Cultivar-Specific Assessments of Almond Nutritional Status through Foliar Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Pedoclimatic Condition
2.2. Leaf Sampling, Leaf Analysis and DOP Index
2.3. Leaf Content of Total Chlorophyll, Flavonols, Anthocyanins and Nitrogen Balance Index
2.4. Statistical Analysis
3. Results and Discussions
3.1. Specific Leaf Area and Leaf Dry Matter Content
3.2. Specific Almond Cultivar Leaf Nutrient Concentration and ∑DOP Index
3.3. Content of Total Chlorophyll, Flavonols, Anthocyanins and Nitrogen Balance Index in the Almond Leaves
3.4. Pearson Correlation Heatmap among Almond Leaf Traits Analyzed
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- INC. Nuts & Dried Fruits—Statistical Yearbook 2020/2021; INC: Reus, Spain, 2020; pp. 487–496. [Google Scholar]
- FAOSTAT. Food and agriculture data. 2022. Available online: http://faostat.fao.org/ (accessed on 30 June 2022).
- ISTAT. Coltivazioni Legnose e Fruttifere. Available online: http://dati.istat.it/Index.aspx?QueryId=33705 (accessed on 22 June 2022).
- Sottile, F.; Barone, E.; Barbera, G.; Palasciano, M. The Italian almond industry: New perspectives and ancient tradition. Acta Hortic. 2014, 1028, 401–407. [Google Scholar] [CrossRef]
- Laghezza, D.L.; Gentile, C.; Catalano, L. Verso una mandorlicoltura ad alta densità. Riv. Fruttic. 2017, 3, 40–43. [Google Scholar]
- Pérez de los Cobos, F.; Martínez-García, P.J.; Romero, A.; Miarnau, X.; Eduardo, I.; Howad, W.; Mnejja, M.; Dicenta, F.; Rafel Socias i Company; Rubio-Cabetas, M.J.; et al. Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars. Hortic. Res. 2021, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Gradziel, T.M.; Lampinen, B.; Connell, J.H.; Viveros, M. “Winters” almond: An early-blooming, productive, and high-quality pollenizer for “Nonpareil”. HortScience 2007, 42, 1725–1727. [Google Scholar] [CrossRef]
- Batlle, I.; Dicenta, F.; Rafel Socias i Company; Gradziel, T.M.; Wirthensohn, M.; Duval, H.; Vargas, F.J. Classical genetics and breeding. In Almonds: Botany, Productionand Uses; Gradziel, T.M., Ed.; CABI: Boston, MA, USA, 2017; pp. 111–148. [Google Scholar]
- Grasselly, C.; Crossa-Raynaud, P. L’amandier; G.P. Maisonneuve et Larose: Paris, France, 1980. [Google Scholar]
- Grasselly, C.; Olivier, G.; Niboucha, A. Le caractère ‘autocompatibilité’ de l’amandier dans le programme de l’INRA. Rapp. EUR 1992, 14081, 9–17. [Google Scholar]
- Rafel Socias i Company; Felipe, A.J. ‘Belona’ and ‘Soleta’ almonds. HortScience 2007, 42, 704–706. [Google Scholar] [CrossRef]
- Rafel Socias i Company; Kodad, O.; Alonso, J.M.; Felipe, A.J. ‘Mardia’ almond. HortScience 2008, 43, 2240–2242. [Google Scholar] [CrossRef]
- Rafel Socias i Company; Kodad, O.; Ansón, J.M.; Alonso, J.M. ‘Vialfas’ almond. HortScience 2015, 50, 1726–1728. [Google Scholar] [CrossRef]
- Vargas, F.J.; Romero, M.; Clavé, J.; Verges, J.; Santos, J.; Batlle, I. ‘Vayro’, ‘Marinada’, ‘Constantí’, and ‘Tarraco’ Almonds. HortScience 2008, 43, 535–537. [Google Scholar] [CrossRef]
- Egea, J.; Dicenta, F.; Berenguer, T.; Garcia, J.E. ‘Antoñeta’ and ‘Marta’ almonds. HortScience 2000, 35, 1358–1359. [Google Scholar] [CrossRef]
- Dicenta, F.; Ortega, E.; Martínez-Gómez, P.; Sánchez-Pérez, R.; Gambín, M.; Egea, J. Penta and Tardona: Two new extra-late flowering self-compatible almond cultivars. Acta Hortic. 2009, 814, 189–192. [Google Scholar] [CrossRef]
- López, M.; Vargas, F.J.; Batlle, I. Self-(in)compatibility almond genotypes: A review. Euphytica 2006, 150, 1–16. [Google Scholar] [CrossRef]
- Rafel Socias i Company. Pollen-style (in)compatibility: Development of autogamous cultivars. In Almonds: Botany, Production and Uses; Gradziel, T.M., Ed.; CABI: Boston, MA, USA, 2017; pp. 188–208. [Google Scholar]
- Mirabdulbaghi, M. Investigations on Determination of Nutritional Status of Pear Trees According to a New Index—Deviation From Optimum Percentage (DOP). Cercet. Agron. Mold. 2015, 47, 83–98. [Google Scholar] [CrossRef]
- Muhammad, S.; Saa, S.; Khalsa, S.D.S.; Weinbaum, S.; Brown, P. “Almond tree nutrition”. In Almonds: Botany, Productionand Uses; Gradziel, T.M., Ed.; CABI: Boston, MA, USA, 2017; pp. 291–320. [Google Scholar] [CrossRef]
- Sauz, M.; Heras, L.; Montañés, L. Relationships between yield and leaf nutrient contents in peach trees: Early nutritional status diagnosis. J. Plant Nutr. 1992, 15, 1457–1466. [Google Scholar] [CrossRef]
- Montañés, L.; Sanz, M. Prediction of reference values for early leaf analysis for peach trees. J. Plant Nutr. 1994, 17, 1647–1657. [Google Scholar] [CrossRef]
- Betrán, J.A.; Val, J.; Montañés Millán, L.; Monge, E.; Montañés, L.; Moreno, M.A. Influence of rootstock on the mineral concentrations of flowers and leaves from sweet cherry. Acta Hortic. 1997, 448, 163–167. [Google Scholar] [CrossRef]
- Lucena, J.J. Methods of diagnosis of mineral nutrition of plants a critical review. Acta Hortic. 1997, 448, 179–192. [Google Scholar] [CrossRef]
- Zarrouk, O.; Gogorcena, Y.; Gómez-Aparisi, J.; Betrán, J.A.; Moreno, M.A. Influence of almond x peach hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Sci. Hortic. 2005, 106, 502–514. [Google Scholar] [CrossRef]
- Ben Yahmed, J.; Ghrab, M.; Moreno, M.Á.; Pinochet, J.; Ben Mimoun, M. Leaf mineral nutrition and tree vigor of ‘Subirana’ flat peach cultivar grafted on different prunus rootstocks in a warm mediterranean area. J. Plant Nutr. 2020, 43, 811–822. [Google Scholar] [CrossRef]
- Saa, S.; Muhammad, S.; Brown, P.H. Development of leaf sampling and interpretation methods and nutrient budget approach to nutrient management in almond (Prunus dulcis (Mill.) D.A.Webb). Acta Hortic. 2013, 984, 291–296. [Google Scholar] [CrossRef]
- Ulrich, A. Physiological Bases for Assessing the Nutritional Requirements of Plants. Annu. Rev. Plant Physiol. 1952, 3, 207–228. [Google Scholar] [CrossRef]
- Saa, S.; Brown, P.H.; Muhammad, S.; Olivos-Del Rio, A.; Sanden, B.L.; Laca, E.A. Prediction of leaf nitrogen from early season samples and development of field sampling protocols for nitrogen management in Almond (Prunus dulcis [Mill.] DA Webb). Plant Soil 2014, 380, 153–163. [Google Scholar] [CrossRef]
- Sumner, M.E. Interpretation of nutrient ratios in plant tissue. Commun. Soil Sci. Plant Anal. 1978, 9, 335–345. [Google Scholar] [CrossRef]
- Benito, A.; García-Escudero, E.; Romero, I.; Domínguez, N.; Martín, I. Sufficiency Ranges (SR) and Deviation from Optimum Percentage (DOP) references for leaf blade and petiole analysis in “red Grenache” grapevines. J. Int. Sci. Vigne Vin 2015, 49, 47–58. [Google Scholar] [CrossRef]
- Marchese, A.; Boskovic, R.I.; Martinez-Garcia, P.J.; Tobutt, K.R. Short Communication The origin of the self-compatible almond “Supernova”. Plant Breed. 2008, 127, 105–107. [Google Scholar] [CrossRef]
- Distefano, G.; Caruso, M.; La Malfa, S.; Ferrante, T.; Del Signore, B.; Gentile, A.; Sottile, F. Genetic diversity and relationships among Italian and foreign almond germplasm as revealed by microsatellite markers. Sci. Hortic. 2013, 162, 305–312. [Google Scholar] [CrossRef]
- Dicenta, F.; Sánchez-Pérez, R.; Rubio, M.; Egea, J.; Batlle, I.; Miarnau, X.; Palasciano, M.; Lipari, E.; Confolent, C.; Martínez-Gómez, P.; et al. The origin of the self-compatible almond ‘Guara’. Sci. Hortic. 2015, 197, 1–4. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N. Estimation of nutrient status in pear using leaf mineral composition and deviation from optimum percentage index. Acta Sci. Pol. Hortorum Cultus 2016, 15, 45–55. [Google Scholar]
- Stazi, S.R.; Cassaniti, C.; Marabottini, R.; Giuffrida, F.; Leonardi, C. Arsenic uptake and partitioning in grafted tomato plants. HEB 2016, 57, 241–247. [Google Scholar] [CrossRef]
- Moñtanés, L.; Heas, L.; Abadia, J.; Sanz, M. Plant analysis interpretation based on a new index: Deviation from optimum percentage (DOP). J. Plant Nutr. 1993, 16, 1289–1308. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, J.; Wu, F.; Wang, X. Nutritional diagnosis for apple by DRIS, CND and DOP. Adv. Food Sci. Technol. 2015, 7, 266–273. [Google Scholar] [CrossRef]
- Mills, H.A.; Jones, J.B.; Wolf, B. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Pub: Athens, GA, USA, 1996. [Google Scholar]
- Montañés Garcìa, L.; Heras Cobo, L.; Sanz Encinas, M. Desviación del Optimo Porcentual (DOP): Nuevo índice para la interpretación del análisis vegetal. An. Estac. Exp. Aula Dei 1991, 20, 93–108. [Google Scholar]
- Wilson, P.J.; Thompson, K.; Hodgson, J.G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 1999, 143, 155–162. [Google Scholar] [CrossRef]
- Burns, K.C. Patterns in Specific Leaf Area and the Structure of a Temperate Heath Community. Divers. Distrib. 2004, 10, 105–112. Available online: http://www.jstor.org/stable/3246863 (accessed on 30 June 2022). [CrossRef]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43 (Suppl. S1), 25–30. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 1997, 94, 13730–13734. [Google Scholar] [CrossRef] [PubMed]
- Vaieretti, M.V.; Díaz, S.; Vile, D.; Garnier, E. Two measurement methods of leaf dry matter) content produce similar results in a broad range of species. Ann. Bot. 2007, 99, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Vile, D.; Garner, E.; Shipley, B.; Laurent, G.; Navas, M.L.; Roumet, C.; Lavorel, S.; Diaz, S.; Hodgson, J.G.; Lloret, F.; et al. Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Wijewardana, C.; Reddy, K.R.; Shankle, M.W.; Meyers, S.; Gao, W. Low and high-temperature effects on sweet potato storage root initiation and early transplant establishment. Sci. Hortic. 2018, 240, 38–48. [Google Scholar] [CrossRef]
- Silvestri, C.; Caceres, M.E.; Ceccarelli, M.; Pica, A.L.; Rugini, E.; Cristofori, V. Influence of Continuous Spectrum Light on Morphological Traits and Leaf Anatomy of Hazelnut Plantlets. Front. Plant Sci. 2019, 10, 1318. [Google Scholar] [CrossRef]
- Vidović, M.; Morina, F.; Milić, S.; Zechmann, B.; Albert, A.; Wwinkler, J.B.; Veljović Jovanović, S. UV-B radiation response in variegated P. coleoides. Plant Cell Environ. 2015, 38, 968–979. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Version 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 2011. Available online: http://www.infostat.com.ar (accessed on 30 June 2022).
- Madani, N.; Kimball, J.S.; Running, S.W. Improving global gross primary productivity estimates by computing optimum light use efficiencies using flux tower data. J. Geophys. Res. Biogeosci. 2017, 122, 2939–2951. [Google Scholar] [CrossRef]
- Shipley, B.; Vu, T.T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 2002, 153, 359–364. [Google Scholar] [CrossRef]
- Poorter, H.; Evans, J.R. Photosynthetic nitrogen use efficiency of species that differ inherently in specific leaf area. Oecologia 1998, 116, 26–37. [Google Scholar] [CrossRef]
- Fortunel, C.; Garnier, E.; Joffre, R.; Kazakou, E.; Quested, H.; Grigulis, K.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 2009, 90, 598–611. [Google Scholar] [CrossRef]
- Vendramini, F.; Díaz, S.; Gurvich, D.E.; Wilson, P.J.; Thompson, K.; Hodgson, J.G. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol. 2002, 154, 147–157. [Google Scholar] [CrossRef]
- Fonseca, C.R.; Overton, J.M.; Collins, B.; Westoby, M. Shifts in traits-combination along rainfall and phosphorus gradients. J. Ecol. 2000, 88, 964–977. [Google Scholar] [CrossRef]
- Wrigth, I.J.; Westoby, M.; Reich, P.B. Convergence towards higher leaf mass per area in dry and nutrient poor habitats has different consequences for leaf life span. J. Ecol. 2002, 90, 534–543. [Google Scholar]
- Yahmed, J.B.; Ghrab, M.; Benmoussa, H.; Mimoun, M.B. Physiological behavior and nutritional status of almond scion-rootstock combinations in a high-density planting system under warm Mediterranean conditions. Sci. Hortic. 2022, 303, 111209. [Google Scholar] [CrossRef]
- Morais, M.C.; Aires, A.; Barreales, D.; Rodrigues, M.A.; Ribeiro, A.C.; Gonçalves, B.; Silva, A.P. Combined Soil and Foliar Nitrogen Fertilization Effects on Rainfed Almond Tree Performance. J Soil Sci. Plant Nutr. 2020, 20, 2552–2565. [Google Scholar] [CrossRef]
- Arrobas, M.; Ribeiro, A.; Barreales, D.; Pereira, E.L.; Rodrigues, M.A. Soil and foliar nitrogen and boron fertilization of almond trees grown under rainfed conditions. Eur. J. Agron. 2019, 106, 39–48. [Google Scholar] [CrossRef]
- Gutiérrez-Gordillo, S.; García-Tejero, I.F.; García-Escalera, A.; Galindo, P.; Arco, M.D.C.; Durán Zuazo, V.H. Approach to yield response of young almond trees to deficit irrigation and biostimulant applications. Horticulturae 2019, 5, 38. [Google Scholar] [CrossRef]
- Longnecker, N.E.; Robson, A.D. Distribution and Transport of Zinc in Plants. In Zinc in Soils and Plants. Developments in Plant and Soil Sciences; Robson, A.D., Ed.; Springer: Dordrecht, The Netherlands, 1993; Volume 55. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Le Moigne, M. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex Leaf-Clip measurements in the field. J. Agric. Food Chem. 2015, 63, 3669–3680. [Google Scholar] [CrossRef]
- Li, Y.; He, N.; Hou, J.; Xu, L.; Liu, C.; Zhang, J.; Wang, Q.; Zhang, X.; Wu, X. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front. Ecol. Evol. 2018, 6, 64. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass alocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant 2016, 38, 145. [Google Scholar] [CrossRef]
- Chen, C.; Lee, C.; Yeh, D. Effects of Nitrogen, Phosphorus, Potassium, Calcium, or Magnesium Deficiency on Growth and Photosynthesis of Eustoma. HortScience 2018, 53, 795–798. [Google Scholar] [CrossRef]
- Huang, Z.A.; Jiang, D.A.; Yang, Y.; Sun, J.W.; Jin, S.H. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 2004, 42, 357–364. [Google Scholar] [CrossRef]
- Mak, A.T.Y.; Yeh, D.M. Nitrogen nutrition of Spathiphyllum “Sensation” grown in sphagnum peat- and coir-based media with two irrigation methods. HortScience 2001, 36, 645–649. [Google Scholar] [CrossRef]
- Cechin, I.; De Fátima Fumis, T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci. 2004, 166, 1379–1385. [Google Scholar] [CrossRef]
- Marchese, J.A.; Katz, I.; Sousa, A.P.; Rodrigues, J.D. Gas exchange in Lisianthus plants (Eustoma grandiflorum) submitted to different doses of nitrogen. Photosynthetica 2005, 43, 303–305. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, A.; Chen, X.; Jin, R.; Li, H.; Tang, Z. The effect of potassium deficiency on growth and physiology in sweetpotato [Ipomoea batatas (L.) lam.] during early growth. HortScience 2017, 52, 1020–1028. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology and Development; Sinauer Assoc. Inc.: Sunderland, MA, USA, 2015. [Google Scholar]
- Ye, X.; Chen, X.-F.; Deng, C.-L.; Yang, L.-T.; Lai, N.-W.; Guo, J.-X.; Chen, L.-S. Magnesium-Deficiency Effects on Pigments, Photosynthesis and Photosynthetic Electron Transport of Leaves, and Nutrients of Leaf Blades and Veins in Citrus sinensis Seedlings. Plants 2019, 8, 389. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Dang, R.; Shivananda, T.N.; Sur, P. Interaction between phosphorus and zinc on the biomass yield and yield attributes of the medicinal plant stevia (Stevia rebaudiana). Sci. World J. 2005, 2005, 464707. [Google Scholar] [CrossRef]
- Salimpour, S.; Khavazi, K.; Nadian, H.; Besharati, H.; Miransari, M. Enhancing phosphorous availability to canola (‘Brassica napus’ L.) using P solubilizing and sulfur oxidizing bacteria. Aust. J. Crop Sci. 2010, 4, 330–334. [Google Scholar]
- Mousavi, S.R.; Galavi, M.; Rezaei, M. The interaction of zinc with other elements in plants: A review. IJACS 2012, 4, 1881–1884. [Google Scholar]
- Mousavi, S.R. Zinc in crop production and interaction with phosphorus. AJBAS 2011, 5, 1503–1509. [Google Scholar]
Trait | Unit | Value |
---|---|---|
Texture | ||
Sand | % | 45.4 |
Lime | % | 25.6 |
Clay | % | 30.0 |
pH | - | 7.6 |
Total limestone | g kg−1 | 8.0 |
Organic matter | % | 1.9 |
Cation exchange capacity | meq | 29.1 |
Calcium (Ca2+) | meq | 23.7 |
Magnesium (Mg2+) | meq | 4.1 |
Potassium (K+) | meq | 0.5 |
Sodium (Na+) | meq | 0.8 |
Basic saturation | % | 100.0 |
Mg/K Ratio | - | 7.5 |
Cultivar | Year | 90 DAFB | 120 DAFB | ||
---|---|---|---|---|---|
SLA (cm2 g−1) | LDMC (mg g−1) | SLA (cm2 g−1) | LDMC (mg g−1) | ||
‘Genco’ | 2019 | 9.08 ± 1.01 | 367.53 ± 7.29 cd | 7.32 ± 0.95 | 391.94 ± 3.90 e |
2020 | 7.58 ± 0.58 | 483.91 ± 6.55 a | 6.53 ± 0.72 | 420.81 ± 6.80 abc | |
Mean value | 8.33 ± 1.11 | 425.72 ± 62.54 | 6.92 ± 0.89 bc | 406.38 ± 16.26 | |
‘Guara’ | 2019 | 9.05 ± 2.09 | 349.77 ± 3.59 d | 7.01 ± 1.02 | 381.17 ± 10.72 fg |
2020 | 7.62 ± 2.14 | 482.14 ± 13.05 a | 6.34 ± 0.58 | 416.46 ± 1.49 bcd | |
Mean value | 8.33 ± 2.10 | 415.95 ± 71.31 | 6.67 ± 0.84 c | 398.32 ± 20.15 | |
Lauranne® Avijor | 2019 | 8.73 ± 0.84 | 363.96 ± 4.44 cd | 9.79 ± 1.16 | 368.57 ± 12.30 hi |
2020 | 7.16 ± 1.39 | 475.49 ± 4.19 a | 8.06 ± 1.23 | 417.52 ± 16.47 bcd | |
Mean value | 7.94 ± 1.35 | 419.73 ± 59.75 | 8.93 ± 1.44 a | 393.15 ± 29.52 | |
‘Penta®’ | 2019 | 9.83 ± 2.24 | 360.61 ± 6.10 cd | 8.39 ± 0.96 | 376.84 ± 9.46 fg |
2020 | 9.57 ± 217 | 432.26 ± 17.25 b | 7.59 ± 1.23 | 408.95 ± 6.57 d | |
Mean value | 9.71 ± 2.05 | 396.43 ± 40.12 | 7.99 ± 1.11 ab | 392.89 ± 18.75 | |
‘Soleta’ | 2019 | 7.98 ± 0.66 | 371.20 ± 5.85 c | 6.65 ± 1.11 | 374.51 ± 0.40 gh |
2020 | 8.24 ± 2.94 | 484.35 ± 7.49 a | 6.99 ± 0.93 | 429.91 ± 2.78 a | |
Mean value | 8.11 ± 1.98 | 427.77 ± 60.80 | 6.82 ± 0.96 bc | 402.21 ± 29.67 | |
‘Supernova’ | 2019 | 9.56 ± 2.88 | 364.16 ± 15.94 cd | 7.98 ± 0.78 | 383.92 ± 0.55 efg |
2020 | 9.05 ± 3.89 | 466.54 ± 32.87 a | 5.81 ± 1.50 | 411.27 ± 1.79 cd | |
Mean value | 9.31 ± 3.18 | 415.35 ± 59.72 | 6.9 ± 1.61 bc | 397.6 ± 14.67 | |
‘Tuono’ | 2019 | 10.11 ± 3.07 | 359.93 ± 16.89 cd | 8.72 ± 2.26 | 363.76 ± 1.54 i |
2020 | 7.51 ± 0.96 | 466.80 ± 10.14 a | 6.35 ± 0.70 | 425.47 ± 6.20 ab | |
Mean value | 8.81 ± 2.53 | 413.37 ± 58.56 | 7.54 ± 2.01 bc | 394.62 ± 33.25 | |
‘Vialfas’ | 2019 | 9.26 ± 0.39 | 365.76 ± 8.32 cd | 6.98 ± 0.59 | 386.6 ± 0.77 ef |
2020 | 7.69 ± 1.99 | 475.55 ± 8.24 a | 7.36 ± 1.42 | 415.03 ± 3.59 cd | |
Mean value | 8.48 ± 1.57 | 420.66 ± 59.18 | 7.17 ± 1.03 bc | 400.82 ± 15.39 | |
Average cultivars 2019 | 9.20 ± 1.80 a | 362.86 ± 10.54 b | 7.86 ± 1.47 a | 378.41 ± 10.76 b | |
Average cultivars 2020 | 8.05 ± 2.13 b | 470.88 ± 21.02 a | 6.88 ± 1.20 b | 418.20 ± 9.25 a |
Cultivar (90 DAFB) | Year | N (% DW) | C (% DW) | P (% DW) | K (% DW) | Ca (% DW) | Mg (% DW) |
---|---|---|---|---|---|---|---|
‘Genco’ | 2019 | 2.01 ± 0.02 e–h | 44.23 ± 0.36 cd | 0.05 ± 0.004 i | 1.11 ± 0.10 | 1.62 ± 0.16 a | 0.24 ± 0.01 b–e |
2020 | 3.18 ± 0.20 a | 42.89 ± 0.12 fg | 0.08 ± 0.003 ed | 0.86 ± 0.03 | 0.97 ± 0.26 b–e | 0.20 ± 0.01 fg | |
Mean value | 2.59 ± 0.64 ab | 43.56 ± 0.76 | 0.07 ± 0.02 | 0.98 ± 0.15 | 1.30 ± 0.40 a | 0.22 ± 0.02 | |
‘Guara’ | 2019 | 1.74 ± 0.17 ghi | 44.31 ± 0.12 cd | 0.07 ± 0.009 gh | 0.86 ± 0.09 | 1.14 ± 0.05 bcd | 0.21 ± 0.02 d–g |
2020 | 2.45 ± 0.38 cd | 42.31 ± 0.30 ghi | 0.09 ± 0.007 bc | 0.84 ± 0.16 | 0.89 ± 0.12 def | 0.25 ± 0.02 abc | |
Mean value | 2.09 ± 0.47 cd | 43.31 ± 1.09 | 0.08 ± 0.02 | 0.85 ± 0.12 | 1.01 ± 0.16 b | 0.23 ± 0.03 | |
‘Lauranne® Avijor’ | 2019 | 1.87 ± 0.02 f–i | 44.43 ± 0.02 bc | 0.07 ± 0.003 fgh | 0.93 ± 0.04 | 1.06 ± 0.05 bcd | 0.19 ± 0.01 g |
2020 | 2.85 ± 0.01 b | 42.96 ± 0.01 fg | 0.11 ± 0.003 a | 0.94 ± 0.08 | 0.95 ± 0.05 c–f | 0.28 ± 0.02 ab | |
Mean value | 2.36 ± 0.52 bc | 43.70 ± 0.80 | 0.09 ± 0.02 | 0.94 ± 0.06 | 1.01 ± 0.08 b | 0.23 ± 0.05 | |
‘Penta®’ | 2019 | 1.88 ± 0.02 f–i | 44.29 ± 0.18 cd | 0.06 ± 0.005 hi | 1.06 ± 0.08 | 1.22 ± 0.07 b | 0.21 ± 0.01 efg |
2020 | 2.31 ± 0.20 cde | 42.60 ± 0.38 gh | 0.10 ± 0.006 ab | 0.89 ± 0.08 | 0.72 ± 0.02 ef | 0.22 ± 0.01 d–g | |
Mean value | 2.09 ± 0.26 cd | 43.41 ± 0.95 | 0.08 ± 0.02 | 0.98 ± 0.11 | 0.97 ± 0.27 b | 0.21 ± 0.01 | |
‘Soleta’ | 2019 | 1.59 ± 0.04 i | 44.99 ± 0.04 ab | 0.09 ± 0.01 cd | 0.90 ± 0.07 | 1.17 ± 0.28 bc | 0.25 ± 0.06 a–d |
2020 | 2.17 ± 0.10 def | 41.06 ± 0.13 j | 0.08 ± 0.002 def | 1.11 ± 0.40 | 1.04 ± 0.34 bcd | 0.26 ± 0.01 abc | |
Mean value | 1.88 ± 0.32 d | 43.03 ± 2.28 | 0.08 ± 0.01 | 1.01 ± 0.28 | 1.11 ± 0.29 ab | 0.25 ± 0.04 fg | |
‘Supernova’ | 2019 | 1.72 ± 0.01 hi | 43.71 ± 0.08 de | 0.07 ± 0.01 efg | 1.01 ± 0.35 | 1.59 ± 0.40 a | 0.29 ± 0.06 a |
2020 | 2.06 ± 0.27 efg | 41.76 ± 0.44 i | 0.09 ± 0.005 cd | 1.02 ± 0.17 | 1.07 ± 0.15 bcd | 0.23 ± 0.01 c–f | |
Mean value | 1.89 ± 0.26 d | 42.73 ± 1.09 | 0.08 ± 0.02 | 1.01 ± 0.25 | 1.33 ± 0.39 a | 0.26 ± 0.05 | |
‘Tuono’ | 2019 | 2.42 ± 0.63 cd | 44.27 ± 0.84 cd | 0.07 ± 0.004 gh | 0.90 ± 0.05 | 1.18 ± 0.11 bc | 0.21 ± 0.01 efg |
2020 | 2.44 ± 0.09 cd | 42.18 ± 0.13 hi | 0.10 ± 0.005 b | 0.84 ± 0.10 | 1.08 ± 0.01 bcd | 0.24 ± 0.02 cde | |
Mean value | 2.43 ± 0.42 bc | 43.23 ± 1.25 | 0.08 ± 0.02 | 0.87 ± 0.08 | 1.13 ± 0.09 ab | 0.23 ± 0.02 | |
‘Vialfas’ | 2019 | 2.51 ± 0.28 bc | 45.29 ± 0.15 a | 0.07 ± 0.001 fgh | 0.98 ± 0.01 | 1.20 ± 0.06 bc | 0.24 ± 0.04 b–e |
2020 | 3.39 ± 0.22 a | 43.43 ± 0.47 ef | 0.11 ± 0.004 a | 0.87 ± 0.02 | 0.71 ± 0.03 f | 0.22 ± 0.01 c–g | |
Mean values | 2.95 ± 0.52 a | 44.36 ± 1.05 | 0.09 ± 0.002 | 0.93 ± 0.06 | 0.96 ± 0.26 b | 0.23 ± 0.03 | |
Average cultivars 2019 | 1.97 ± 0.39 b | 44.44 ± 0.56 a | 0.07 ± 0.01 b | 0.97 ± 0.15 | 1.27 ± 0.26 a | 0.23 ± 0.04 | |
Average cultivars 2020 | 2.60 ± 0.50 a | 42.40 ± 0.86 b | 0.09 ± 0.01 a | 0.92 ± 0.18 | 0.93 ± 0.20 b | 0.24 ± 0.03 |
Cultivar (90 DAFB) | Year | Fe (μg g−1 DW) | Mn (μg g−1 DW) | B (μg g−1 DW) | Cu (μg g−1 DW) | Zn (μg g−1 DW) |
---|---|---|---|---|---|---|
‘Genco’ | 2019 | 68.13 ± 7.92 e | 18.68 ± 1.80 fgh | 50.43 ± 14.60 b | 7.20 ± 2.98 ef | 33.41 ± 4.72 cd |
2020 | 101.00 ± 5.98 bc | 17.79 ± 1.28 ghi | 12.58 ± 2.25 gh | 20.84 ± 4.05 a | 43.61 ± 0.49 abc | |
Mean value | 84.57 ± 18.73 ab | 18.23 ± 1.52 cd | 31.50 ± 22.43 abc | 14.02 ± 8.00 | 38.51 ± 9.30 ab | |
‘Guara’ | 2019 | 71.55 ± 20.35 de | 22.70 ± 1.07 cde | 34.27 ± 10.04 cd | 3.23 ± 0.18 gh | 28.60 ± 16.44 cde |
2020 | 60.34 ± 10.44 e | 17.92 ± 0.67 gh | 13.10 ± 2.25 gh | 15.12 ± 0.88 cd | 6.66 ± 0.44 e | |
Mean value | 65.95 ± 16.13 bc | 20.31 ± 2.69 bcd | 23.68 ± 13.17 bc | 9.18 ± 6.38 | 17.63 ± 14.92 c | |
‘Lauranne® Avijor’ | 2019 | 50.15 ± 1.46 e | 20.24 ± 2.54 e–h | 43.40 ± 17.57 bc | 1.27 ± 0.10 h | 49.52 ± 18.73 abc |
2020 | 99.00 ± 13.34 bcd | 23.53 ± 1.30 cde | 21.86 ± 4.60 efg | 16.75 ± 5.57 bc | 43.47 ± 10.47 abc | |
Mean value | 74.58 ± 27.55 abc | 21.89 ± 2.57 abc | 32.63 ± 16.55 ab | 9.01 ± 7.07 | 46.50 ± 14.42 ab | |
‘Penta®’ | 2019 | 52.06 ± 3.34 e | 30.73 ± 2.17 a | 50.74 ± 7.27 b | 1.70 ± 0.62 h | 48.57 ± 6.58 abc |
2020 | 56.40 ± 2.77 e | 17.41 ± 1.01 hi | 19.31 ± 20.5 fgh | 17.29 ± 0.66 bc | 18.57 ± 7.70 de | |
Mean value | 54.23 ± 3.67 c | 24.07 ± 6.29 ab | 35.03 ± 17.52 ab | 9.50 ± 7.53 | 33.57 ± 17.35 bc | |
‘Soleta’ | 2019 | 66.75 ± 19.95 e | 20.04 ± 5.21 e–h | 75.96 ± 1.69 a | 3.41 ± 0.41 gh | 56.92 ± 16.98 a |
2020 | 130.31 ± 28.61 a | 14.19 ± 1.09 i | 20.11 ± 5.52 fgh | 12.71 ± 0.69 d | 12.06 ± 1.65 de | |
Mean value | 98.53 ± 30.93 a | 17.12 ± 5.18 d | 48.04 ± 20.09 a | 8.06 ± 5.00 | 34.49 ± 26.45 bc | |
‘Supernova’ | 2019 | 112.85 ± 32.77 ab | 24.93 ± 1.33 bcd | 32.10 ± 7.87 de | 4.21 ± 1.11 fgh | 56.18 ± 31.20 ab |
2020 | 69.94 ± 21.65 e | 16.84 ± 0.39 hi | 26.60 ± 4.99 def | 14.46 ± 2.92 cd | 61.12 ± 19.84 a | |
Mean value | 91.40 ± 40.82 ab | 20.88 ± 4.42 a–d | 29.34 ± 6.77 bc | 9.33 ± 5.85 | 58.65 ± 24.35 a | |
‘Tuono’ | 2019 | 60.83 ± 16.12 e | 25.87 ± 1.41 bc | 16.79 ± 3.67 fgh | 9.02 ± 0.21 e | 43.60 ± 6.16 abc |
2020 | 111.27 ± 19.44 ab | 21.64 ± 1.90 def | 10.30 ± 4.39 h | 15.60 ± 1.64 bcd | 34.13 ± 14.51 bcd | |
Mean value | 86.05 ± 31.63 ab | 23.75 ± 2.74 ab | 13.54 ± 5.11 c | 12.31 ± 3.68 | 38.86 ± 11.49 ab | |
‘Vialfas’ | 2019 | 75.25 ± 1.66 cde | 28.43 ± 5.92 ab | 54.55 ± 11.34 b | 6.09 ± 1.11 efg | 61.37 ± 31.17 a |
2020 | 71.49 ± 6.42 e | 21.27 ± 2.30 efg | 13.69 ± 3.68 gh | 18.61 ± 1.06 ab | 17.05 ± 3.47 de | |
Mean value | 73.36 ± 4.68 abc | 24.85 ± 5.54 a | 34.12 ± 20.13 ab | 12.35 ± 6.77 | 39.21 ± 21.35 ab | |
Average cultivars 2019 | 69.70 ± 26.95 b | 23.95 ± 5.06 a | 44.78 ± 19.19 a | 4.52 ± 2.79 b | 47.27 ± 20.16 a | |
Average cultivars 2020 | 87.47 ± 28.98 a | 18.82 ± 3.06 b | 17.19 ± 6.32 b | 16.42 ± 3.45 a | 29.58 ± 20.28 b |
Cultivar (120 DABF) | Year | N (% DW) | C (% DW) | P (% DW) | K (% DW) | Ca (% DW) | Mg (% DW) |
---|---|---|---|---|---|---|---|
‘Genco’ | 2019 | 1.80 ± 0.01 i | 45.05 ± 0.04 bcd | 0.07 ± 0.01 f | 1.68 ± 0.17 b | 1.52 ± 0.19 bcd | 0.22 ± 0.02 efg |
2020 | 3.03 ± 0.33 abc | 44.48 ± 0.23 def | 0.11 ± 0.02 bc | 0.31 ± 0.03 g | 1.67 ± 0.13 abc | 0.26 ± 0.03 abc | |
Mean value | 2.42 ± 0.69 | 44.76 ± 0.34 | 0.08 ± 0.02 b | 1.00 ± 0.74 | 1.60 ± 0.17 ab | 0.24 ± 0.03 | |
‘Guara’ | 2019 | 2.28 ± 0.12 gh | 45.39 ± 0.36 bc | 0.09 ± 0.01 e | 0.77 ± 0.75 ef | 1.73 ± 0.11 abc | 0.23 ± 0.03 b–g |
2020 | 2.71 ± 0.52 cde | 43.77 ± 0.53 fgh | 0.09 ± 0.01 de | 0.34 ± 0.04 g | 1.56 ± 0.33 bcd | 0.27 ± 0.02 ab | |
Mean value | 2.49 ± 0.42 | 44.58 ± 0.96 | 0.09 ± 0.01 b | 0.55 ± 0.54 | 1.65 ± 0.24 a | 0.25 ± 0.03 | |
‘Lauranne® Avijor’ | 2019 | 2.33 ± 0.04 fgh | 46.58 ± 0.28 a | 0.12 ± 0.02 a | 2.12 ± 0.31 a | 1.51 ± 0.25 bcd | 0.25 ± 0.02 a–e |
2020 | 2.54 ± 0.19 d–g | 43.40 ± 0.28 gh | 0.10 ± 0.01 bc | 0.41 ± 0.01 g | 1.25 ± 0.38 efg | 0.23 ± 0.03 c–g | |
Mean value | 2.44 ± 0.17 | 44.99 ± 1.72 | 0.11 ± 0.01 a | 1.26 ± 0.94 | 1.38 ± 0.33 bc | 0.24 ± 0.03 | |
‘Penta®’ | 2019 | 2.21 ± 0.07 gh | 45.62 ± 0.05 b | 0.09 ± 0.01 de | 1.20 ± 0.12 d | 1.34 ± 0.04 d–g | 0.28 ± 0.02 a |
2020 | 2.97 ± 0.09 bc | 43.02 ± 1.35 hi | 0.09 ± 0.01 de | 0.48 ± 0.08 fg | 1.86 ± 0.11 a | 0.22 ± 0.04 d–g | |
Mean value | 2.58 ± 0.42 | 44.32 ± 1.64 | 0.09 ± 0.01 b | 0.84 ± 0.41 | 1.60 ± 0.29 ab | 0.25 ± 0.04 | |
‘Soleta’ | 2019 | 1.72 ± 0.07 i | 45.80 ± 0.27 ab | 0.10 ± 0.01 cde | 1.28 ± 0.18 cd | 1.40 ± 0.07 def | 0.24 ± 0.04 b–f |
2020 | 2.66 ± 0.71 c–f | 42.28 ± 1.38 i | 0.09 ± 0.01 cde | 0.29 ± 0.02 g | 1.23 ± 0.08 efg | 0.25 ± 0.04 a–d | |
Mean value | 2.19 ± 0.68 | 44.04 ± 2.09 | 0.09 ± 0.01 b | 0.78 ± 0.45 | 1.32 ± 0.12 c | 0.24 ± 0.04 | |
‘Supernova’ | 2019 | 1.82 ± 0.01 i | 44.75 ± 0.11 cde | 0.07 ± 0.01 f | 1.23 ± 0.02 cd | 1.47 ± 0.04 cde | 0.22 ± 0.01 efg |
2020 | 2.90 ± 0.34 bcd | 43.55 ± 0.47 gh | 0.11 ± 0.02 ab | 0.43 ± 0.03 g | 1.10 ± 0.11 g | 0.23 ± 0.01 c–g | |
Mean value | 2.36 ± 0.62 | 44.15 ± 0.71 | 0.09 ± 0.02 b | 0.83 ± 0.33 | 1.28 ± 0.21 c | 0.22 ± 0.01 | |
‘Tuono’ | 2019 | 2.03 ± 0.04 hi | 45.17 ± 0.59 bcd | 0.07 ± 0.01 f | 1.05 ± 0.07 de | 1.41 ± 0.05 def | 0.23 ± 0.02 c–g |
2020 | 3.08 ± 0.15 ab | 43.32 ± 0.84 gh | 0.10 ± 0.01 bcd | 0.42 ± 0.04 g | 1.21 ± 0.021 fg | 0.20 ± 0.03 g | |
Mean value | 2.55 ± 0.57 | 44.25 ± 1.21 | 0.09 ± 0.01 b | 0.73 ± 0.34 | 1.31 ± 0.17 c | 0.21 ± 0.03 | |
‘Vialfas’ | 2019 | 2.51 ± 0.05 efg | 45.76 ± 0.04 ab | 0.09 ± 0.01 e | 1.56 ± 0.39 bc | 1.53 ± 0.14 bcd | 0.21 ± 0.02 fg |
2020 | 3.39 ± 0.10 a | 44.17 ± 0.24 efg | 0.09 ± 0.01 cde | 0.35 ± 0.02 g | 1.74 ± 0.22 ab | 0.24 ± 0.01 b–f | |
Mean value | 2.95 ± 0.48 | 44.96 ± 0.87 | 0.09 ± 0.01 b | 0.95 ± 0.54 | 1.63 ± 0.21 a | 0.23 ± 0.02 | |
Average cultivars 2019 | 2.08 ± 0.28 b | 45.51 ± 0.59 a | 0.09 ± 0.02 b | 1.36 ± 0.49 a | 1.49 ± 0.16 | 0.23 ± 0.03 | |
Average cultivars 2020 | 2.91 ± 0.41 a | 43.50 ± 0.96 b | 0.10 ± 0.01 a | 0.38 ± 0.07 b | 1.45 ± 0.34 | 0.24 ± 0.03 |
Cultivar (120 BAFB) | Year | Fe (μg g−1 DW) | Mn (μg g−1 DW) | B (μg g−1 DW) | Cu (μg g−1 DW) | Zn (μg g−1 DW) |
---|---|---|---|---|---|---|
‘Genco’ | 2019 | 68.45 ± 8.79 def | 13.72 ± 0.47 ef | 39.84 ± 14.53 a | 19.21 ± 4.55 d–g | 45.26 ± 26.75 a |
2020 | 66.80 ± 16.93 def | 19.70 ± 2.98 abc | 15.46 ± 0.83 e | 37.68 ± 4.28 bc | 9.50 ± 1.99 c | |
Mean value | 67.62 ± 12.52 b | 16.71 ± 3.76 c | 27.65 ± 16.14 ab | 28.44 ± 8.68 ab | 27.38 ± 16.11 | |
‘Guara’ | 2019 | 79.60 ± 5.36 bcd | 19.99 ± 0.51 bcd | 18.51 ± 2.71 de | 13.54 ± 3.52 efg | 12.98 ± 0.25 bc |
2020 | 50.55 ± 13.04 f | 17.82 ± 4.09 bcd | 13.16 ± 3.04 ef | 51.45 ± 19.32 a | 9.66 ± 3.57 c | |
Mean value | 65.07 ± 18.06 b | 17.90 ± 2.70 bc | 15.83 ± 3.91 c | 32.49 ± 20.11 a | 11.32 ± 2.94 | |
‘Lauranne® Avijor’ | 2019 | 93.51 ± 6.89 b | 17.22 ± 3.26 cd | 16.59 ± 2.33 de | 21.12 ± 1.87 def | 10.72 ± 1.04 bc |
2020 | 67.40 ± 6.21 def | 22.37 ± 0.74 a | 28.88 ± 11.10 b | 26.34 ± 1.91 d | 7.46 ± 0.91 c | |
Mean value | 80.45 ± 15.22 ab | 19.79 ± 3.51 ab | 22.73 ± 9.92 abc | 23.73 ± 3.29 abc | 9.09 ± 1.97 | |
‘Penta®’ | 2019 | 131.32 ± 1.48 a | 17.87 ± 0.27 bcd | 27.29 ± 5.76 bc | 13.65 ± 3.24 efg | 19.01 ± 9.95 bc |
2020 | 69.62 ± 10.32 de | 19.08 ± 2.00 bc | 17.92 ± 6.62 de | 28.33 ± 6.63 cd | 7.41 ± 1.22 c | |
Mean value | 100.47 ± 33.68 a | 18.47 ± 1.47 bc | 22.60 ± 7.62 abc | 20.99 ± 9.22 abc | 13.21 ± 9.03 | |
‘Soleta’ | 2019 | 90.51 ± 19.34 bc | 13.07 ± 1.51 ef | 21.02 ± 1.92 b–e | 15.09 ± 4.12 efg | 12.30 ± 0.66 bc |
2020 | 52.65 ± 9.94 ef | 11.09 ± 1.93 f | 15.35 ± 0.59 e | 22.89 ± 3.17 de | 10.10 ± 2.29 c | |
Mean values | 71.58 ± 24.74 b | 12.08 ± 1.92 d | 18.17 ± 3.32 bc | 18.99 ± 5.39 bc | 11.20 ± 2.28 | |
‘Supernova’ | 2019 | 64.96 ± 6.65 def | 15.32 ± 0.46 de | 19.85 ± 2.48 cde | 12.14 ± 0.61 fg | 13.63 ± 3.37 bc |
2020 | 72.67 ± 16.46 cd | 17.14 ± 1.35 cd | 13.93 ± 4.02 ef | 19.32 ± 2.54 d–g | 28.85 ± 13.36 ab | |
Mean value | 68.81 ± 12.33 b | 16.23 ± 1.35 c | 16.89 ± 4.42 c | 15.73 ± 4.21 c | 21.24 ± 12.15 | |
‘Tuono’ | 2019 | 129.50 ± 32.21 a | 18.15 ± 1.29 bc | 23.60 ± 7.14 bcd | 11.25 ± 0.57 g | 37.29 ± 10.86 a |
2020 | 61.94 ± 2.03 def | 20.48 ± 1.75 ab | 7.03 ± 0.50 f | 16.02 ± 3.72 efg | 11.55 ± 1.11 bc | |
Mean value | 95.72 ± 41.84 a | 19.32 ± 1.89 b | 15.32 ± 9.02 c | 13.63 ± 3.54 c | 24.42 ± 15.51 | |
‘Vialfas’ | 2019 | 88.22 ± 2.56 bc | 22.40 ± 2.35 a | 18.16 ± 0.22 de | 14.48 ± 5.06 efg | 12.64 ± 1.21 bc |
2020 | 67.97 ± 1.53 def | 22.01 ± 1.68 a | 42.10 ± 2.33 a | 44.48 ± 13.62 ab | 8.09 ± 1.45 c | |
Mean value | 78.10 ±11.32 ab | 22.20 ± 1.91 a | 30.13 ± 12.89 a | 29.48 ± 15.64 ab | 10.36 ± 2.73 | |
Average cultivars 2019 | 93.26 ± 26.91 a | 16.47 ± 3.15 | 23.11 ± 9.08 | 15.06 ± 4.39 b | 20.48 ± 12.08 a | |
Average cultivars 2020 | 63.70 ± 12.38 b | 18.31 ± 3.95 | 19.23 ± 11.42 | 30.81 ± 13.33 a | 11.58 ± 7.13 b |
Cultivar | Year | ∑ DOP | ∑ DOP |
---|---|---|---|
(90 DAFB) | (120 DAFB) | ||
‘Genco’ | 2019 | 392 ± 27 d | 525 ± 88 fgh |
2020 | 508 ± 19 ab | 718 ± 47 bc | |
Mean values | 540 ± 65 | 622 ± 122 | |
‘Guara’ | 2019 | 479 ± 51 bc | 468 ± 40 gh |
2020 | 519 ± 25 ab | 845 ± 155 a | |
Mean values | 499 ± 43 | 656 ± 227 | |
‘Lauranne® Avijor’ | 2019 | 510 ± 11 ab | 531 ± 42 fgh |
2020 | 395 ± 66 d | 587 ± 39 def | |
Mean values | 452 ± 75 | 559 ± 48 | |
‘Penta®’ | 2019 | 430 ± 17 cd | 355 ± 18 i |
2020 | 501 ± 20 ab | 627 ± 56 de | |
Mean values | 466 ± 42 | 491 ± 150 | |
‘Soleta’ | 2019 | 505 ± 90 ab | 456 ± 11 gh |
2020 | 430 ± 19 cd | 635 ± 36 cd | |
Mean values | 468 ± 73 | 565 ± 99 | |
‘Supernova’ | 2019 | 434 ± 50 cd | 446 ± 2 h |
2020 | 425 ± 35 cd | 540 ± 78 efg | |
Mean values | 430 ± 41 | 493 ± 72 | |
‘Tuono’ | 2019 | 436 ± 35 cd | 384 ± 42 i |
2020 | 425 ± 48 cd | 578 ± 19 def | |
Mean values | 430 ± 40 | 463 ± 127 | |
‘Vialfas’ | 2019 | 429 ± 36 cd | 461 ± 38 gh |
2020 | 551 ± 20 a | 732 ± 105 b | |
Mean values | 490 ± 70 | 596 ± 162 | |
Year 2019 (Mean values) | 452 ± 56 | 449 ± 74 b | |
Year 2020 (Mean values) | 469 ± 62 | 657 ± 118 a |
Cultivar. (90 DAFB) | Year | Chl (µg cm−2) | Flav (µg cm−2) | Anth (µg cm−2) | NBI |
---|---|---|---|---|---|
‘Genco’ | 2019 | 25.07 ± 4.47 gh | 2.37 ± 0.06 abc | 0.10 ± 0.03 cde | 10.61 ± 1.96 hi |
2020 | 28.08 ± 3.02 f | 2.35 ± 0.10 bcd | 0.09 ± 0.02 def | 11.97 ± 1.29 g | |
Mean value | 26.57 ± 4.09 cde | 2.36 ± 0.08 a | 0.09 ± 0.03 c | 11.29 ± 1.79 cd | |
‘‘Guara’ ’ | 2019 | 22.43 ± 3.29 j | 2.36 ± 0.07 a–d | 0.12 ± 0.03 b | 9.51 ± 1.43 k |
2020 | 29.46 ± 4.27 de | 2.30 ± 0.08 fg | 0.09 ± 0.02 def | 12.87 ± 1.76 de | |
Mean value | 25.95 ± 5.19 de | 2.33 ± 0.08 abc | 0.10 ± 0.03 b | 11.19 ± 2.32 cd | |
‘Lauranne® Avijor’ | 2019 | 23.66 ± 2.46 ij | 2.34 ± 0.06 cde | 0.10 ± 0.02 cd | 10.13 ± 1.17 ij |
2020 | 32.87 ± 3.39 a | 2.28 ± 0.11 gh | 0.07 ± 0.02 i | 14.62 ± 1.56 a | |
Mean value | 28.26 ± 5.49 bc | 2.31 ± 0.10 c | 0.09 ± 0.02 cd | 12.37 ± 2.64 ab | |
‘‘Penta®’’ | 2019 | 24.32 ± 3.44 hi | 2.29 ± 0.07 fg | 0.10 ± 0.03 cde | 10.59 ± 1.53 hi |
2020 | 28.23 ± 2.52 ef | 2.32 ± 0.06 ef | 0.08 ± 0.02 gh | 12.21 ± 1.18 fg | |
Mean value | 26.27 ± 3.58 de | 2.31 ± 0.07 c | 0.09 ± 0.03 cd | 11.40 ± 1.58 cd | |
‘Soleta’ | 2019 | 18.87 ± 2.84 k | 2.36 ± 0.06 a–d | 0.15 ± 0.03 a | 8.00 ± 1.26 l |
2020 | 30.62 ± 4.29 cd | 2.33 ± 0.06 de | 0.08 ± 0.03 fg | 13.12 ± 2.00 cde | |
Mean value | 24.74 ± 6.92 e | 2.35 ± 0.06 ab | 0.12 ± 0.05 a | 10.56 ± 3.06 d | |
‘Supernova’ | 2019 | 25.70 ± 3.62 g | 2.38 ± 0.08 ab | 0.09 ± 0.03 ef | 10.86 ± 1.74 h |
2020 | 32.08 ± 4.69 ab | 2.29 ± 0.09 fgh | 0.08 ± 0.03 gh | 14.14 ± 2.03 ab | |
Mean value | 28.89 ± 5.26 ab | 2.33 ± 0.10 abc | 0.09 ± 0.03 cd | 12.50 ± 2.50 a | |
‘Tuono’ | 2019 | 22.93 ± 3.89 j | 2.38 ± 0.06 a | 0.10 ± 0.03 cde | 9.62 ± 1.61 jk |
2020 | 30.93 ± 4.25 bc | 2.26 ± 0.11 h | 0.08 ± 0.02 gh | 13.68 ± 1.66 bc | |
Mean value | 26.94 ± 5.71 cd | 2.32 ± 0.11 bc | 0.09 ± 0.02 cd | 11.65 ± 2.60 bc | |
‘Vialfas’ | 2019 | 28.75 ± 4.45 ef | 2.30 ± 0.10 fg | 0.07 ± 0.02 hi | 12.59 ± 2.04 ef |
2020 | 31.58 ± 3.88 abc | 2.36 ± 0.09 a–d | 0.09 ± 0.03 ef | 13.30 ± 1.99 cd | |
Mean value | 30.16 ± 4.39 a | 2.33 ± 0.10 abc | 0.08 ± 0.03 d | 12.94 ± 2.04 a | |
Average cultivars 2019 | 23.97 ± 4.47 b | 2.35 ± 0.11 a | 0.10 ± 0.03 a | 10.24 ± 2.02 b | |
Average cultivars 2020 | 30.48 ± 4.16 a | 2.31 ± 0.10 b | 0.08 ± 0.02 b | 13.24 ± 1.90 a |
Cultivar (120 DAFB) | Year | Chl (µg cm−2) | Flav (µg cm−2) | Anth (µg cm−2) | NBI |
---|---|---|---|---|---|
‘Genco’ | 2019 | 24.63 ± 2.48 k | 2.30 ± 0.11 bc | 0.08 ± 0.02 ef | 10.74 ± 1.16 f |
2020 | 28.27 ± 6.11 hi | 2.30 ± 0.16 abc | 0.09 ± 0.03 cd | 12.94 ± 2.60 d | |
Mean value | 26.45 ± 4.99 c | 2.30 ± 0.14 a | 0.08 ± 0.03 c | 11.84 ± 2.29 cd | |
‘Guara’ | 2019 | 22.20 ± 3.46 l | 2.22 ± 0.15 d | 0.11 ± 0.02 b | 9.92 ± 1.37 fg |
2020 | 32.51 ± 7.19 cd | 2.31 ± 0.17 ab | 0.08 ± 0.04 def | 14.43 ± 3.48 c | |
Mean value | 27.35 ± 7.64 c | 2.27 ± 0.16 ab | 0.09 ± 0.04 bc | 12.17 ± 3.47 c | |
‘Lauranne® Avijor’ | 2019 | 30.62 ± 5.38 efg | 2.03 ± 0.18 g | 0.06 ± 0.02 g | 15.05 ± 2.84 c |
2020 | 31.96 ± 6.81 cde | 2.23 ± 0.18 d | 0.07 ± 0.03 f | 14.45 ± 3.15 c | |
Mean value | 31.29 ± 6.15 b | 2.13 ± 0.21 e | 0.06 ± 0.03 de | 14.75 ± 3.00 ab | |
‘Penta®’ | 2019 | 26.19 ± 4.47 jk | 2.21 ± 0.09 de | 0.07 ± 0.03 f | 11.86 ± 2.11 e |
2020 | 34.55 ± 4.52 b | 2.15 ± 0.19 f | 0.04 ± 0.03 h | 16.14 ± 2.26 b | |
Mean value | 30.37 ± 6.13 b | 2.18 ± 0.15 de | 0.06 ± 0.03 de | 14.00 ± 3.06 b | |
‘Soleta’ | 2019 | 19.83 ± 4.81 m | 2.16 ± 0.10 f | 0.13 ± 0.04 a | 9.18 ± 2.23 g |
2020 | 31.21 ± 7.36 def | 2.31 ± 0.14 ab | 0.09 ± 0.03 cde | 13.45 ± 2.89 d | |
Mean value | 25.52 ± 8.43 c | 2.24 ± 0.15 bc | 0.11 ± 0.04 a | 11.32 ± 3.35 cd | |
‘Supernova’ | 2019 | 21.57 ± 2.82 lm | 2.30 ± 0.05 bc | 0.12 ± 0.03 ab | 9.39 ± 1.30 g |
2020 | 28.85 ± 5.42 ghi | 2.31 ± 0.15 ab | 0.09 ± 0.03 c | 12.80 ± 3.03 d | |
Mean value | 25.21 ± 5.65 c | 2.30 ± 0.11 a | 0.10 ± 0.03 ab | 11.09 ± 2.89 d | |
‘Tuono’ | 2019 | 27.12 ± 3.38 ij | 2.17 ± 0.11 ef | 0.07 ± 0.02 f | 12.67 ± 1.71 de |
2020 | 33.40 ± 5.22 bc | 2.22 ± 0.14 de | 0.07 ± 0.03 f | 15.23 ± 2.59 c | |
Mean value | 30.26 ± 5.40 b | 2.19 ± 0.13 cd | 0.07 ± 0.03 d | 13.95 ± 2.53 b | |
‘Vialfas’ | 2019 | 26.59 ± 4.05 fgh | 2.26 ± 0.14 cd | 0.06 ± 0.03 g | 13.11 ± 1.58 d |
2020 | 39.31 ± 5.11 a | 2.35 ± 0.09 a | 0.05 ± 0.03 gh | 17.16 ± 2.03 a | |
Mean value | 34.74 ± 6.93 a | 2.30 ± 0.13 a | 0.05 ± 0.03 e | 15.54 ± 2.72 a | |
Average cultivars 2019 | 25.21 ± 5.35 b | 2.21 ± 0.15 b | 0.08 ± 0.04 a | 11.49 ± 2.67 b | |
Average cultivars 2020 | 32.58 ± 6.91 a | 2.27 ± 0.17 a | 0.07 ± 0.04 b | 14.58 ± 3.13 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pica, A.L.; Silvestri, C.; Cristofori, V. Cultivar-Specific Assessments of Almond Nutritional Status through Foliar Analysis. Horticulturae 2022, 8, 822. https://doi.org/10.3390/horticulturae8090822
Pica AL, Silvestri C, Cristofori V. Cultivar-Specific Assessments of Almond Nutritional Status through Foliar Analysis. Horticulturae. 2022; 8(9):822. https://doi.org/10.3390/horticulturae8090822
Chicago/Turabian StylePica, Aniello Luca, Cristian Silvestri, and Valerio Cristofori. 2022. "Cultivar-Specific Assessments of Almond Nutritional Status through Foliar Analysis" Horticulturae 8, no. 9: 822. https://doi.org/10.3390/horticulturae8090822
APA StylePica, A. L., Silvestri, C., & Cristofori, V. (2022). Cultivar-Specific Assessments of Almond Nutritional Status through Foliar Analysis. Horticulturae, 8(9), 822. https://doi.org/10.3390/horticulturae8090822