Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of the Lighting Environment
3.2. Fresh Weight Analysis
4. Discussion
- How does the photon irradiance at the top canopy level change as the seedlings grow close to the luminaire?
- Has the upper leaves’ temperature increased due to thermal radiation from the luminaires?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Research, S. Microgreens Market Analysis, Growth, Forecast to 2030. Available online: https://straitsresearch.com/report/microgreens-market (accessed on 27 August 2023).
- Teng, Z.; Luo, Y.; Pearlstein, D.J.; Wheeler, R.M.; Johnson, C.M.; Wang, Q.; Fonseca, J.M. Microgreens for Home, Commercial, and Space Farming: A Comprehensive Update of the Most Recent Developments. Annu. Rev. Food Sci. Technol. 2023, 14, 539–562. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-Scale Vegetable Production and the Rise of Microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Xiao, Z. Nutrition, Sensory, Quality and Safety Evaluation of a New Specialty Produce: Microgreens. Doctoral Thesis, Faculty of the Graduate School, the University of Maryland, College Park, MD, USA, 2013. [Google Scholar]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Sheibani, F.; Bourget, M.; Morrow, R.C.; Mitchell, C.A. Close-Canopy Lighting, an Effective Energy-Saving Strategy for Overhead Sole-Source LED Lighting in Indoor Farming. Front. Plant Sci. 2023, 14, 1215919. [Google Scholar] [CrossRef]
- Kozai, T.; Lu, N.; Hasegawa, R.; Nunomura, O.; Nozaki, T.; Amagai, Y.; Hayashi, E. Plant Cohort Research and Its Application. In Smart Plant Factory: The Next Generation Indoor Vertical Farms; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 413–431. ISBN 9789811310652. [Google Scholar]
- Balázs, L.; Dombi, Z.; Csambalik, L.; Sipos, L. Characterizing the Spatial Uniformity of Light Intensity and Spectrum for Indoor Crop Production. Horticulturae 2022, 8, 644. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Llewellyn, D.; Ying, Q.; Zheng, Y. Intensity of Sole-Source Light-Emitting Diodes Affects Growth, Yield, and Quality of Brassicaceae Microgreens. HortScience 2019, 54, 1168–1174. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, P.; Zhang, H.-X.; Zhou, D. Photosynthetic Characteristics of the Cotyledon and First True Leaf of Castor (Ricinus communis L.). Aust. J. Crop Sci. 2011, 5, 702–708. [Google Scholar]
- Santos, H.P.; Buckeridge, M.S. The Role of the Storage Carbon of Cotyledons in the Establishment of Seedlings of Hymenaea Courbaril Under Different Light Conditions. Ann. Bot. 2004, 94, 819–830. [Google Scholar] [CrossRef]
- Walter, A.; Scharr, H.; Gilmer, F.; Zierer, R.; Nagel, K.A.; Ernst, M.; Wiese, A.; Virnich, O.; Christ, M.M.; Uhlig, B.; et al. Dynamics of Seedling Growth Acclimation towards Altered Light Conditions Can Be Quantified via GROWSCREEN: A Setup and Procedure Designed for Rapid Optical Phenotyping of Different Plant Species. New Phytol. 2007, 174, 447–455. [Google Scholar] [CrossRef]
- Hayashi, E.; Amagai, Y.; Kozai, T.; Maruo, T.; Tsukagoshi, S.; Nakano, A.; Johkan, M. Variations in the Growth of Cotyledons and Initial True Leaves as Affected by Photosynthetic Photon Flux Density at Individual Seedlings and Nutrients. Agronomy 2022, 12, 194. [Google Scholar] [CrossRef]
- Both, A.J.; Benjamin, L.; Franklin, J.; Holroyd, G.; Incoll, L.D.; Lefsrud, M.G.; Pitkin, G. Guidelines for Measuring and Reporting Environmental Parameters for Experiments in Greenhouses. Plant Methods 2015, 11, 43. [Google Scholar] [CrossRef]
- Both, A.J.; Ciolkosz, D.E.; Albright, L.D. Evaluation of light uniformity underneath supplemental lighting systems. Acta Hortic. 2002, 580, 183–190. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Far-Red Photons Have Equivalent Efficiency to Traditional Photosynthetic Photons: Implications for Redefining Photosynthetically Active Radiation. Plant Cell Environ. 2020, 43, 1259–1272. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.; Bugbee, B. Why Far-Red Photons Should Be Included in the Definition of Photosynthetic Photons and the Measurement of Horticultural Fixture Efficacy. Front. Plant Sci. 2021, 12, 693445. [Google Scholar] [CrossRef]
- DesignLights Consortium. Available online: https://www.designlights.org/wp-content/uploads/2023/03/DLC_HORT-Technical-Requirements-V3-0_03312023.pdf (accessed on 1 September 2023).
- Trouwborst, G.; Hogewoning, S.W.; van Kooten, O.; Harbinson, J.; van Ieperen, W. Plasticity of Photosynthesis after the ‘Red Light Syndrome’ in Cucumber. Environ. Exp. Bot. 2016, 121, 75–82. [Google Scholar] [CrossRef]
- Lin, K.-H.; Huang, M.-Y.; Hsu, M.-H. Morphological and Physiological Response in Green and Purple Basil Plants (Ocimum basilicum) under Different Proportions of Red, Green, and Blue LED Lightings. Sci. Hortic. 2021, 275, 109677. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Pennisi, G.; Blasioli, S.; Cellini, A.; Maia, L.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Front. Plant Sci. 2019, 10, 305. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource Use Efficiency of Indoor Lettuce (Lactuca sativa L.) Cultivation as Affected by Red:Blue Ratio Provided by LED Lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
- Jin, W.; Urbina, J.L.; Heuvelink, E.; Marcelis, L.F.M. Adding Far-Red to Red-Blue Light-Emitting Diode Light Promotes Yield of Lettuce at Different Planting Densities. Front. Plant Sci. 2021, 11, 609977. [Google Scholar] [CrossRef]
- Sarlikioti, V.; de Visser, P.H.B.; Marcelis, L.F.M. Exploring the Spatial Distribution of Light Interception and Photosynthesis of Canopies by Means of a Functional–Structural Plant Model. Ann. Bot. 2011, 107, 875–883. [Google Scholar] [CrossRef]
- Kim, J.; Kang, W.H.; Son, J.E. Interpretation and Evaluation of Electrical Lighting in Plant Factories with Ray-Tracing Simulation and 3D Plant Modeling. Agronomy 2020, 10, 1545. [Google Scholar] [CrossRef]
- Gu, S.; Wen, W.; Xu, T.; Lu, X.; Yu, Z.; Guo, X.; Zhao, C. Use of 3D Modeling to Refine Predictions of Canopy Light Utilization: A Comparative Study on Canopy Photosynthesis Models with Different Dimensions. Front. Plant Sci. 2022, 13, 735981. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Fournier, C.; Brichet, N.; Welcker, C.; Suard, B.; Tardieu, F. High-Throughput Estimation of Incident Light, Light Interception and Radiation-Use Efficiency of Thousands of Plants in a Phenotyping Platform. New Phytol. 2016, 212, 269–281. [Google Scholar] [CrossRef]
- Thrash, T.; Lee, H.; Baker, R.L. A Low-Cost High-Throughput Phenotyping System for Automatically Quantifying Foliar Area and Greenness. Appl. Plant Sci. 2022, 10, e11502. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- D’Agostino, R.; Pearson, E.S. Tests for Departure from Normality. Biometrika 1973, 60, 613–622. [Google Scholar] [CrossRef]
- Piovene, C.; Orsini, F.; Bosi, S.; Sanoubar, R.; Bregola, V.; Dinelli, G.; Gianquinto, G. Optimal Red:Blue Ratio in Led Lighting for Nutraceutical Indoor Horticulture. Sci. Hortic. 2015, 193, 202–208. [Google Scholar] [CrossRef]
- Statistical Functions (Scipy.Stats)—SciPy v1.11.2 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/stats.html (accessed on 14 September 2023).
- Ariz, I.; Esteban, R.; García-Plazaola, J.I.; Becerril, J.M.; Aparicio-Tejo, P.M.; Moran, J.F. High Irradiance Induces Photoprotective Mechanisms and a Positive Effect on NH4+ Stress in Pisum sativum L. J. Plant Physiol. 2010, 167, 1038–1045. [Google Scholar] [CrossRef]
- Balázs, L.; Dombi, Z.; Csalambik, L.; Sipos, L. Characterization and Optimization of Photon Irradiance Distribution in Vertical Farms. Acta Hortic. 2023, 1369, 149–156. [Google Scholar] [CrossRef]
Tray | Parameter | PPFD | B | G | R | FR | R/B | FW |
---|---|---|---|---|---|---|---|---|
A | Minimum | 234.90 | 59.12 | 22.55 | 152.98 | 45.92 | 2.42 | 0.55 |
Average | 248.91 | 63.68 | 23.75 | 161.47 | 49.34 | 2.54 | 2.35 | |
Maximum | 269.37 | 69.06 | 25.32 | 175.30 | 51.90 | 2.65 | 4.55 | |
Uo | 0.94 | 0.93 | 0.95 | 0.95 | 0.93 | 0.96 | 0.23 | |
Ud | 0.87 | 0.86 | 0.89 | 0.87 | 0.88 | 0.91 | 0.12 | |
0.009 | 0.002 | 0.076 | 0.013 | 0.138 | 0.715 | 0.12 | ||
B1 | Minimum | 98.62 | 25.98 | 11.01 | 61.63 | 17.28 | 2.22 | 0.23 |
Average | 232.48 | 59.41 | 22.05 | 151.02 | 41.27 | 2.51 | 2.31 | |
Maximum | 390.93 | 101.33 | 34.22 | 257.55 | 69.00 | 2.78 | 5.67 | |
Uo | 0.42 | 0.44 | 0.50 | 0.41 | 0.42 | 0.89 | 0.10 | |
Ud | 0.24 | 0.25 | 0.31 | 0.23 | 0.26 | 0.85 | 0.04 | |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.04 | ||
B2 | Minimum | 33.23 | 8.83 | 3.70 | 20.70 | 6.26 | 2.01 | 0.22 |
Average | 91.14 | 24.48 | 9.38 | 57.29 | 17.31 | 2.34 | 1.70 | |
Maximum | 278.72 | 71.61 | 25.65 | 181.46 | 54.90 | 2.61 | 4.33 | |
Uo | 0.36 | 0.36 | 0.39 | 0.36 | 0.36 | 0.86 | 0.13 | |
Ud | 0.12 | 0.12 | 0.14 | 0.11 | 0.11 | 0.77 | 0.05 | |
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.175 | 0.05 |
Kruskal–Wallis Test (Medians) | Levene’s Test (Variances) | ||||||
---|---|---|---|---|---|---|---|
Parameter | Tray | A | B1 | B2 | A | B1 | B2 |
PPFD | A | 1.000 | - | - | 1.000 | - | - |
B1 | 0.107 | 1.000 | - | 0.000 | 1.000 | - | |
B2 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 1.000 | |
R/B | A | 1.000 | - | - | 1.000 | - | - |
B1 | 0.335 | 1.000 | - | 0.000 | 1.000 | - | |
B2 | 0.000 | 0.000 | 1.000 | 0.000 | 0.050 | 1.000 | |
FW | A | 1.000 | - | - | 1.000 | - | - |
B1 | 0.786 | 1.000 | - | 0.101 | 1.000 | - | |
B2 | 0.000 | 0.000 | 1.000 | 0.015 | 0.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázs, L.; Kovács, G.P.; Gyuricza, C.; Piroska, P.; Tarnawa, Á.; Kende, Z. Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments. Horticulturae 2023, 9, 1187. https://doi.org/10.3390/horticulturae9111187
Balázs L, Kovács GP, Gyuricza C, Piroska P, Tarnawa Á, Kende Z. Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments. Horticulturae. 2023; 9(11):1187. https://doi.org/10.3390/horticulturae9111187
Chicago/Turabian StyleBalázs, László, Gergő Péter Kovács, Csaba Gyuricza, Petra Piroska, Ákos Tarnawa, and Zoltán Kende. 2023. "Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments" Horticulturae 9, no. 11: 1187. https://doi.org/10.3390/horticulturae9111187
APA StyleBalázs, L., Kovács, G. P., Gyuricza, C., Piroska, P., Tarnawa, Á., & Kende, Z. (2023). Quantifying the Effect of Light Intensity Uniformity on the Crop Yield by Pea Microgreens Growth Experiments. Horticulturae, 9(11), 1187. https://doi.org/10.3390/horticulturae9111187