Foliar Mn and Zn Treatments Improve Apple Tree Nutrition and Help to Maintain Favorable Soil pH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Soil Properties
2.2. Experimental Design
2.3. Sampling and Assays
2.4. Statistic Treatment
3. Results
3.1. Foliar Macronutrient Content
3.1.1. Nitrogen (N)
3.1.2. Phosphorus (P)
3.1.3. Potassium (K)
3.2. Soil pH
3.3. Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, T.L.; De Marree, A.M.; Hoying, S.A. An economic comparison of five high density apple planting systems. Acta Hortic. 2007, 732, 481–489. [Google Scholar] [CrossRef]
- High-Density Plantation—Future of Apple Cultivation: The Tribune India. Available online: https://www.tribuneindia.com/news/archive/himachaltribune/high-density-plantation-%E2%80%94-future-of-apple-cultivation-768149 (accessed on 27 April 2023).
- Kafle, R.; Pandit, S.; Arial, R.; Pokhrel, A.; Bist, P.; Timilsna, R.H. Comparing high-density plantation (HDP) system and the conventional plantation system of apple cultivation in Mustang and Manang districts of Nepal. Cogent Food Agric. 2021, 7, 1896118. [Google Scholar] [CrossRef]
- High Density Apple Systems Cost More|Good Fruit Grower. Available online: https://www.goodfruit.com/high-density-apple-systems-cost-more/ (accessed on 27 April 2023).
- Cuykendall, C.H.; White, G.B. Report: Economics of Drip Irrigation for Apple Orchards in New York State. Available online: https://hdl.handle.net/1813/68946 (accessed on 7 July 2023).
- High Density Apple Orchard Management|NC State Extension Publications. Available online: https://content.ces.ncsu.edu/high-density-apple-orchard-management (accessed on 27 April 2023).
- Svoboda, P.; Haberle, J.; Moulik, M.; Raimanová, I.; Kurešová, G.; Mészáros, M. The effect of drip irrigation on the length and distribution of apple tree roots. Horticulturae 2023, 9, 405. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Hoyt, P.B.; Neilsen, D. Short communication: Soil chemical changes associated with NP-fertigated and drip irrigated high-density apple orchards. Can. J. Soil Sci. 1995, 75, 307–310. [Google Scholar] [CrossRef]
- Neilsen, D.; Neilsen, G.H. Efficient use of nitrogen and water in high-density apple orchards. HortTechnology 2002, 12, 19–25. [Google Scholar] [CrossRef]
- Segal, E.; Dag, A.; Ben-Gal, A.; Zipori, I.; Erel, R.; Suryano, S.; Yermiyahu, U. Olive orchard irrigation with reclaimed wastewater: Agronomic and environmental considerations. Agric. Ecosyst. Environ. 2011, 140, 454–461. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correl, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Soil pH and the Availability of Plant Nutrients|Nutrient Stewardship. Available online: https://nutrientstewardship.org/implementation/soil-ph-and-the-availability-of-plant-nutrients/ (accessed on 7 May 2023).
- Reganold, J. Sustainability of organic, conventional, and integrated apple orchards. Crop. Manag. 2006, 5, 1–5. [Google Scholar] [CrossRef]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Zhai, B.; Jin, H.; Xu, X.; Zhu, Y. Long-term changes in soil chemical properties with cropland-to-orchard conversion on the Loess Plateau, China: Regulatory factors and relations with apple yield. Agric. Syst. 2023, 204, 103562. [Google Scholar] [CrossRef]
- Rootsroks for Apple. WSU Tree Fruit. Available online: https://treefruit.wsu.edu/web-article/apple-rootstocks/ (accessed on 1 October 2023).
- Claffy, S.; Farcuh, M. All about apple rootstocks. Agric. Food Syst. UME 2022. September. Available online: https://extension.umd.edu/sites/extension.umd.edu/files/publications/AllAboutAppleRootStocks_FS_2022-0638.pdf (accessed on 28 April 2023).
- Stakhurlova, L.D.; Svistova, I.D.; Shcheglov, D.I. Biological activity as an indicator of chernozem fertility in different biocenoses. Eurasian Soil Sci. 2007, 40, 694–699. [Google Scholar] [CrossRef]
- Nejgebauer, V. Vojvodanski Černozem; Matica Srpska: Novi Sad, Serbia, 1951. [Google Scholar]
- Milić, S.; Ninkov, J.; Zeremski, T.; Latković, D.; Šeremešić, S.; Radovanović, V.; Žarković, B. Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment. Geoderma 2019, 339, 9–19. [Google Scholar] [CrossRef]
- Nezat, C.; Blum, J.D.; Yanai, R.D.; Park, B.B. Mineral sources of calcium and phosphorus in soils of the northeastern United States. Soil Sci. Soc. Am. J. 2008, 72, 1786–1794. [Google Scholar] [CrossRef]
- Soumare, A.; Sarr, D.; Diédhiou, A.G. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere 2023, 33, 105–115. [Google Scholar] [CrossRef]
- Cheng, H.; Che, M.; Hu, W.; Wu, Q.; Cheng, Y.; Hu, X.; Xiong, S.; Zheng, J.; Gong, Y. Soil-available nutrients associated with soil chemical and aggregate properties following vegetation restoration in western Sichuan, China. Forests 2023, 14, 259. [Google Scholar] [CrossRef]
- Kuzin, A.; Solovchenko, A.; Stepantsova, L.; Pugachev, G. Soil fertility management in apple orchard with microbial biofertilizers. E3S Web Conf. 2020, 222, 03020. [Google Scholar] [CrossRef]
- Moreira Barradas, J.M.; Abdelfattah, A.; Matula, S.; Dolezal, F. Effect of fertigation on soil salinization and aggregate stability. J. Irrig. Drain. Eng. 2014, 141, 806. [Google Scholar] [CrossRef]
- Xie, S.; Yang, F.; Feng, H.; Yu, Z.; Wei, X.; Liu, C.; Wei, C. Potential to reduce chemical fertilizer application in tea plantations at various spatial scales. Int. J. Environ. Res. Public Health 2022, 19, 5243. [Google Scholar] [CrossRef]
- Jin, N.; Jin, L.; Wang, S.; Li, J.; Liu, F.; Liu, Z.; Luo, S.; Wu, Y.; Lyu, J.; Yu, J. Reduced chemical fertilizer combined with bio-organic fertilizer affects the soil microbial community and yield and quality of lettuce. Front. Microbiol. 2022, 13, 863325. [Google Scholar] [CrossRef]
- Kai, T.; Adhikari, D. Effect of Organic and Chemical Fertilizer Application on Apple Nutrient Content and Orchard Soil Condition. Agriculture 2021, 11, 340. [Google Scholar] [CrossRef]
- Moon, J.Y.; Min, B.K.; Shin, J.H.; Choi, Y.C.; Lee, Y.H.; Min, S.R.; Heo, J.Y. Influence of foliar fertilization with monopotassium phosphate on growth and yield of sweet potato (Ipomoea batatas L.). Korean J. Soil Sci. Fertil. 2019, 52, 217–225. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, F.Y.; Cao, N.; Wang, C.; Liu, G.J.; Liu, M.; Sun, X.H. The effect of silicon foliar fertilizer on the rhizosphere soil microecology in the wheat-maize system. J. Anhui Agric. Univ. 2018, 45, 363–366. (In Chinese) [Google Scholar] [CrossRef]
- Sun, L. The effect of reducing fertilizer application on tomato production, quality and soil nitrate in Chaohu lake basin. Chin. Agric. Sci. Bull. 2011, 27, 250–255. (In Chinese) [Google Scholar]
- Zheng, C.; Li, P.; Sun, M.; Pang, C.; Zhao, X.; Gui, H.; Liu, S.; Qin, Y.; Dong, H.; Yu, X. Effects of foliar nitrogen applications on the absorption of nitrate nitrogen by cotton roots. Cotton Sci. 2018, 30, 338–343. (In Chinese) [Google Scholar] [CrossRef]
- Roosta, H.R.; Mohsenian, Y. Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. Sci. Hortic. 2012, 146, 182–191. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, M.; Ma, Q. Copper-based foliar fertilizer and controlled release urea improved soil chemical properties, plant growth and yield of tomato. Sci. Hortic. 2012, 143, 109–114. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z. Effects of reducing application amount of base fertilizer and increasing application time of leaf fertilizer on corn yield. Agric. Sci. Technol. 2015, 16, 947. [Google Scholar]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of foliar fertilization: A review of current status and future perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef]
- Bana, R.S.; Jat, G.S.; Grover, M.; Bamboriya, S.D.; Singh, D.; Bansal, R.; Choudhary, A.K.; Kumar, V.; Laing, A.M.; Godara, S.; et al. Foliar nutrient supplementation with micronutrient-embedded fertilizer increases biofortification, soil biological activity and productivity of eggplant. Sci. Rep. 2022, 12, 5146. [Google Scholar] [CrossRef]
- Aziz, M.Z.; Yaseen, M.; Abbas, T.; Naveed, M.; Mustafa, A.; Hamid, Y.; Saeed, Q.; Xu, M. Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. J. Integr. Agric. 2019, 18, 1369–1378. [Google Scholar] [CrossRef]
- Świerczyński, S.; Antonowicz, A. The effects of reduced mineral fertilisation combined with the foliar application of biostimulants and fertilisers on the nutrition of maiden apple trees and the contents of soil nutrients. Agronomy 2021, 11, 2438. [Google Scholar] [CrossRef]
- Kuzin, A.I.; Denisov, A.D.; Petrovskii, A.S. Apple Tree Foliar Nutrition Systems with Special Fertilizers; JSC ‘Schelkovo Agrohim’: Schelkovo, Russia, 2021; pp. 37–48. (In Russian) [Google Scholar]
- Growth Stages of Mono- and Dicotyledonous Plants, BBCH Monograph, 2nd ed.; Meier, U. (Ed.) Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001; 158p. [Google Scholar]
- Mineev, V.G.; Sychev, V.G.; Amelyanchik, O.A.; Bolsheva, T.N.; Gomonova, N.F.; Durynina, E.P.; Egorov, V.S.; Egorova, E.V.; Edemskaya, N.L.; Karpova, E.A.; et al. Educational Aid on Agricultural Chemistry, 2nd ed.; Publishing House of Lomonosov Moscow State University: Moskow, Russia, 2001; pp. 66–70, 351–475. (In Russian) [Google Scholar]
- Dospekhov, B.A. Methodology of Field Experience; Agropromizdat: Moscow, Russia, 1985; 351p. [Google Scholar]
- Sen, S.; Chalk, P.M. Stimulation of root growth and soil nitrogen uptake by foliar application of urea to wheat and sunflower. J. Agric. Sci. 1996, 126, 127–135. [Google Scholar] [CrossRef]
- Coelho, A.R.F.; Ramalho, J.C.; Lidon, F.C.; Marques, A.C.; Daccak, D.; Pessoa, C.C.; Luís, I.C.; Guerra, M.; Leitão, R.G.; Semedo, J.M.N.; et al. Foliar spraying of Solanum tuberosum L. with CaCl2 and Ca(NO3)2: Interactions with nutrients accumulation in tubers. Plants 2022, 11, 1725. [Google Scholar] [CrossRef] [PubMed]
- Kondakov, A.K. Fertilization of Fruit Trees, Berry Bushes, Nurseries and Flower Crops; Publishing House “Michurinsk”: Tambov, Russia, 2006; pp. 168–183. (In Russian) [Google Scholar]
- Nachtigall, G.R.; Dechen, A.R. Seasonality of nutrients in leaves and fruits of apple trees. Sci. Agric. 2006, 63, 493–501. [Google Scholar] [CrossRef]
- Kuzin, A.; Solovchenko, A. Essential role of potassium in apple and its implications for management of orchard fertilization. Plants 2021, 10, 2624. [Google Scholar] [CrossRef] [PubMed]
- Nurzynski, J.; Komosa, A.; Wesolowska-Janczarek, M.; Kepka, M.; Kozera, G. Seasonal changes of N,P,K,Ca and Mg content in apple tree leaves during vegetation period. Acta Hortic. 1990, 274, 365–374. [Google Scholar] [CrossRef]
- Kuzin, A.I.; Grigoreva, L.V.; Kochkina, A.M. Influence of different agrochemicals on calcium content in apple fruits of cultivar ‘Zhigulevskoye’. Acta Hortic. 2021, 1327, 189–196. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Réthoré, E.; Pluchon, S.; Ali, N.; Billiot, B.; Yvin, J.-C. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. Int. J. Mol. Sci. 2019, 20, 3777. [Google Scholar] [CrossRef]
- Haghi, H.; Rabiei, V.; Ershadi, A.; Razavi, F. Effects of late season foliar application of calcium chloride on cold hardiness in grapevines (Vitis vinifera ‘Thompson Seedless’). J. Hortic. 2019, 88, 347–353. [Google Scholar] [CrossRef]
- Berger, J.; Palta, J.; Vadez, V. Review: An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought. Plant Sci. 2016, 253, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Cultivar: Apple, Bogatyr. Available online: https://vniispk.ru/varieties/bogatyr (accessed on 2 September 2023). (In Russian).
- Kowalczyk, W.; Wrona, D.; Przybyłko, S. Content of minerals in soil, apple tree leaves and fruits depending on nitrogen fertilization. J. Elem. 2017, 22, 67–77. [Google Scholar] [CrossRef]
- Fernández, V.; Eichert, T. Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef]
- O’Kennedy, B.T.; Hennerty, M.J.; Titus, J.S. Changes in the nitrogen reserves of apple shoots during the dormant season. J. Hortic. Sci. 1975, 50, 321–329. [Google Scholar] [CrossRef]
- El-Shazly, S.M.; Dris, R. Response of ‘Anna’ apple trees to foliar sprays of chelated iron, manganese and zinc. JFAE 2004, 2, 126–130. [Google Scholar]
- Treder, W.; Klamkowski, K.; Wójcik, K.; Tryngiel-Gać, A.; Sas-Paszt, L.; Mika, A.; Kowalczyk, W. Apple leaf macro- and micronutrient content as affected by soil treatments with fertilizers and microorganisms. Sci. Hortic. 2022, 297, 110975. [Google Scholar] [CrossRef]
- Fallahi, E.; Mohan, S.K. Influence of nitrogen and rootstock on tree growth, precocity, fruit quality, leaf mineral nutrients, and fire blight in `Scarlet Gala’ Apple. HortTechnology 2000, 10, 589–592. [Google Scholar] [CrossRef]
- Sager, M.; Spornberger, A. Effect of copper foliar spray upon the contents of other elements in apple leaves. J. Agric. 2017, 3, 28–35. [Google Scholar] [CrossRef]
- Pedas, P.; Husted, S.; Skytte, K.; Schjoerring, J.K. Elevated phosphorus impedes manganese acquisition by barley plants. Front. Plant Sci. 2011, 2, 00037. [Google Scholar] [CrossRef]
- Lambers, H.; Hayes, P.E.; Laliberté, E.; Oliveira, R.S.; Turner, B.L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 2015, 20, 83–90. [Google Scholar] [CrossRef]
- Van Dang, L.; Phuong Ngoc, N.; Hung, N.N. Effects of foliar fertilization on nutrient uptake, yield, and fruit quality of pomelo (Citrus grandis Osbeck) grown in the Mekong Delta soils. Int. J. Agron. 2022, 2022, e7903796. [Google Scholar] [CrossRef]
- Hasani, M.; Zamani, Z.; Savaghebi, G.; Fatahi, R. Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals. J. Soil Sci. Plant Nutr. 2012, 12, 471–480. [Google Scholar] [CrossRef]
- Sud, R.G.; Prasad, R.; Bhargava, M. Effect of weather conditions on concentration of calcium, manganese, zinc, copper and and iron in green tea (Camellia sinensis (L) O Kubtze) leaves of north-western India. J. Sci. Food Agric. 1995, 67, 341–346. [Google Scholar] [CrossRef]
- Norozi, M.; Kaji, B.V.; Karimi, R.; Sedghi, M.N. Effects of foliar application of potassium and zinc on pistachio (Pistacia vera L.) Fruit Yield. Int. J. Hortic. Technol. 2019, 6, 113–123. [Google Scholar] [CrossRef]
- Erdem, H.; Sahin, O. Foliar zinc sprays affected yield and bioactive compounds of Granny smith apple. Int. J. Fruit Sci. 2021, 21, 670–680. [Google Scholar] [CrossRef]
- Ferrarezi, R.S.; Lin, X.; Gonzalez Neira, A.C.; Tabay Zambon, F.; Hu, H.; Wang, X.; Huang, J.-H.; Fan, G. Substrate pH influences the nutrient absorption and rhizosphere microbiome of huanglongbing-affected grapefruit plants. Front. Plant Sci. 2022, 13, 856937. [Google Scholar] [CrossRef]
- da Silva Cerozi, B.; Fitzsimmons, K. The Effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour. Technol. 2016, 219, 778–781. [Google Scholar] [CrossRef]
Soil Layers (cm) | N Hydrolysable (mg kg−1) | P Available (mg kg−1) | K Exchangeable (mg kg−1) | Ca Exchangeable, (mg kg−1) | Humus |
---|---|---|---|---|---|
0–20 | 145.3 | 173.0 | 132.9 | 3883 | 5.7 |
21–40 | 135.4 | 156.9 | 117.6 | 3787 | 5.4 |
41–60 | 106.0 | 99.6 | 96.7 | 3803 | 4.5 |
61–80 | 79.8 | 82.2 | 102.9 | 3815 | 2.4 |
Treatments | Symbol |
---|---|
1. Control (no foliar fertilization) | C |
2. Ca | T1 |
3. Zn, Cu | T2 |
4. Fe, Mn | T3 |
5. Full program of foliar fertilization (Micronutrients + amino acids + calcium) | T4 |
Growth Stage | Agrochemicals and Application Rate | Date of Spraying |
---|---|---|
T1 | ||
56 (Green bud stage: single flowers separating (still closed)) | Ultramag calcium (UlCa) (Ca 17%, N 10%, MgO 0.5%) 2.0 L ha−1 | 04.29.2020; 05.05.2021; 05.02.2022 |
69 (End of flowering: all petals fallen) | UlCa 2.0 L ha−1 | 05.22.2020; 05.23.2021; 05.29.2022 |
72 (Fruit diameter up to 20 mm) | UlCa 3.0 L ha−1 | 06.06.2020; 06.01.2021; 06.13.2023 |
74 (Fruit diameter up to 40 mm) | UlCa 3.0 L ha−1 | 06.12.2020; 06.14.2021; 06.24.2022 |
75 (Fruit above half final size) | UlCa 3.0 L ha−1 | 06.27.2020; 06.28.2021; 07.04.2022 |
76 (Fruit about 60% final size) | UlCa 3.0 L ha−1 | 07.06.2020; 07.15.2021; 07.16.2022 |
77 (Fruit about 70% final size) | UlCa 3.0 L ha−1 | 07.27.2020; 07.25.2021; 08.05.2022 |
78 (Fruit about 80% final size) | UlCa 3.0 L ha−1 | 08.14.2020; 08.11.2021; 08.15.2022 |
T2 | ||
56 (Green bud stage: single flowers separating (still closed)) | Ultramag Chelate Zn-15—(ChZn) 1.0 L ha−1 | 04.29.2020; 05.05.2021; 05.02.2022 |
74 (Fruit diameter up to 40 mm) | ChZn 1.0 L ha−1 | 06.12.2020; 06.14.2021; 06.24.2022 |
75 (Fruit above half final size) | Ultramag chelate Cu-15 (ChCu) 0.5 L ha−1 | 06.27.2020; 06.28.2021; 07.04.2022 |
77 (Fruit about 70% final size) | ChCu 0.5 L ha−1 | 07.27.2020; 07.25.2021; 08.05.2022 |
T3 | ||
56 (Green bud stage: single flowers separating (still closed)) | Ultramag chelate Mn-13 (ChMn) (Mn 13%) 0.5 L ha−1 | 04.29.2020; 05.05.2021; 05.02.2022 |
72 (Fruit size up to 20 mm) | ChMn 1.0 L ha−1 | 06.27.2020; 06.28.2021; 07.04.2022 |
74 (Fruit diameter up to 40 mm) | Ultramag chelate Fe-13 (ChFe) 1.0 L ha−1 | 06.12.2020; 06.14.2021; 06.24.2022 |
77 (Fruit about 70% final size) | ChFe 1.0 L ha−1 | 07.27.2020; 07.25.2021; 08.05.2022 |
T4 | ||
56 (Green bud stage: single flowers separating (still closed)) | Biostim Growth (BG) (aminoacids 4%, N 4%, P2O5 10%, MgO 2.0%, SO4 1.0%, Fe 0.4%, Mn 0.2%, Zn 0.2%, B 1%) 1.0 L ha−1; Ultramag Boron (Bor) (B 11%, N 3.5%) 1.0 L ha−1; UlCa 2.0 L ha−1, | 04.29.2020; 05.05.2021; 05.02.2022 |
61 (Beginning of flowering: about 10% of flowers open) | BG 1.5 L ha−1, Bor 1.0 L ha−1 | 05.07.2022; 05.14.2021; 05.16.2022 |
57 (End of flowering: all petals fallen) | UlCa 2.0 L ha−1; BG 2.0 L ha−1 | 05.04.2020; 05.22.2021; 05.29.2022 |
72 (Fruit size up to 20 mm) | UlCa 3.0 L ha−1 Ultramag Potassium (ULK) (K2O 22%, N 3.5%) 3.0 L ha−1 | 06.06.2020; 06.01.2021; 06.13.2023 |
74 (Fruit diameter up to 40 mm) | ULK 3.0 L ha−1; UlCa 3.0 L ha−1, BG 1.0 L ha−1 | 06.12.2020; 06.14.2021; 06.24.2022 |
75 (Fruit above half of the final size) | UlCa 3.0 L ha−1; Biostim Development (BD) (N 2.0%, CaO 10.0%, MgO 5.0%, Fe 0.7%, Mn 2.0%) 2.0 L ha−1 | 06.27.2020; 06.28.2021; 07.04.2022 |
76 (Fruit about 60% of the final size) | UlCa 3.0 L ha−1 | 06.27.2020; 06.28.2021; 07.04.2022 |
77 (Fruit about 70% of the final size) | UlCa 3.0 L ha−1 | 07.27.2020; 07.25.2021; 08.05.2022 |
78 (Fruit about 80% of the final size) | UlCa 3.0 L ha−1 | 08.14.2020; 08.11.2021; 08.15.2022 |
Treatments | 2020 | 2021 | 2022 | AVG | Total |
---|---|---|---|---|---|
C | 38.1 a | 33.9 a | 39.8 a | 37.3 a | 111.8 a |
T1 | 44.8 b | 32.1 a | 46.9 b | 41.3 b | 123.8 b |
T2 | 39.8 a | 31.3 a | 51.6 c | 40.9 b | 122.7 b |
T3 | 41.6 b | 32.7 a | 52.6 c | 42.3 b | 126.9 b |
T4 | 42.1 b | 33.4 a | 55.0 c | 43.5 b | 130.5 b |
LSD05 | 3.4 | 2.3 | 4.2 | 3.3 | 8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzin, A.I.; Kashirskaya, N.Y.; Solovchenko, A.E.; Kushner, A.V.; Kochkina, A.M.; Stepantzova, L.V.; Krasin, V.N. Foliar Mn and Zn Treatments Improve Apple Tree Nutrition and Help to Maintain Favorable Soil pH. Horticulturae 2023, 9, 1144. https://doi.org/10.3390/horticulturae9101144
Kuzin AI, Kashirskaya NY, Solovchenko AE, Kushner AV, Kochkina AM, Stepantzova LV, Krasin VN. Foliar Mn and Zn Treatments Improve Apple Tree Nutrition and Help to Maintain Favorable Soil pH. Horticulturae. 2023; 9(10):1144. https://doi.org/10.3390/horticulturae9101144
Chicago/Turabian StyleKuzin, Andrei I., Natalia Ya. Kashirskaya, Alexei E. Solovchenko, Alexei V. Kushner, Anna M. Kochkina, Ludmila V. Stepantzova, and Vyacheslav N. Krasin. 2023. "Foliar Mn and Zn Treatments Improve Apple Tree Nutrition and Help to Maintain Favorable Soil pH" Horticulturae 9, no. 10: 1144. https://doi.org/10.3390/horticulturae9101144
APA StyleKuzin, A. I., Kashirskaya, N. Y., Solovchenko, A. E., Kushner, A. V., Kochkina, A. M., Stepantzova, L. V., & Krasin, V. N. (2023). Foliar Mn and Zn Treatments Improve Apple Tree Nutrition and Help to Maintain Favorable Soil pH. Horticulturae, 9(10), 1144. https://doi.org/10.3390/horticulturae9101144