Enol. Vitic. 2019, 70, 351–359. [Google Scholar] [CrossRef]
- Basile, B.; Caccavello, G.; Giaccone, M.; Forlani, M. Effects of early shading and defoliation on bunch compactness, yield components, and berry composition of Aglianico grapevines under warm climate conditions. Am. J. Enol. Vitic. 2015, 66, 234–243. [Google Scholar] [CrossRef]
- Meghwal, P.; Kumar, P. Effect of supplementary irrigation and mulching on vegetative growth, yield and quality of ber. Indian J. Hortic. 2014, 71, 571–573. [Google Scholar]
- Forlani, M.; Basile, B.; Cirillo, C.; Iannini, C. Effects of harvest date and fruit position along the tree canopy on peach fruit quality. Acta Hortic. 2002, 5922, 459–466. [Google Scholar] [CrossRef]
- Shukla, A.K.; Awasthi, O.; Shukla, A.K. Effect of severity and time of pruning on canopy growth and yield of ber (Ziziphus mauritiana Lamk) under hot arid ecosystem. Progress. Hortic. 2007, 39, 134–138. [Google Scholar]
- Boora, R.; Harmail, S. Effect of pruning time and severity on yield and fruit quality in ber (Ziziphus mauritiana L) cv. Sanaur-2. Haryana J. Hortic. Sci. 2007, 36, 60. [Google Scholar]
- Meghwal, P.; Singh, A.; Singh, M. Pruning in Indian jujube (Ziziphus mauritiana Lam.): A review. Ann. Arid. Zone 2017, 56, 107–115. [Google Scholar]
- Mani, F.; Bettaieb, T.; Zheni, K.; Doudech, N.; Hannachi, C. Effect of hydrogen peroxide and thiourea on fluorescence and tuberization of potato (Solanum tuberosum L.). J. Stress Physiol. Biochem. 2012, 8, 61–67. [Google Scholar]
- Patade, V.Y.; Nikalje, G.C.; Srivastava, S. Role of thiourea in mitigating different environmental stresses in plants. Prot. Chem. Agents Amelior. Plant Abiotic Stress Biochem. Mol. Perspect. 2020, 467–482. [Google Scholar]
- Akladious, S.A. Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress. Protoplasma 2013, 251, 625–638. [Google Scholar] [CrossRef]
- Asthir, B.; Kaur, R.; Bains, N.S. Variation of invertase activities in four wheat cultivars as influenced by thiourea and high temperature. Acta Physiol. Plant. 2014, 37, 1712. [Google Scholar] [CrossRef]
- Haldar, A.; Naruka, I.; Rathore, S.; Kanpure, R. Foliar application of antioxidants on quality attributes and pungency principles of garlic (Allium sativum). Plant Arch. 2014, 14, 1061–1064. [Google Scholar]
- Patel, A.; Tandel, Y.; Bhatt, A.; Parmar, A.; Patel, B.A. Effect of nutrients and Thiourea on yield and quality of mango cv. Kesar. Adv. Life Sci. 2016, 5, 490–492. [Google Scholar]
- Sher, A.; Wang, X.; Sattar, A.; Ijaz, M.; Ul-Allah, S.; Nasrullah, M.; Bibi, Y.; Manaf, A.; Fiaz, S.; Qayyum, A. Exogenous Application of Thiourea for Improving the Productivity and Nutritional Quality of Bread Wheat (Triticum aestivum L.). Agronomy 2021, 11, 1432. [Google Scholar] [CrossRef]
- Landete, J. Dietary intake of natural antioxidants: Vitamins and polyphenols. Crit. Rev. Food Sci. Nutr. 2013, 53, 706–721. [Google Scholar] [CrossRef]
- Singh, A.; Singh, H. Application of plant growth regulators to improve fruit yield and quality in Indian gooseberry (Emblica officinalis Gaertn.). J. AgriSearch 2015, 2, 20–23. [Google Scholar]
- Van Driessche, E.; Beeckmans, S.; Dejaegere, R.; Kanarek, L. Thiourea: The antioxidant of choice for the purification of proteins from phenol-rich plant tissues. Anal. Biochem. 1984, 141, 184–188. [Google Scholar] [CrossRef]
- Hara, M.; Fujinaga, M.; Kuboi, T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol. Biochem. 2004, 42, 657–662. [Google Scholar] [CrossRef]
- Kaya, C.; Sonmez, O.; Aydemir, S.; Ashraf, M.; Dikilitas, M. Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). J. Plant Interact. 2013, 8, 234–241. [Google Scholar] [CrossRef]
- Rivas-San Vicente, M.; Plasencia, J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef]
- Amin, A.A.; El-Kader, A.A.A.; Shalaby, M.A.F.; Gharib, F.A.E.; Rashad, E.-S.M.; Teixeira da Silva, J.A. Physiological Effects of Salicylic Acid and Thiourea on Growth and Productivity of Maize Plants in Sandy Soil. Commun. Soil Sci. Plant Anal. 2013, 44, 1141–1155. [Google Scholar] [CrossRef]
Source of Variation | Trunk Diameter Growth | Canopy Perimeter Growth | Leaf Area | Total Leaf Chlorophyll Content | Relative Leaf Water Content |
---|---|---|---|---|---|
(cm) | (m) | (cm2·branch−1) | (mg·g−1) | (%) | |
Growing season (GS) | |||||
2018–2019 | 2.70 ± 0.05 b | 8.11 ± 0.13 b | 330.3 ± 5.6 b | 1.47 ± 0.03 a | 53.56 ± 0.67 a |
2019–2020 | 2.92 ± 0.04 a | 9.16 ± 0.16 a | 351.7 ± 6.5 a | 1.51 ± 0.02 a | 49.52 ± 0.64 b |
Significance | *** | *** | *** | n.s. | *** |
Pruning time (PR) | |||||
PR-13 | 2.72 ± 0.07 b | 7.63 ± 0.54 c | 300.3 ± 5.1 d | 1.28 ± 0.02 b | 48.22 ± 0.80 d |
PR-15 | 2.90 ± 0.09 a | 9.16 ± 0.24 a | 383.7 ± 8.3 a | 1.60 ± 0.03 a | 53.97 ± 1.18 a |
PR-17 | 2.84 ± 0.08 ab | 8.97 ± 0.21 ab | 362.4 ± 6.3 b | 1.56 ± 0.03 a | 52.46 ± 0.88 ab |
PR-19 | 2.79 ± 0.07 ab | 8.77 ± 0.19 b | 317.6 ± 5.2 c | 1.53 ± 0.03 a | 51.51 ± 0.80 c |
Significance | * | *** | *** | *** | *** |
Bio-regulators (PBR) | |||||
PBR-C | 2.12 ± 0.04 c | 7.44 ± 0.19 d | 315.7 ± 8.6 d | 1.33 ± 0.03 c | 47.17 ± 1.00 c |
PBR-TL | 3.01 ± 0.05 ab | 9.16 ± 0.23 ab | 351.4 ± 9.4 b | 1.58 ± 0.04 a | 54.02 ± 1.06 a |
PBR-TH | 3.06 ± 0.05 a | 9.39 ± 0.24 a | 372.7 ± 10.6 a | 1.60 ± 0.04 a | 54.57 ± 0.99 a |
PBR-SAL | 2.96 ± 0.05 ab | 8.77 ± 0.21 bc | 336.5 ± 8.6 bc | 1.49 ± 0.03 b | 51.22 ± 0.95 b |
PBR-SAH | 2.90 ± 0.05 b | 8.41 ± 0.19 c | 328.4 ± 8.0 cd | 1.46 ± 0.03 b | 50.70 ± 0.91 b |
Significance | *** | *** | *** | *** | *** |
GS × PBR | n.s. | n.s. | n.s. | n.s. | n.s. |
GS × PR | n.s. | n.s. | n.s. | n.s. | n.s. |
P × PBR | n.s. | n.s. | n.s. | n.s. | n.s. |
GS × PR × PBR | n.s. | n.s. | n.s. | n.s. | n.s. |
Source of Variation | Fruit Diameter | Fruit Yield (kg·tree−1) | TSS | Titratable Acidity | Ascorbic | Total Sugar |
---|---|---|---|---|---|---|
Acid | ||||||
(cm) | (°Brix) | (%) | (mg·100g−1) | (%) | ||
Growing season (GS) | ||||||
2018–2019 | 3.02 ± 0.04 b | 45.4 ± 0.7 b | 17.9 ± 0.3 b | 0.41 ± 0.01 a | 81.5 ± 1.0 b | 9.06 ± 0.14 b |
2019–2020 | 3.19 ± 0.04 a | 56.7 ± 1.0 a | 19.1 ± 0.3 a | 0.35 ± 0.01 b | 85.5 ± 1.1 a | 10.17 ± 0.14 a |
Significance | *** | *** | *** | n.s. | ** | *** |
Pruning time (PR) | ||||||
PR-13 | 3.03 ± 0.06 b | 49.3 ± 1.3 c | 16.7 ± 0.3 c | 0.42 ± 0.01 a | 78.7 ± 1.3 b | 8.67 ± 0.16 c |
PR-15 | 3.31 ± 0.07 a | 56.6 ± 1.8 a | 19.6 ± 0.4 a | 0.36 ± 0.01 c | 86.5 ± 1.8 a | 10.38 ± 0.22 a |
PR-17 | 3.10 ± 0.06 b | 52.1 ± 1.5 b | 19.3 ± 0.3 a | 0.37 ± 0.01 b | 85.3 ± 1.5 a | 10.27 ± 0.18 a |
PR-19 | 2.98 ± 0.05 b | 46.2 ± 1.1 d | 18.2 ± 0.3 b | 0.39 ± 0.01 b | 83.5 ± 1.3 a | 9.16 ± 0.16 b |
Significance | *** | *** | *** | *** | *** | *** |
Bio-regulators (PBR) | ||||||
PBR-C | 2.70 ± 0.06 d | 46.4 ± 1.5 c | 16.6 ± 0.4 d | 0.40 ± 0.02 b | 75.4 ± 1.4 c | 8.96 ± 0.23 c |
PBR-TL | 3.28 ± 0.06 ab | 54.4 ± 1.8 a | 19.4 ± 0.4 ab | 0.36 ± 0.01 c | 88.0 ± 1.6 a | 9.96 ± 0.25 a |
PBR-TH | 3.34 ± 0.06 a | 55.9 ± 1.8 a | 19.7 ± 0.4 a | 0.36 ± 0.01 c | 88.9 ± 1.5 a | 10.10 ± 0.25 a |
PBR-SAL | 3.14 ± 0.05 bc | 49.7 ± 1.6 b | 18.6 ± 0.4 bc | 0.39 ± 0.01 b | 83.7 ± 1.4 b | 9.63 ± 0.23 ab |
PBR-SAH | 3.05 ± 0.05 c | 48.8 ± 1.5 bc | 18.1 ± 0.4 c | 0.43 ± 0.01 a | 81.5 ± 1.3 b | 9.43 ± 0.23 bc |
Significance | *** | *** | *** | *** | *** | *** |
GS × PBR | n.s. | n.s. | n.s. | *** | n.s. | n.s. |
GS × PR | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
P × PBR | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
GS × PR × PBR | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Source of Variation | Fruit Fresh Weight Loss (%) | ||
---|---|---|---|
3 Days | 6 Days | 9 Days | |
Growing season (GS) | |||
2018–2019 | 2.67 ± 0.14 b | 5.37 ± 0.13 b | 12.06 ± 0.10 b |
2019–2020 | 3.27 ± 0.14 a | 6.51 ± 0.12 a | 12.95 ± 0.10 a |
Significance | *** | *** | *** |
Pruning time (PR) | |||
PR-13 | 2.67 ± 0.17 c | 5.66 ± 0.19 c | 12.29 ± 0.15 c |
PR-15 | 3.66 ± 0.20 a | 6.60 ± 0.19 a | 13.02 ± 0.15 a |
PR-17 | 3.24 ± 0.18 b | 6.25 ± 0.18 b | 12.74 ± 0.14 b |
PR-19 | 2.31 ± 0.16 c | 5.25 ± 0.20 d | 11.97 ± 0.15 d |
Significance | *** | *** | *** |
Bio-regulators (PBR) | |||
PBR-C | 2.18 ± 0.16 d | 4.94 ± 0.22 c | 11.73 ± 0.16 c |
PBR-TL | 3.51 ± 0.20 a | 6.47 ± 0.20 a | 12.92 ± 0.16 a |
PBR-TH | 3.79 ± 0.18 a | 6.71 ± 0.18 a | 13.10 ± 0.14 a |
PBR-SAL | 2.82 ± 0.20 b | 5.90 ± 0.19 b | 12.47 ± 0.15 b |
PBR-SAH | 2.57 ± 0.21 bc | 5.68 ± 0.21 b | 12.30 ± 0.16 b |
Significance | *** | *** | *** |
GS × PBR | n.s. | n.s. | n.s. |
GS × PR | n.s. | n.s. | n.s. |
P × PBR | n.s. | n.s. | n.s. |
GS × PR × PBR | n.s. | n.s. | n.s. |
Source of Variation | Fruit Spoilage (%) | ||
---|---|---|---|
3 Days | 6 Days | 9 Days | |
Growing season (GS) | |||
2018–2019 | 0.00 ± 0.00 a | 5.41 ± 0.08 b | 11.64 ± 0.44 b |
2019–2020 | 0.00 ± 0.00 a | 6.64 ± 0.12 a | 12.80 ± 0.45 a |
Significance | n.s. | *** | *** |
Pruning time (PR) | |||
PR-13 | 0.00 ± 0.00 a | 6.57 ± 0.17 a | 13.40 ± 0.69 a |
PR-15 | 0.00 ± 0.00 a | 5.21 ± 0.14 c | 11.40 ± 0.61 c |
PR-17 | 0.00 ± 0.00 a | 5.91 ± 0.17 b | 11.79 ± 0.61 bc |
PR-19 | 0.00 ± 0.00 a | 6.41 ± 0.16 a | 12.29 ± 0.62 b |
Significance | n.s. | *** | *** |
Bio-regulators (PBR) | |||
PBR-C | 0.00 ± 0.00 a | 6.79 ± 0.25 a | 18.65 ± 0.41 a |
PBR-TL | 0.00 ± 0.00 a | 5.77 ± 0.18 b | 10.52 ± 0.24 b |
PBR-TH | 0.00 ± 0.00 a | 5.72 ± 0.17 b | 10.33 ± 0.23 b |
PBR-SAL | 0.00 ± 0.00 a | 5.84 ± 0.18 b | 10.70 ± 0.22 b |
PBR-SAH | 0.00 ± 0.00 a | 6.01 ± 0.18 b | 10.89 ± 0.24 b |
Significance | n.s. | *** | *** |
GS × PBR | n.s. | n.s. | n.s. |
GS × PR | n.s. | n.s. | n.s. |
P × PBR | n.s. | n.s. | n.s. |
GS × PR × PBR | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shashi; Garhwal, O.P.; Choudhary, M.R.; Bairwa, L.N.; Kumawat, K.L.; Kumar, P.; Basile, B.; Corrado, G.; Rouphael, Y.; Gora, J.S. Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus mauritiana). Horticulturae 2022, 8, 809. https://doi.org/10.3390/horticulturae8090809
Shashi, Garhwal OP, Choudhary MR, Bairwa LN, Kumawat KL, Kumar P, Basile B, Corrado G, Rouphael Y, Gora JS. Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus mauritiana). Horticulturae. 2022; 8(9):809. https://doi.org/10.3390/horticulturae8090809
Chicago/Turabian StyleShashi, Om Prakash Garhwal, Mali Ram Choudhary, Laxmi Narayan Bairwa, Kishan Lal Kumawat, Pradeep Kumar, Boris Basile, Giandomenico Corrado, Youssef Rouphael, and Jagan Singh Gora. 2022. "Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus mauritiana)" Horticulturae 8, no. 9: 809. https://doi.org/10.3390/horticulturae8090809
APA StyleShashi, Garhwal, O. P., Choudhary, M. R., Bairwa, L. N., Kumawat, K. L., Kumar, P., Basile, B., Corrado, G., Rouphael, Y., & Gora, J. S. (2022). Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus mauritiana). Horticulturae, 8(9), 809. https://doi.org/10.3390/horticulturae8090809