In Vitro Micropropagation, Rooting and Acclimatization of Two Agastache Species (A. aurantiaca and A. mexicana)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Surface Sterilization and In Vitro Establishment
2.2. Multiple-Shoot Induction
2.3. Rooting Induction with Agarized and TIS Culture Systems
2.4. Acclimatization Tests
2.5. Leaf Morphological and Anatomical Examination
2.6. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Establishment and Shoot Micropropagation
3.2. Rooting Induction
3.3. Plant Acclimatization
3.4. Leaf Anatomical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marchioni, I.; Pistelli, L.; Ferri, B.; Copetta, A.; Ruffoni, B.; Pistelli, L.; Najar, B. Phytonutritional content and aroma profile changes during postharvest storage of edible flowers. Front. Plant Sci. 2020, 11, 590968. [Google Scholar] [CrossRef] [PubMed]
- Copetta, A.; Marchioni, I.; Ruffoni, B. The edible flowers from woody ornamental plants. IV Int. Symp. Woody Ornam. Temp. Zone 2021, 1331, 195–204. [Google Scholar] [CrossRef]
- Marchioni, I.; Najar, B.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Bioactive compounds and aroma profile of some Lamiaceae edible flowers. Plants 2020, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M.; Copetta, A.; Durazzo, A.; Gabrielli, P.; Lombardi-Boccia, G.; Lupotto, E.; Santini, A.; Ruffoni, B. A snapshot on food allergies: A case study on edible flowers. Sustainability 2020, 12, 8709. [Google Scholar] [CrossRef]
- Lint, H.; Epling, C. A revision of Agastache. Am. Midl. Nat. 1945, 33, 207–230. [Google Scholar] [CrossRef]
- Ayres, G.S.; Widrlechner, M.P. The genus Agastache as bee forage: A historical perspective. Am. Bee J. 1994, 134, 341–348. [Google Scholar]
- Fuentes-Granados, R.; Widrlechner, M.P.; Wilson, L.A. An overview of Agastache research. J. Herbs Spices Med. Plants 1998, 6, 69–97. [Google Scholar] [CrossRef]
- Husti, A.; Cantor, M.; Buta, E.; Hort, D. Current trends of using ornamental plants in culinary arts. ProEnviron. Promediu 2013, 6, 52–58. [Google Scholar]
- Myadelets, M.A.; Vorobyeva, T.A.; Domrachev, D.V. Composition of the essential oils of some species belonging to genus Agastache Clayton ex Gronov (Lamiaceae) cultivated under the conditions of the Middle Ural. Sustain. Dev. 2013, 21, 397–401. [Google Scholar]
- Marchioni, I.; Dimita, R.; Gioè, G.; Pistelli, L.; Ruffoni, B.; Pistelli, L.; Najar, B. The effects of post-harvest treatments on the quality of Agastache aurantiaca edible flowers. Horticulturae 2021, 7, 83. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Castro, G.; Estrada-Soto, S.; Arellano-García, J.; Arias-Duran, L.; Valencia-Díaz, S.; Perea-Arango, I. High accumulation of tilianin in in-vitro cultures of Agastache mexicana and its potential vasorelaxant action. Mol. Biol. Rep. 2019, 46, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Palma-Tenango, M.; Sánchez-Fernández, R.E.; Soto-Hernández, M. A systematic approach to Agastache mexicana research: Biology, agronomy, phytochemistry, and bioactivity. Molecules 2021, 26, 3751. [Google Scholar] [CrossRef]
- Najar, B.; Marchioni, I.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Volatilomic analysis of four edible flowers from Agastache genus. Molecules 2019, 24, 4480. [Google Scholar] [CrossRef] [PubMed]
- Drava, G.; Iobbi, V.; Govaerts, R.; Minganti, V.; Copetta, A.; Ruffoni, B.; Bisio, A. Trace elements in edible flowers from Italy: Further insights into health benefits and risks to consumers. Molecules 2020, 25, 2891. [Google Scholar] [CrossRef]
- Carrillo-Galván, G.; Bye, R.; Eguiarte, L.E.; Cristians, S.; Pérez-López, P.; Vergara-Silva, F.; Luna-Cavazos, M. Domestication of aromatic medicinal plants in Mexico: Agastache (Lamiaceae)—An ethnobotanical, morpho-physiological, and phytochemical analysis. J. Ethnobiol. Ethnomed. 2020, 16, 1–16. [Google Scholar] [CrossRef]
- Copetta, A.; Bazzicalupo, M.; Cassetti, A.; Marchioni, I.; Mascarello, C.; Cornara, L.; Pistelli, L.; Ruffoni, B. Plant production and leaf anatomy of Mertensia maritima (L.) Gray: Comparison of in vitro culture methods to improve acclimatization. Horticulturae 2021, 7, 111. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press: New York, NY, USA, 1999; ISBN 0-19-508956-1. [Google Scholar]
- Zayova, E.; Nikolova, M.; Dimitrova, L.; Petrova, M. Comparative study of in vitro, ex vitro and in vivo propagated Salvia hispanica (Chia) plants: Morphometric analysis and antioxidant activity. AgroLife Sci. J. 2016, 5, 166–174. [Google Scholar]
- Petrova, M.; Nikolova, M.; Dimitrova, L.; Zayova, E. Micropropagation and evaluation of flavonoid content and antioxidant activity of Salvia officinalis L. Genet. Plant Physiol. 2015, 5, 48–60. [Google Scholar]
- Zuzarte, M.R.; Dinis, A.M.; Cavaleiro, C.; Salgueiro, L.R.; Canhoto, J.M. Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Ind. Crops Prod. 2010, 32, 580–587. [Google Scholar] [CrossRef]
- Makowczyńska, J.; Sliwinska, E.; Kalemba, D.; Piątczak, E.; Wysokińska, H. In vitro propagation, DNA content and essential oil composition of Teucrium scorodonia L. ssp. scorodonia. Plant Cell Tissue Organ Cult. 2016, 127, 1–13. [Google Scholar] [CrossRef]
- Bekircan, T.; Yaşar, A.; Yıldırım, S.; Sökmen, M.; Sökmen, A. Effect of cytokinins on in vitro multiplication, volatiles composition and rosmarinic acid content of Thymus leucotrichus Hal. shoots. 3 Biotech 2018, 8, 180. [Google Scholar] [CrossRef]
- Zielińska, S.; Piątczak, E.; Kalemba, D.; Matkowski, A. Influence of plant growth regulators on volatiles produced by in vitro grown shoots of Agastache rugosa (Fischer & CA Meyer) O. Kuntze. Plant Cell Tissue Organ Cult. 2011, 107, 161. [Google Scholar]
- Moharami, L.; Hosseini, B.; Ghotbi Ravandi, E.; Jafari, M. Effects of plant growth regulators and explant types on in vitro direct plant regeneration of Agastache foeniculum, an important medicinal plant. Vitr. Cell. Dev. Biol. Plant. 2014, 50, 707–711. [Google Scholar] [CrossRef]
- van Staden, E.; Zazimalova, E.; George, E.F. Plant growth regulators II: Cytokinins, their analogues and antagonists. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., De Klerk, G.-J., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 205–226. [Google Scholar]
- Ivanova, M.; van Staden, J. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tissue Organ Cult. 2011, 104, 13–21. [Google Scholar] [CrossRef]
- Williams, R.R.; Taji, A.M. Effect of temperature, gel concentration and cytokinins on vitrification of Olearia microdisca (J.M. Black) in vitro shoot cultures. Plant Cell Tissue Organ Cult. 1991, 26, 1–6. [Google Scholar] [CrossRef]
- Skała, S.; Kalemba, D.; Wajs, A.; Rozalski, M.; Krajewska, U.; Rozalska, B.; Wieckowska-Szakiel, M.; Wysokinska, H. In vitro propagation and chemical and biological studies of the essential oil of Salvia przewalskii Maxim. Z. Naturforschung C 2007, 62, 839–848. [Google Scholar] [CrossRef]
- Fraga, M.; Alonso, M.; Ellul, P.; Borja, M. Micropropagation of Dianthus gratianopolitanus. HortScience 2004, 39, 1083–1087. [Google Scholar] [CrossRef]
- Ruta, C.; De Mastro, G.; Ancona, S.; Tagarelli, A.; De Cillis, F.; Benelli, C.; Lambardi, M. Large-scale plant production of Licium barbarum L. by liquid culture in temporary immersion system and possible application to the synthesis of bioactive substance. Plants 2020, 9, 844. [Google Scholar] [CrossRef]
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Ptak, A. Leucojum aestivum L. in vitro bulbs induction and acclimatization. Cent. Eur. J. Biol. 2014, 9, 1011–1021. [Google Scholar] [CrossRef]
- Georgiev, V.; Ivanov, I.; Berkov, S.; Pavlov, A. Temporary immersion systems for Amaryllidaceae alkaloids biosynthesis by Pancratium maritimum L. shoot culture. J. Plant Biochem. Biotechnol. 2014, 23, 389–398. [Google Scholar] [CrossRef]
- De Carlo, A.; Tarraf, W.; Lambardi, M.; Benelli, C. Temporary immersion system for production of biomass and bioactive compounds from medicinal plants. Agronomy 2021, 11, 2414. [Google Scholar] [CrossRef]
- Mc Alister, B.; Finnie, J.; Watt, M.P.; Blakeway, F. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clonesin mondi Forest (SA). Plant Cell Tiss. Organ. Cult. 2005, 81, 347–358. [Google Scholar] [CrossRef]
- Yan, H.; Liang, C.; Li, Y. Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell Tiss. Organ. Cult. 2010, 103, 131–135. [Google Scholar] [CrossRef]
- Preece, J.E. Acclimatization of Plantlets from In Vitro to the Ambient Environment; Wiley Encyclopedia of Industrial Biotechnology: Hoboken, NJ, USA, 2009; pp. 1–9. [Google Scholar]
BAP (µM) | |||||
---|---|---|---|---|---|
Parameters | 0.00 | 1.11 | 2.22 | 3.33 | 4.44 |
A. aurantiaca | |||||
Shoot per cluster | 2 ± 1 b 1 | 4 ± 1 ab | 5 ± 1 a | 5 ± 1 a | 2 ± 1 b |
Plant cluster height (mm) | 30 ± 3 a | 23 ± 3 ab | 18 ± 2 bc | 20 ± 4 bc | 15 ± 2 c |
Leaf number | 23 ± 2 b | 24 ± 5 b | 49 ± 15 a | 55 ± 20 a | 46 ± 12 a |
Explant number * | 7 ± 1 a | 5 ± 1 ab | 5 ± 1 ab | 3 ± 1 b | 3 ± 1 b |
A. mexicana | |||||
Shoot per cluster | 2 ± 1 b | 4 ± 1 a | 7 ± 2 a | 7 ± 1 a | 6 ± 1 a |
Plant cluster height (mm) | 38 ± 6 a | 32 ± 3 a | 28 ± 3 a | 26 ± 1 a | 25 ± 3 a |
Leaf number | 28 ± 6 c | 57 ± 9 b | 128 ± 30 a | 102 ± 10 a | 91 ± 13 a |
Explant number * | 7 ± 1 b | 14 ± 2 a | 17 ± 2 a | 3 ± 2 b | 2 ± 2 b |
A. aurantiaca | A. mexicana | |||
---|---|---|---|---|
Parameters | Jar | TIS | Jar | TIS |
Shoot fresh weight (mg) | 312 ± 21 b 1 | 1070 ± 43 a | 200 ± 19 b | 1264 ± 69 a |
Shoot number | 2 ± 1 b | 4 ± 1 a | 3 ± 1 b | 8 ± 1 a |
Shoot height (mm) | 44 ± 2 a | 50 ± 3 a | 47 ± 2 b | 73 ± 4 a |
Leaf number | 34 ± 2 b | 56 ± 2 a | 32 ± 2 b | 69 ± 3 a |
Root number per plant | 5 ± 1 b | 7 ± 1 a | 4 ± 1 b | 9 ± 1 a |
Longest root per plant (mm) | 3.2 ± 0.2 b | 4.4 ± 0.2 a | 2.5 ± 0.2 b | 4.9 ± 0.2 a |
A. aurantiaca | A. mexicana | |||
---|---|---|---|---|
Parameters | Jar | TIS | Jar | TIS |
Shoot height (mm) | 49 ± 5 a 1 | 54 ± 5 a | 76 ± 6 a | 88 ± 5 a |
Shoot number (>10 mm) | 2 ± 1 b | 3 ± 1 a | 2 ± 1 b | 5 ± 1 a |
Shoot number (<10 mm) | 0 ± 1 b | 3 ± 1 a | 1 ± 2 b | 4 ± 1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Copetta, A.; Mussano, P.; Devi, P.; Lanteri, A.; Cassetti, A.; Mascarello, C.; Bisio, A.; Ruffoni, B. In Vitro Micropropagation, Rooting and Acclimatization of Two Agastache Species (A. aurantiaca and A. mexicana). Horticulturae 2023, 9, 1065. https://doi.org/10.3390/horticulturae9101065
Copetta A, Mussano P, Devi P, Lanteri A, Cassetti A, Mascarello C, Bisio A, Ruffoni B. In Vitro Micropropagation, Rooting and Acclimatization of Two Agastache Species (A. aurantiaca and A. mexicana). Horticulturae. 2023; 9(10):1065. https://doi.org/10.3390/horticulturae9101065
Chicago/Turabian StyleCopetta, Andrea, Paolo Mussano, Poonam Devi, Angelo Lanteri, Arianna Cassetti, Carlo Mascarello, Angela Bisio, and Barbara Ruffoni. 2023. "In Vitro Micropropagation, Rooting and Acclimatization of Two Agastache Species (A. aurantiaca and A. mexicana)" Horticulturae 9, no. 10: 1065. https://doi.org/10.3390/horticulturae9101065
APA StyleCopetta, A., Mussano, P., Devi, P., Lanteri, A., Cassetti, A., Mascarello, C., Bisio, A., & Ruffoni, B. (2023). In Vitro Micropropagation, Rooting and Acclimatization of Two Agastache Species (A. aurantiaca and A. mexicana). Horticulturae, 9(10), 1065. https://doi.org/10.3390/horticulturae9101065