Variability in Chemical Profile and Bioactivities of the Flesh of Greek Pumpkin Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Samples Preparation
- Step 1: −35 °C for 2 h at atmospheric pressure (1000 mbar);
- Step 2: from −35 °C to −20 °C in 6 h under vacuum 0.150 mbar;
- Step 3: from −20 °C to 0 °C in 12 h under vacuum 0.150 mbar;
- Step 4: from 0 °C to 10 °C in 12 h under vacuum 0150 mbar;
- Step 5: from 10 °C to 25 °C in 12 h under vacuum 0.150 mbar.
2.3. Nutritional Characterization
2.4. HPLC Assays
2.5. Bioactivities
2.6. Statistical Analysis
3. Results and Discussion
3.1. Crop Performance
3.2. Nutritional Profile
3.3. Bioactivities
3.3.1. Antioxidant Capacity
3.3.2. Antimicrobial Activity
3.4. Chemical Characterization
3.4.1. Organic Acids
3.4.2. Tocopherols
3.5. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chomicki, G.; Schaefer, H.; Renner, S.S. Origin and domestication of Cucurbitaceae crops: Insights from phylogenies, genomics and archaeology. New Phytol. 2020, 226, 1240–1255. [Google Scholar] [CrossRef] [PubMed]
- Kistler, L.; Newsom, L.A.; Ryan, T.M.; Clarke, A.C.; Smith, B.D.; Perry, G.H. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc. Natl. Acad. Sci. USA 2015, 112, 15107–15112. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D. The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 1997, 276, 932–934. [Google Scholar] [CrossRef]
- Kates, H.R.; Soltis, P.S.; Soltis, D.E. Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol. Phylogenet. Evol. 2017, 111, 98–109. [Google Scholar] [CrossRef]
- Savage, J.A.; Haines, D.F.; Holbrook, N.M. The making of giant pumpkins: How selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant Cell Environ. 2015, 38, 1543–1554. [Google Scholar] [CrossRef]
- Integrated Taxonomic Information System—Report. Cucurbita, L. Available online: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=22365#null (accessed on 3 September 2023).
- Saavedra, M.J.; Aires, A.; Dias, C.; Almeida, J.A.; De Vasconcelos, M.C.B.M.; Santos, P.; Rosa, E.A. Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. J. Food Sci. Technol. 2015, 52, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wu, S.; Zhang, G.; Jiao, C.; Guo, S.; Ren, Y.; Zhang, J.; Zhang, H.; Gong, G.; Jia, Z.; et al. Karyotype Stability and Unbiased Fractionation in the Paleo-Allotetraploid Cucurbita Genomes. Mol. Plant 2017, 10, 1293–1306. [Google Scholar] [CrossRef] [PubMed]
- Kulczynski, B.; Gramza-Michałowska, A. The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules 2019, 24, 2945. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Ferreira, I.; Barros, L. Phytochemicals in Vegetables: A Valuable Source of Bioactive Compounds; Petropoulos, S.A., Ferreira, I.C.F.R., Barros, L., Eds.; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2018. [Google Scholar]
- Weaver, C.M. Bioactive foods and ingredients for health. Adv. Nutr. 2014, 5, 306S–311S. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Quddoos, M.Y.; et al. A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chem. Adv. 2022, 1, 100067. [Google Scholar] [CrossRef]
- Montesano, D.; Rocchetti, G.; Putnik, P.; Lucini, L. Bioactive profile of pumpkin: An overview on terpenoids and their health-promoting properties. Curr. Opin. Food Sci. 2018, 22, 81–87. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef]
- Mohaammed, S.; Paiko, Y.; Mann, A.; Ndamitso, M.; Mathew, J.; Maaji, S. Proximate, Mineral and Anti-nutritional Composition of Cucurbita maxima Fruits Parts. J. Chem. Res. 2015, 19, 37–49. [Google Scholar]
- Fedha, M.; Mwasaru, M.; Njoroge, C.; Ojijo, N.; Ouma, G. Effect of drying on selected proximate composition of fresh and processed fruits and seeds of two pumpkin species. Agric. Biol. J. N. Am. 2010, 1, 1299–1302. [Google Scholar] [CrossRef]
- Nwofia, G.E.; Nwogu Victoria, N.; Nwofia Blessing, K. Nutritional variation in fruits and seeds of pumpkins (Cucurbita spp) accessions from Nigeria. Pak. J. Nutr. 2012, 11, 848–858. [Google Scholar] [CrossRef]
- Ratnam, N.; Najibullah, M.; Ibrahim, M. A Review on Cucurbita pepo. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 1190–1194. [Google Scholar] [CrossRef]
- Kaur, S.; Panghal, A.; Garg, M.K.; Mann, S.; Khatkar, S.K.; Sharma, P.; Chhikara, N. Functional and nutraceutical properties of pumpkin—A review. Nutr. Food Sci. 2020, 50, 384–401. [Google Scholar] [CrossRef]
- Ponka, R.; Bouba, A.A.; Fokou, E.; Tambe, S.T.; Beaucher, E.; Piot, M.; Leonil, J.; Gaucheron, F. Protein, mineral and amino acid content of some Cameroonian traditional dishes prepared from pumpkin (Cucurbita maxima Duch.). J. Food Compos. Anal. 2015, 43, 169–174. [Google Scholar] [CrossRef]
- EFSA. EFSA Dietary Reference Values. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 25 October 2023).
- Adnan, M.; Gul, S.; Batool, S.; Fatima, B.; Rehman, A.; Yaqoob, S.; Shabir, H.; Yousaf, T.; Mussarat, S.; Ali, N.; et al. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. J. Phytopharm. 2017, 6, 133–139. [Google Scholar] [CrossRef]
- Dhiman, A.K.; Sharma, K.D.; Attri, S. Functional constituents and processing of pumpkin: A review. J. Food Sci. Technol. 2009, 46, 411–417. [Google Scholar]
- Sharma, P.; Kaur, G.; Kehinde, B.A.; Chhikara, N.; Panghal, A.; Kaur, H. Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: A review. Int. J. Veg. Sci. 2020, 26, 79–95. [Google Scholar] [CrossRef]
- Caili, F.; Huan, S.; Quanhong, L. A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum. Nutr. 2006, 61, 73–80. [Google Scholar] [CrossRef]
- Bochnak, J.; Świeca, M. Potentially bioaccessible phenolics, antioxidant capacities and the colour of carrot, pumpkin and apple powders—Effect of drying temperature and sample structure. Int. J. Food Sci. Technol. 2020, 55, 136–145. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Marin, J.; Rivas, J.; Sanhueza, L.; Soto, Y.; Vera, N.; Puente-Díaz, L. Pumpkin seeds (Cucurbita maxima). A review of functional attributes and by-products. Rev. Chil. Nutr. 2019, 46, 783–791. [Google Scholar] [CrossRef]
- Abdein, M.A.E.-H. Genetic Diversity between Pumpkin Accessions Growing in the Northern Border Region in Saudi Arabia Based on Biochemical and Molecular Parameters. Egypt. J. Bot. 2018, 58, 463–476. [Google Scholar] [CrossRef]
- Kaźmińska, K.; Sobieszek, K.; Targońska-Karasek, M.; Korzeniewska, A.; Niemirowicz-Szczytt, K.; Bartoszewski, G. Genetic diversity assessment of a winter squash and pumpkin (Cucurbita maxima Duchesne) germplasm collection based on genomic Cucurbita-conserved SSR markers. Sci. Hortic. 2017, 219, 37–44. [Google Scholar] [CrossRef]
- Hamdi, K.; Ben-Amor, J.; Mokrani, K.; Mezghanni, N.; Tarchoun, N. Assessment of the genetic diversity of some local squash (Cucurbita maxima Duchesne) populations revealed by agro-morphological and chemical traits. J. New Sci. 2017, 42, 2306–2317. [Google Scholar]
- FAO. Statistics Division Production and Trade Statistics. Available online: http://www.fao.org/faostat/en (accessed on 3 September 2023).
- Swiader, J.M.; Sipp, S.K.; Brown, R.E. Pumpkin growth, flowering, and fruiting response to nitrogen and potassium sprinkler fertigation in sandy soil. J. Am. Soc. Hortic. Sci. 1994, 119, 414–419. [Google Scholar] [CrossRef]
- Biesiada, A.; Nawirska, A.; Kucharska, A.; Sokół-Łȩtowska, A. The effect of nitrogen fertilization methods on yield and chemical composition of pumpkin (Cucurbita maxima) fruits before and after storage. Veg. Crops Res. Bull. 2009, 70, 203–211. [Google Scholar] [CrossRef]
- Yavuz, D.; Seymen, M.; Yavuz, N.; Türkmen, Ö. Effects of irrigation interval and quantity on the yield and quality of confectionary pumpkin grown under field conditions. Agric. Water Manag. 2015, 159, 290–298. [Google Scholar] [CrossRef]
- Kumari, A.; Lakshmi, G.A.; Krishna, G.K.; Patni, B.; Prakash, S.; Bhattacharyya, M.; Singh, S.K.; Verma, K.K. Climate Change and Its Impact on Crops: A Comprehensive Investigation for Sustainable Agriculture. Agronomy 2022, 12, 3008. [Google Scholar] [CrossRef]
- Habib-ur-Rahman, M.; Ahmad, A.; Raza, A.; Hasnain, M.U.; Alharby, H.F.; Alzahrani, Y.M.; Bamagoos, A.A.; Hakeem, K.R.; Ahmad, S.; Nasim, W.; et al. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I.C.F.R. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef]
- Polyzos, N.; Paschoalinotto, B.H.; Compocholi, M.; Pinela, J.; Heleno, S.A.; Calhelha, R.C.; Dias, M.I.; Barros, L.; Petropoulos, S.A. Fertilization of pot-grown Cichorium spinosum L.: How it can affect plant growth, chemical profile, and bioactivities of edible parts? Horticulturae 2022, 8, 890. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012, 6, 21–27. [Google Scholar] [CrossRef]
- Stryjecka, M.; Krochmal-Marczak, B.; Cebulak, T.; Kiełtyka-Dadasiewicz, A. Assessment of Phenolic Acid Content and Antioxidant Properties of the Pulp of Five Pumpkin Species Cultivated in Southeastern Poland. Int. J. Mol. Sci. 2023, 24, 8621. [Google Scholar] [CrossRef]
- Leichtweis, M.G.; Molina, A.K.; Pires, T.C.S.; Dias, M.I.; Calhelha, R.; Bachari, K.; Ziani, B.E.C.; Oliveira, M.B.P.P.; Pereira, C.; Barros, L. Biological activity of pumpkin byproducts: Antimicrobial and antioxidant properties. Molecules 2022, 27, 8366. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Rockville, MD, USA, 2016. [Google Scholar]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Res. Int. 2011, 44, 2634–2640. [Google Scholar] [CrossRef]
- Brown, A.C.; Summers, W.L. Carbohydrate Accumulation and Color Development in Watermelon. J. Am. Soc. Hortic. Sci. 2022, 110, 683–687. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Ferreira, I.C.F.R. Analytical tools used to distinguish chemical profiles of plants widely consumed as infusions and dietary supplements: Artichoke, milk thistle, and borututu. Food Anal. Methods 2014, 7, 1604–1611. [Google Scholar] [CrossRef]
- Backes, E.; Leichtweis, M.G.; Pereira, C.; Carocho, M.; Barreira, J.C.M.; Kamal Genena, A.; José Baraldi, I.; Filomena Barreiro, M.; Barros, L.; Ferreira, I.C.F.R. Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chem. 2020, 333, 127457. [Google Scholar] [CrossRef]
- Kuete, V.; Ango, P.Y.; Fotso, G.W.; Dwf Kapche, G.; Dzoyem, J.P.; Wouking, A.G.; Ngadjui, B.T.; Abegaz, B.M. Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae). BMC Complement. Altern. Med. 2011, 25, 11–42. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Ind. Crops Prod. 2013, 49, 61–65. [Google Scholar] [CrossRef]
- Jamal Uddin, A.; Faruq, M.; Roni, M.; Taufique, T.; Mehraj, H. Growth and yield performance of four pumpkin (Cucurbita moschata) lines. Int. J. Bus. Soc. Sci. Res. 2014, 2, 113–115. [Google Scholar]
- Gomes, R.S.; Machado, R.; De Almeida, C.F.; Chagas, R.R.; De Oliveira, R.L.; Delazari, F.T.; Da Silva, D.J.H. Brazilian germplasm of winter squash (Cucurbita moschata D.) displays vast genetic variability, allowing identification of promising genotypes for agro-morphological traits. PLoS ONE 2020, 15, e0230546. [Google Scholar] [CrossRef]
- Soltani, F.; Karimi, R.; Kashi, A. Estimation of Genetic Diversity in Cucurbita Species Using Morphological and Phytochemical Analysis. Int. J. Veg. Sci. 2017, 23, 42–53. [Google Scholar] [CrossRef]
- Ghimire, S.; Wszelaki, A.L.; Moore, J.C.; Inglis, D.A.; Miles, C. The use of biodegradable mulches in pie pumpkin crop production in two diverse climates. HortScience 2018, 53, 288–294. [Google Scholar] [CrossRef]
- El-Hamed, K.E.-S.A.; Elwan, M.W.M. Dependence of Pumpkin Yield on Plant Density and Variety. Am. J. Plant Sci. 2011, 2, 636–643. [Google Scholar] [CrossRef]
- Ahamed, K.; Akhter, B.; Islam, M.; Ara, N.; Humauan, M. An Assessment of Morphology and Yield Characteristics of Pumpkin (Cucurbita moschata) Genotypes in Northern Bangladesh. Trop. Agric. Res. Ext. 2012, 14, 7. [Google Scholar] [CrossRef]
- Badr, S.E.A.; Shaaban, M.; Elkholy, Y.M.; Helal, M.H.; Hamza, A.S.; Masoud, M.S.; El Safty, M.M. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat. Prod. Res. 2011, 25, 1524–1539. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Valenzuela, N.; Zazueta-Morales, J.d.J.; Gallegos-Infante, J.A.; Aguilar-Gutierrez, F.; Camacho-Hernández, I.L.; Rocha-Guzman, N.E.; Gonzalez-Laredo, R.F. Chemical and physicochemical characterization of winter squash (Cucurbita moschata D.). Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 34–40. [Google Scholar] [CrossRef]
- Amin, M.Z.; Islam, T.; Uddin, M.R.; Uddin, M.J.; Rahman, M.M.; Satter, M.A. Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon 2019, 5, e02462. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharifi-Rad, J.; Capanoglu, E.; Adrar, N.; Catalkaya, G.; Shaheen, S.; Jaffer, M.; Giri, L.; Suyal, R.; Jugran, A.; et al. Cucurbita Plants: From Farm to Industry. Appl. Sci. 2019, 9, 3387. [Google Scholar] [CrossRef]
- Louwaars, N.P. Plant breeding and diversity: A troubled relationship? Euphytica 2018, 214, 114. [Google Scholar] [CrossRef]
- Pereira, A.M.; Krumreich, F.D.; Ramos, A.H.; Krolow, A.C.R.; Santos, R.B.; Gularte, M.A. Physicochemical characterization, carotenoid content and protein digestibility of pumpkin access flours for food application. Food Sci. Technol. 2020, 40, 691–698. [Google Scholar] [CrossRef]
- Marek, G.; Radzanowska, J.; Danilcenko, H.; Jariene, E.; Cerniauskiene, J. Quality of Pumpkin Cultivars in Relation to Sensory Characteristics. Not. Bot. Horti Agrobot. Cluj-Napoca 2008, 36, 73–79. [Google Scholar]
- Seroczyńska, A.; Antczak, A.; Kamińska, K.; Korytowska, M.; Korzeniewska, A.; Niemirowicz-szczytt, K.; Radomski, A.; Zawadzki, J. Evaluation of the selected forms of winter squash (Cucurbita maxima Duch.) for the content of free sugars and polysaccharides. Pol. J. Agron. 2014, 16, 69–73. [Google Scholar]
- Dhenge, R.; Rinaldi, M.; Ganino, T.; Santi, S.; Ferrarese, I.; Dall’Acqua, S. Variations of polyphenols, sugars, carotenoids, and volatile constituents in pumpkin (Cucurbita moschata) during high pressure processing: A kinetic study. Innov. Food Sci. Emerg. Technol. 2022, 78, 103005. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A.; Kruczek, M.; Ledwożyw-Smoleń, I.; Kaszycki, P. Antioxidants and health-beneficial nutrients in fruits of eighteen Cucurbita cultivars: Analysis of diversity and dietary implications. Molecules 2020, 25, 1792. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Rana, S.S. Physicochemical, nutritional, bioactive compounds and fatty acid profiling of Pumpkin flower (Cucurbita maxima), as a potential functional food. SN Appl. Sci. 2021, 3, 216. [Google Scholar] [CrossRef]
- Iosypenko, O.O.; Kyslychenko, V.S.; Omelchenko, Z.I.; Burlaka, I.S. Fatty acid composition of vegetable marrows and zucchini leaves. Pharmacia 2019, 66, 201–207. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodriguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Leichtweis, M.G.; Molina, A.K.; Petropoulos, S.A.; Carocho, M.; Pires, T.C.S.P.; Dias, M.I.; Calhelha, R.; Oliveira, M.B.P.P.; Pereira, C.; Barros, L. Valorization of Pumpkin Peel as a Source of Bioactive Compounds: Optimization of Heat- and Ultrasound-Assisted Extraction. Molecules 2023, 28, 3168. [Google Scholar] [CrossRef]
- Rolnik, A.; Kowalska, I.; Soluch, A.; Stochmal, A.; Olas, B. Comparative Phytochemical, Antioxidant and Haemostatic Studies of Preparations from Selected Vegetables from Cucurbitaceae Family. Molecules 2020, 25, 4326. [Google Scholar] [CrossRef]
- Santos, E.M.; Rodriguez, J.A.; Lorenzo, J.M.; Mondragón, A.C.; Pateiro, M.; Gutiérrez, E.; Ferreira, T.A. Antioxidant Effect of Pumpkin Flower (Cucurbita maxima) in Chicken Patties. Foods 2022, 11, 2258. [Google Scholar] [CrossRef]
- Bulambaeva, A.A.; Vlahova-Vangelova, T.B.; Dragoev, S.G.; Balev, D.K.; Uzakov, Y.M. Development of new functional cooked sausages by addition of goji berry and pumpkin powder. Am. J. Food Technol. 2014, 9, 180–189. [Google Scholar] [CrossRef]
- Rolnik, A.; Skalski, B.; Stochmal, A.; Olas, B. Preparations from selected cucurbit vegetables as antiplatelet agents. Sci. Rep. 2021, 11, 22694. [Google Scholar] [CrossRef]
- Tarwadi, K.; Agte, V. Antioxidant and micronutrient quality of fruit and root vegetables from the Indian subcontinent and their comparative performance with green leafy vegetables and fruits. J. Sci. Food Agric. 2005, 85, 1469–1476. [Google Scholar] [CrossRef]
- Mokhtar, M.; Bouamar, S.; Di Lorenzo, A.; Temporini, C.; Daglia, M.; Riazi, A. The influence of ripeness on the phenolic content, antioxidant and antimicrobial activities of pumpkins (Cucurbita moschata Duchesne). Molecules 2021, 26, 3623. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Kausar, T.; Din, A.; Murtaza, A.; Jamil, M.A.; Noreen, S.; Iqbal, M.A. Antioxidant and Antimicrobial Properties of Pumpkin (Cucurbita maxima) Peel, Flesh and Seeds Powders. J. Biol. Agric. Healthc. 2021, 6, 42–51. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Aslam, J.; et al. Utilization of pumpkin, pumpkin powders, extracts, isolates, purified bioactives and pumpkin based functional food products: A key strategy to improve health in current post COVID 19 period: An updated review. Appl. Food Res. 2022, 2, 100241. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Czech, K.; Strzępek-Gomółka, M.; Czop, M.; Szczepanik, M.; Lichtarska, A.; Kukula-Koch, W. Assessment of Cucurbita spp. Peel Extracts as Potential Sources of Active Substances for Skin Care and Dermatology. Molecules 2022, 27, 7618. [Google Scholar] [CrossRef] [PubMed]
- Piccolella, S.; Bianco, A.; Crescente, G.; Santillo, A.; Baccari, G.C.; Pacifico, S. Recovering Cucurbita pepo cv. ‘Lungo Fiorentino’ Wastes: UHPLC-HRMS/MS metabolic profile, the basis for establishing their nutra- And cosmeceutical valorisation. Molecules 2019, 24, 1479. [Google Scholar] [CrossRef] [PubMed]
- Massironi, A.; Biella, S.; de Moura Pereira, P.F.; Scibona, F.; Feni, L.; Sindaco, M.; Emide, D.; Jiménez-Quero, A.; Bianchi, C.L.M.; Verotta, L.; et al. Valorization of pumpkin seed hulls, cucurbitin extraction strategies and their comparative life cycle assessment. J. Clean. Prod. 2023, 427, 139267. [Google Scholar] [CrossRef]
- Priecina, L.; Karklina, D. Composition of Major Organic Acids in Vegetables and Spices. CBU Int. Conf. Proc. 2015, 3, 447–454. [Google Scholar] [CrossRef]
- Iswaldi, I.; Gómez-Caravaca, A.M.; Lozano-Sánchez, J.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res. Int. 2013, 50, 77–84. [Google Scholar] [CrossRef]
- Abbas, H.M.K.; Huang, H.X.; Wang, A.J.; Wu, T.Q.; Xue, S.D.; Ahmad, A.; Xie, D.S.; Li, J.X.; Zhong, Y.J. Metabolic and tran-scriptomic analysis of two Cucurbita moschata germplasms throughout fruit development. BMC Genom. 2020, 21, 365. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-ŁȨtowska, A.; Kucharska, A.Z. Characteristics of organic acids in the fruit of different pumpkin species. Food Chem. 2014, 148, 415–419. [Google Scholar] [CrossRef]
- Zhou, C.L.; Mi, L.; Hu, X.Y.; Zhu, B.H. Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. J. Food Sci. Technol. 2017, 54, 3118–3131. [Google Scholar] [CrossRef] [PubMed]
Pumpkin Genotypes | Sample Code | Harvest Date |
---|---|---|
Fytro FS-243 | V1 | 26 October–19 November 2021 |
Landrace from the region of Trikala (Turbinate) | V2 T | 25 August–19 October 2021 |
Landrace from the region of Trikala (Cylindrical) | V2 C | 25 August–19 October 2021 |
Big Max | V3 | 25 August–19 October 2021 |
Local landrace “Nychaki” (Cylindrical) | V4 C | 23 September 2021 |
Local landrace “Nychaki” (Round) | V4 R | 23 September 2021 |
Local landrace “Leuka Melitis” (Flattened) | V5 F | 5 October–19 November 2021 |
Local landrace “Leuka Melitis” (Round) | V5 R | 5 October–19 November 2021 |
Local landrace from the region of Lakonia | V6 | 25 August 2021 |
Local landrace from the region of Lakonia (Pyriform) | V7 P | 24 September–19 November 2021 |
Local landrace from the region of Lakonia (Flattened) | V7 F | 24 September–19 November 2021 |
Local landrace from the region of Lakonia | V8 | 22 November 2021 |
Local landrace “Makedonika prasina” (Cylindrical) | V9 C | 22 November 2021 |
Local landrace “Makedonika prasina” (Round) | V9 R | 22 November 2021 |
Local landrace from the region of Laconia | V10 | 22 November 2021 |
Local landrace (“Voutirato”) | V11 | 22 November 2021 |
Genotype | Total Fruit Weight (Tonnes/ha) | Numbers of Fruit/Plant | Mean Fruit Weight (kg) |
---|---|---|---|
V1 | 15.5 ± 6.6 g | 6.1 ± 0.5 a | 1.0 ± 0.1 g |
V2 | 30.7 ± 5.6 b | 0.9 ± 0.1 e | 6.3 ± 0.6 b |
V3 | 19.6 ± 7.8 e | 1.0 ± 0.1 d,e | 8.1 ± 0.7 a |
V4 | 28.0 ± 3.6 c | 3.9 ± 0.4 b | 2.9 ± 0.3 f |
V5 | 7.6 ± 2.4 j | 0.4 ± 0.1 g | 3.6 ± 0.4 e |
V6 | 10.9 ± 4.5 i | 1.2 ± 0.2 d | 3.8 ± 0.4 e |
V7 | 24.0 ± 9.6 d | 2.9 ± 0.3 c | 1.7 ± 0.2 g |
V8 | 34.1 ± 5.4 a | 1.1 ± 0.1 d | 6.1 ± 0.5 b |
V9 | 16.7 ± 2.2 f | 0.7 ± 0.1 f | 4.8 ± 0.4 d |
V10 | 27.7 ± 6.3 c | 4.1 ± 0.3 b | 2.7 ± 0.3 f |
V11 | 11.8 ± 3.9 h | 0.8 ± 0.1 e,f | 5.6 ± 0.5 c |
Genotype | Fat (g/100 g dw) | Protein (g/100 g dw dw) | Ash (g/100 g dw) | Energy (Kcal/100 g dw) | Carbohydrates (g/100 g dw) | Fibres (g/100 g dw) |
---|---|---|---|---|---|---|
V1 | 0.83 ± 0.04 c | 12.6 ± 0.6 g,h | 4.511 ± 0.009 l | 360.1 ± 0.4 a | 69.1 ± 0.7 b | 13.0 ± 0.1 j |
V2 T | 1.12 ± 0.06 a | 13.7 ± 0.4 d,e | 6.07 ± 0.04 j | 332.8 ± 0.3 h | 54.9 ± 0.7 h | 24.27 ± 0.02 c |
V2 C | 0.645 ± 0.002 e | 12.9 ± 0.1 f,g | 7.1 ± 0.1 h | 334.6 ± 1.2 g | 59.2 ± 0.8 f,g | 20.2 ± 0.8 f |
V3 | 0.45 ± 0.02 h | 18.07 ± 0.03 c | 7.7 ± 0.2 e | 321.85 ± 0.02 j | 49.0 ± 0.2 j | 24.7 ± 0.5 c |
V4 C | 0.64 ± 0.03 e,f | 8.6 ± 0.1 k | 7.1 ± 0.1 g,h | 332.5 ± 0.1 h | 62.6 ± 0.2 e | 21.1 ± 0.2 e,f |
V4 R | 0.38 ± 0.02 h | 17.46 ± 0.04 c | 9.08 ± 0.07 d | 321.7 ± 0.6 j | 51.1 ± 0.3 i | 21.9 ± 0.4 d,e |
V5 F | 0.58 ± 0.03 f,g | 12.61 ± 0.05 g | 5.126 ± 0.006 k | 353.70 ± 0.07 b | 67.3 ± 0.1 c | 14.34 ± 0.04 i |
V5 R | 0.55 ± 0.03 g | 9.9 ± 0.3 j | 3.5 ± 0.1 m | 361.0 ± 0.1 a | 72.2 ± 0.6 a | 13.8 ± 0.4 i,j |
V6 | 1.17 ± 0.02 a | 13.4 ± 0.3 e,f | 6.98 ± 0.05 h | 341.5 ± 0.8 e | 60.27 ± 0.03 f | 18.2 ± 0.3 g |
V7 P | 0.92 ± 0.04 b | 14.1 ± 0.1 d | 7.49 ± 0.03 f | 343.6 ± 0.6 d | 61.9 ± 0.6 e | 15.5 ± 0.5 h |
V7 F | 0.70 ± 0.03 d,e | 11.9 ± 0.1 h,i | 7.27 ± 0.06 g | 348.76 ± 0.05 c | 67.26 ± 0.6 c | 12.8 ± 0.2 j |
V8 | 0.76 ± 0.03 c,d | 11.3 ± 0.4 i | 7.29 ± 0.02 g | 329.4 ± 1.6 i | 58.0 ± 1.3 g | 22.7 ± 0.9 d |
V9 C | 0.73 ± 0.03 d | 21.4 ± 0.6 a | 10.95 ± 0.05 a | 315.05 ± 0.96 k | 44.5 ± 0.2 k | 22.4 ± 0.5 d |
V9 R | 0.65 ± 0.03 e | 20.3 ± 0.3 b | 10.19 ± 0.07 b | 307.7 ± 1.5 l | 41.4 ± 0.4 l | 27.4 ± 0.8 a |
V10 | 0.73 ± 0.03 d | 9.9 ± 0.2 j | 9.3 ± 0.1 c | 313.8 ± 0.1 k | 53.7 ± 0.2 h | 26.3 ± 0.1 b |
V11 | 1.12 ± 0.02 a | 8.0 ± 0.3 k | 6.71 ± 0.04 i | 338.52 ± 0.34 f | 64.0 ± 0.4 d | 20.1 ± 0.2 f |
Genotype | Fructose | Glucose | Sucrose | Trehalose | Raffinose | Total |
---|---|---|---|---|---|---|
V1 | 2.42 ± 0.03 i | 2.50 ± 0.08 j | 12.2 ± 0.4 b | 0.46 ± 0.03 c,d,e | 0.0579 ± 0.0003 h,i | 17.7 ± 0.5 g |
V2 T | 9.7 ± 0.9 a | 21.5 ± 0.3 b,c | 1.4 ± 0.2 i | 0.45 ± 0.02 c,d,e | 0.29 ± 0.03 a | 33 ± 1 b |
V2 C | 10.0 ± 0.3 a | 22 ± 1 b | 0.9 ± 0.2 i | 0.67 ± 0.02 a | 0.09 ± 0.02 g,h,i | 34 ± 1 b |
V3 | 6.57 ± 0.02 e | 9.6 ± 0.4 g | 2.6 ± 0.3 g | 0.23 ± 0.02 i | 0.23 ± 0.03 b,c,d | 19.2 ± 0.8 f,g |
V4 C | 7.854 ± 0.001 c,d | 18.6 ± 0.8 e | 6.4 ± 0.7 d | 0.51 ± 0.06 b,c | 0.13 ± 0.04 f,g | 33 ± 2 b |
V4 R | 6.6 ± 0.3 e | 10.2 ± 0.6 g | 3.47 ± 0.01 f | 0.47 ± 0.03 c,d | 0.24 ± 0.03 b,c | 20.9 ± 0.9 e,f |
V5 F | 3.790 ± 0.002 g | 4.8 ± 0.1 h | 3.6 ± 0.2 f | 0.408 ± 0.005 d,e,f | 0.18 ± 0.01 d,e,f | 12.8 ± 0.4 h |
V5 R | 2.55 ± 0.07 i | 4.66 ± 0.05 h | 4.91 ± 0.05 e | 0.46 ± 0.01 c,d,e | 0.06 ± 0.05 h,i | 12.6 ± 0.1 h |
V6 | 8.18 ± 0.04 c | 20.33 ± 0.06 c,d | 1.12 ± 0.06 i | 0.50 ± 0.03 b,c | 0.27 ± 0.02 a,b | 30.41 ± 0.09 c |
V7 P | 2.8 ± 0.2 h,i | 3.1 ± 0.2 i,j | 14.0 ± 0.5 a | 0.56 ± 0.02 b | 0.05 ± 0.01 i | 20.4 ± 0.8 f |
V7 F | 3.3 ± 0.2 g,h | 4.7 ± 0.2 h | 14.0 ± 0.7 a | 0.50 ± 0.02 b,c | 0.057 ± 0.008 h,i | 23 ± 1 d,e |
V8 | 7.4 ± 0.4 d | 19 ± 2 d,e | 4.0 ± 0.2 f | 0.37 ± 0.02 f,g | 0.25 ± 0.02 a,b | 31 ± 1 c |
V9 C | 8.23 ± 0.04 c | 12.2 ± 0.5 f | 2.2 ± 0.1 g,h | 0.26 ± 0.04 h,i | 0.16 ± 0.02 e,f | 23.1 ± 0.3 d |
V9 R | 4.9 ± 0.1 f | 4.3 ± 0.4 h,i | 10.4 ± 0.3 c | 0.40 ± 0.06 e,f | 0.16 ± 0.03 e,f | 20.2 ± 0.9 f |
V10 | 6.7 ± 0.4 e | 19.3 ± 0.8 d,e | 3.48 ± 0.08 f | 0.3273 ± 0.0007 g,h | 0.108 ± 0.004 g,h | 30 ± 1 c |
V11 | 8.9 ± 0.4 b | 26.9 ± 0.9 a | 1.50 ± 0.06 h,i | 0.48 ± 0.04 c | 0.20 ± 0.03 c,d,e | 38.0 ± 0.5 a |
Compound | V1 | V2 T | V2 C | V3 | V4 C | V4 R | V5 F | V5 R | V6 | V7 P | V7 F | V8 | V9 C | V9 R | V10 | V11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C8:0 | n.d. | n.d. | 0.264 ± 0.006 a | n.d. | 0.24 ± 0.01 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.141 ± 0.001 c | n.d. | n.d. | n.d. |
C10:0 | 0.137 ± 0.001 c | n.d. | 0.1775 ± 0.0007 a | 0.0830 ± 0.0000 g | 0.143 ± 0.002 b | n.d. | n.d. | 0.0720 ± 0.0000 h | n.d. | 0.120 ± 0.001 d | 0.070 ± 0.002 i | 0.0680 ± 0.0000 i | 0.100 ± 0.001 f | 0.1125 ± 0.0007 e | n.d. | n.d. |
C12:0 | 1.893 ± 0.004 a | 0.219 ± 0.03 j,k | 0.49 ± 0.02 e | 0.500 ± 0.004e | 0.61 ± 0.01 d | 0.3050 ± 0.0000 g,h | 0.25 ± 0.01 i,j,k | 0.330 ± 0.001 f,g | 0.2135 ± 0.0007 k | 1.49 ± 0.05 b | 1.21 ± 0.04 c | 0.259 ± 0.003 i,j | 0.342 ± 0.004 f,g | 0.36 ± 0.01 f | 02755 ± 00007 h,i | 0.125 ± 0.004 l |
C13:0 | n.d. | n.d. | n.d. | 0.1020 ± 0.0000 b | n.d. | n.d. | 0.058 ± 0.001 d | 0.0935 ± 0.0007 c | 0.0940 ± 0.0000 c | n.d. | n.d. | n.d. | n.d. | 0.120 ± 0.006 a | n.d. | n.d. |
C14:0 | 1.898 ± 0.007 a | 1.22 ± 0.03 e | 1.84 ± 0.03 b | 1.0505 ± 0.0007 g | 1.5980 ± 0.0000 c | 0.7960 ± 0.0000 j,k | 0.90 ± 0.01 h | 1.053 ± 0.006 g | 0.866 ± 0.001 h,i | 1.55 ± 0.04 c | 1.13 ± 0.05 f | 0.83 ± 0.01 i,j | 1.29 ± 0.02 d | 1.21 ± 0.01 e | 0.748 ± 0.008 k | 0.83 ± 0.04 i,j |
C15:0 | 0.079 ± 0.004 k | 0.117 ± 0.004 i | 0.53 ± 0.01 b | 0.1690 ± 0.0000 g | 0.648 ± 0.007 a | 0.190 ± 0.001 f | n.d. | 0.0895 ± 0.0007 j | 0.1350 ± 0.0000 h | 0.1095 ± 0.0007 i | 0.0775 ± 0.0007 k | 0.290 ± 0.003 e | 0.445 ± 0.005 c | 0.1945 ± 0.0007 f | 0.3455 ± 0.0007 d | 0.133 ± 0.006 h |
C16:0 | 28.9 ± 0.2 e | 20.9 ± 0.6 k | 61.4 ± 0.5 b | 36.46 ± 0.04 c | 63.4 ± 0.2 a | 29.8 ± 0.2 d | 26.97 ± 0.03 f,g | 26.3 ± 0.1 h | 20.88 ± 0.03 k | 25.67 ± 0.01 i | 22.3 ± 0.2 j | 30.2 ± 0.1 d | 26.49 ± 0.05 g,h | 27.3 ± 0.1 f | 25.982 ± 0.007 h,i | 19.6 ± 0.5 l |
C16:1 | 0.42 ± 0.02 g | 0.269 ± 0.006 k | 0.586 ± 0.006 b | 0.295 ± 0.004 j | 0.53 ± 0.01 c,d | 0.50 ± 0.02 e | 0.45 ± 0.01 f | 0.388 ± 0.002 h | 0.61 ± 0.02 a | 0.283 ± 0.009 j,k | 0.36 ± 0.02 i | 0.50 ± 0.01 e | 0.520 ± 0.004 d,e | 0.231 ± 0.008 l | 0.37 ± 0.01 h,i | 0.55 ± 0.02 c |
C17:0 | 0.390 ± 0.002 f,g | 0.224 ± 0.002 i,j | 6.39 ± 0.05 b | 1.23 ± 0.04 c | 7.01 ± 0.04 a | 0.969 ± 0.007 d | 0.222 ± 0.001 i,j | 0.237 ± 0.001 i,j | 0.1520 ± 0.0000 k | 0.602 ± 0.004 e | 0.349 ± 0.001 h | 0.93 ± 0.01 d | 0.350 ± 0.004 g,h | 0.26 ± 0.01 i | 0.423 ± 0.001 f | 0.199 ± 0.009 j |
C17:1 | 0.182 ± 0.006 d | 0.107 ± 0.002 h | 0.84 ± 0.01 a | 0.3770 ± 0.0000 c | 0.65 ± 0.01 b | n.d. | 0.132 ± 0.001 g | 0.1465 ± 0.0007 e,f | 0.1250 ± 0.0000 g | 0.377 ± 0.009 c | n.d. | 0.1355 ± 0.0007 f,g | 0.0945 ± 0.0007 i | n.d. | 0.1805 ± 0.0007 d | 0.151 ± 0.006 e |
C18:0 | 2.5 ± 0.1 e,f,g | 1.85 ± 0.05 j | 4.89 ± 0.07 b | 2.45 ± 0.08 f,g | 5.30 ± 0.02 a | 2.614 ± 0.008 e | 2.25 ± 0.06 h | 2.02 ± 0.01 i | 1.568 ± 0.005 k | 4.2 ± 0.1 c | 3.0 ± 0.1 d | 2.53 ± 0.05 e,f | 2.3 ± 0.1 h | 1.64 ± 0.04 k | 2.37 ± 0.04 g,h | 1.54 ± 0.06 k |
C18:1n9c | 12.1 ± 0.3 c | 14.1 ± 0.1 a | 8.4 ± 0.2 f | 6.0 ± 0.2 i | 4.95 ± 0.05 j | 7.6 ± 0.2 g | 8.6 ± 0.2 e,f | 6.53 ± 0.03 h | 9.57 ± 0.04 d | 13.30 ± 0.02 b | 8.9 ± 0.4 e | 4.720 ± 0.007 j | 5.86 ± 0.01 i | 1.980 ± 0.006 l | 3.919 ± 0.006 k | 9.46 ± 0.03 d |
C18:2n6c | 22.9 ± 0.2 k | 34.0 ± 0.8 c | 5.1 ± 0.1 m | 25.8 ± 0.2 i | 5.9 ± 0.2 l | 28.71 ± 0.08 g | 27.0 ± 0.1 h | 32.2 ± 0.2 e | 30.12 ± 0.03 f | 24.8 ± 0.1 j | 29.8 ± 0.2 f | 35.78 ± 0.03 a | 31.97 ± 0.04 e | 33.4 ± 0.1 d | 34.65 ± 0.07 b | 25.09 ± 0.07 j |
C18:3n6 | 0.162 ± 0.006 c | 0.080 ± 0.002 d | n.d. | n.d. | 0.54 ± 0.03 a | n.d. | 0.216 ± 0.006 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
C18:3n3 | 25.9 ± 0.3 f | 24.9 ± 0.4 g | 0.512 ± 0.001 l | 20.4 ± 0.1 j | 0.60 ± 0.02 l | 24.48 ± 0.02 h | 29.81 ± 0.02 c | 27.3 ± 0.4 e | 32.87 ± 0.04 b | 23.42 ± 0.07 i | 29.53 ± 0.08 c | 19.003 ± 0.0007 k | 25.73 ± 0.07 f | 29.59 ± 0.09 c | 28.5 ± 0.1 d | 38.8 ± 0.3 a |
C20:0 | n.d. | n.d. | 1.03 ± 0.03 a | 0.3790 ± 0.0000 c | 0.75 ± 0.03 b | n.d. | n.d. | 0.213 ± 0.001 g | 0.1840 ± 0.0000 h | 0.311 ± 0.003 d,e | 0.25 ± 0.01 f | 0.289 ± 0.001 e | 0.335 ± 0.001 d | 0.37 ± 0.01 c | 0.2315 ± 0.0007 f,g | 0.235 ± 0.008 f,g |
C20:1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.2015 ± 0.0007 b | n.d. | n.d. | n.d. | 0.542 ± 0.002 a | n.d. | n.d. | n.d. |
C21:0 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.1345 ± 0.0007 f | 0.1455 ± 0.0007 e | 0.184 ± 0.002 c | n.d. | 0.241 ± 0.001 a | 0.1555 ± 0.0007 d | 0.2135 ± 0.0007 b | n.d. | n.d. |
C20:3n6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.1355 ± 0.0007 | n.d. | n.d. | n.d. |
C22:0 | 0.68 ± 0.02 j | 0.811 ± 0.004 i | 3.23 ± 0.01 a | 1.11 ± 0.03 e,f | 2.02 ± 0.02 b | 1.26 ± 0.04 c | 1.16 ± 0.04 d,e | 1.089 ± 0.006 f | 0.876 ± 0.009 h | 1.16 ± 0.01 d,e | 1.13 ± 0.05 d,e,f | 1.18 ± 0.02 d | 0.838 ± 0.003 h,i | 0.973 ± 0.005 g | 0.653 ± 0.002 j | 1.26 ± 0.05 c |
C20:5n3 | 0.099 ± 0.003 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
C22:1 | n.d. | n.d. | n.d. | 0.166 ± 0.006 c | n.d. | 0.602 ± 0.009 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.435 ± 0.002 b | n.d. | n.d. | n.d. |
C22:2 | 0.264 ± 0.004 d | 0.163 ± 0.004 h | n.d. | 0.223 ± 0.002 f | 0.246 ± 0.008 e | n.d. | 0.152 ± 0.006 i | 0.28 ± 0.01 c | 0.141 ± 0.005 j | 0.536 ± 0.006 a | 0.240 ± 0.007 e | 0.334 ± 0.002 b | 0.225 ± 0.001 f | 0.1840 ± 0.0000 g | 0.1775 ± 0.0007 g | 0.150 ± 0.004 i,j |
C22:6n3 | n.d | n.d | n.d | n.d | 0291 ± 0006 | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d | n.d |
C23:0 | 0.368 ± 0.001 g,h | 0.33 ± 0.01 i | 0.98 ± 0.04 a | 0.519 ± 0.009 d | 0.87 ± 0.03 b | 0.427 ± 0.006 f | 0.385 ± 0.008 g,h | 0.37 ± 0.01 g,h | 0.39 ± 0.01 g | 0.539 ± 0.006 d | 0.47 ± 0.02 e | 0.438 ± 0.002 e,f | 0.537 ± 0.002 d | 0.615 ± 0.001 c | 0.360 ± 0.001 h,i | 0.598 ± 0.006 c |
C24:0 | 1.14 ± 0.01 h | 0.78 ± 0.03 i | 3.4 ± 0.2 b | 2.63 ± 0.06 c | 3.696 ± 0.008 a | 1.67 ± 0.03 e | 1.38 ± 0.01 f | 1.141 ± 0.006 h | 0.854 ± 0.008 i | 1.36 ± 0.01 f | 1.25 ± 0.05 g,h | 2.3 ± 0.1 d | 1.136 ± 0.004 h | 1.1905 ± 0.0007 g,h | 0.811 ± 0.003 i | 1.28 ± 0.03 f,g |
C24:1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.0875 ± 0.0007 | n.d. | n.d. | n.d. |
SFA | 38.0 ± 0.3 e | 26.4 ± 0.5 k | 84.6 ± 0.4 b | 46.7 ± 0.1 c | 86.3 ± 0.2 a | 38.8 ± 0.09 e | 33.58 ± 0.02 h | 33.1 ± 0.2 h | 26.36 ± 0.03 k | 37.3 ± 0.2 d | 31.2 ± 0.3 j | 39.53 ± 0.02 d | 34.41 ± 0.03 g | 34.6 ± 0.2 g | 32.20 ± 0.02 i | 25.8 ± 0.4 l |
MUFA | 12.7 ± 0.2 c | 14.5 ± 0.1 a | 9.8 ± 0.3 f | 6.9 ± 0.2 j | 6.13 ± 0.07 k | 8.7 ± 0.2 h | 9.2 ± 0.2 g | 7.07 ± 0.04 j | 10.51 ± 0.05 d | 13.96 ± 0.00 b | 9.2 ± 0.4 g | 5.36 ± 0.02 l | 7.533 ± 0.006 i | 2.211 ± 0.003 n | 4.46 ± 0.01 m | 10.157 ± 0.008 e |
PUFA | 49.3 ± 0.5 i | 59.1 ± 0.4 d | 5.6 ± 0.1 m | 46.4 ± 0.3 k | 7.6 ± 0.3 l | 53.2 ± 0.1 h | 57.2 ± 0.2 f | 59.8 ± 0.2 c | 63.13 ± 0.02 b | 48.8 ± 0.2 j | 59.59 ± 0.07 c,d | 55.12 ± 0.03 g | 58.05 ± 0.04 e | 63.2 ± 0.2 b | 63.34 ± 0.03 b | 64.0 ± 0.4 a |
Genotype | TBARS (IC50 1, μg/mL) | OxHLIA 60 min (IC50 1, μg/mL) |
---|---|---|
V1 | 2877 ± 79 i | 674 ± 21 c |
V2 T | 3000 ± 120 g,h | 302 ± 9 h,i |
V2 C | 5339 ± 151 b | 980 ± 44 a |
V3 | 3328 ± 164 f | 236 ± 11 j,k |
V4 C | 1864 ± 76 m | 114 ± 7 l |
V4 R | 2310 ± 47 k | 187 ± 7 k |
V5 F | 2556 ± 121 j | 350 ± 13 g,h |
V5 R | 2218 ± 111 l | 599 ± 10 d |
V6 | 3022 ± 103 g | 284 ± 8 i,j |
V7 P | 1816 ± 91 m | 385 ± 30 g |
V7 F | 4035 ± 157 d | 452 ± 12 f |
V8 | 2915 ± 133 h,i | 35 ± 3 m |
V9 C | 4149 ± 192 c | 254 ± 13 i,j |
V9 R | 2981 ± 84 g,h | 520 ± 17 e |
V10 | 5694 ± 129 a | 255 ± 8 i,j |
V11 | 3561 ± 161 e | 792 ± 31 b |
Trolox | 139 ± 5 | 21.8 ± 0.2 |
V1 | V2 T | V2 C | V3 | V4 C | V4 R | V5 F | V5 R | V6 | V7 P | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |||
Gram-negative bacteria | ||||||||||||||||||||||
Enterobacter cloacae | >10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | ||
Escherichia coli | >10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | >10 | >10 | ||
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | ||
Salmonella enterocolitica | >10 | >10 | 5 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 | >10 | >10 | ||
Yersinia enterocolitica | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | ||
Gram-positive bacteria | ||||||||||||||||||||||
Bacillus cereus | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | ||
Listeria monocytogenes | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | ||
Staphylococcus aureus | 10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | ||
V7 F | V8 | V9 C | V9 R | V10 | V11 | Streptomycin | Methicilin | Ampicillin | ||||||||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MIC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |||||
Gram-negative bacteria | ||||||||||||||||||||||
Enterobacter cloacae | 10 | >10 | >10 | >10 | 5 | >10 | >10 | >10 | 5 | >10 | 10 | >10 | 0.007 | 0.007 | n.t. | n.t | 0.15 | 0.15 | ||||
Escherichia coli | >10 | >10 | 5 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 0.01 | 0.01 | n.t. | n.t. | 0.15 | 0.15 | ||||
Pseudomonas aeruginosa | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 0.06 | 0.06 | n.t. | n.t. | 0.63 | 0.63 | ||||
Salmonella enterocolitica | 10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 | ||||
Yersinia enterocolitica | 2.5 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 5 | >10 | >10 | >10 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 | ||||
Gram-positive bacteria | ||||||||||||||||||||||
Bacillus cereus | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 0.007 | 0.007 | n.t. | n.t. | n.t. | n.t. | ||||
Listeria monocytogenes | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 | ||||
Staphylococcus aureus | 10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | 0.007 | 0.007 | 0.007 | 0.007 | 0.15 | 0.15 | ||||
V1 | V2 T | V2 C | V3 | V4 C | V4 R | V5 F | V5 R | V 6 | ||||||||||||||
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |||||
Aspergillus brasiliensis | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | ||||
Aspergillus fumigatus | >10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | ||||
V7 P | V7 F | V8 | V9 C | V9 R | V10 | V11 | Ketoconazole | |||||||||||||||
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |||||||
Aspergillus brasiliensis | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 0.06 | 0.125 | ||||||
Aspergillus fumigatus | >10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 0.5 | 1 |
Genotype | Oxalic g/100 g dw | Malic g/100 g dw | Ascorbic g/100 g dw | Shikimic g/100 g dw | Citric g/100 g dw | Fumaric mg/100 g dw |
---|---|---|---|---|---|---|
V1 | 3.61 ± 0.04 f | 2.7 ± 0.1 j | tr | tr | 1.08 ± 0.02 d | 0.0091 ± 0.0001 m |
V2 T | 4.45 ± 0.04 e | 3.96 ± 0.06 f,g | n.d. | tr | n.d. | 0.02825 ± 0.00007 g |
V2 C | 4.8 ± 0.2 d | 4.1 ± 0.2 d,e,f | n.d. | tr | n.d. | 0.034 ± 0.001 e |
V3 | 5.50 ± 0.01 b | 4.0 ± 0.2 e,f,g | n.d. | n.d. | n.d. | 0.0169 ± 0.0007 k,l |
V4 C | 4.5 ± 0.1 e | 4.9 ± 0.2 b | n.d. | n.d. | n.d. | 0.0255 ± 0.0008 h |
V4 R | 5.17 ± 0.03 c | 5.38 ± 0.07 a | n.d. | n.d. | n.d. | 0.0193 ± 0.0009 i,j |
V5 F | 5.301 ± 0.006 c | 4.28 ± 0.03 c,d,e | n.d. | tr | 3.16 ± 0.09 a | 0.0155 ± 0.0002 l |
V5 R | 1.80 ± 0.03 h | 3.14 ± 0.07 i | tr | tr | n.d. | 0.031 ± 0.002 f |
V6 | 3.641 ± 0.006 f | 5.16 ± 0.06 a,b | n.d. | n.d. | n.d. | 0.0943 ± 0.0002 a |
V7 P | 3.75 ± 0.07 f | 4.2 ± 0.1 c,d,e,f | tr | tr | 1.38 ± 0.06 c | 0.021 ± 0.001 i |
V7 F | 3.64 ± 0.02 f | 4.3 ± 0.2 c,d,e,f | tr | tr | 1.62 ± 0.01 b | 0.0161 ± 0.0003 l |
V8 | 4.77 ± 0.01 d | 3.48 ± 0.05 h | n.d. | tr | n.d. | 0.069 ± 0.003 b |
V9 C | 6.4 ± 0.1 a | 3.7 ± 0.2 g,h | n.d. | n.d. | 3.2 ± 0.1 a | n.d. |
V9 R | 3.40 ± 0.04 g | 4.3 ± 0.2 c,d | tr | n.d. | n.d. | 0.0188 ± 0.0009 j,k |
V10 | 4.79 ± 0.05 d | 5.2 ± 0.2 a,b | n.d. | n.d. | n.d. | 0.0393 ± 0.0004 d |
V11 | 4.36 ± 0.09 e | 4.50 ± 0.06 c | n.d. | n.d. | n.d. | 0.061 ± 0.001 c |
Genotype | α-Tocopherol | β-Tocopherol | γ-Tocopherol | Total Tocopherols |
---|---|---|---|---|
V1 | 1.8 ± 0.1 g | 0.1496 ± 0.0005 d | n.d. | 1.9 ± 0.1 h |
V2 T | 4.90 ± 0.08 a | 6.59 ± 0.08 a | n.d. | 11.5 ± 0.2 a |
V2 C | 0.81 ± 0.03 k | 0.238 ± 0.003 c | n.d. | 1.05 ± 0.03 k |
V3 | 1.57 ± 0.02 h | n.d. | 1.05 ± 0.02 d | 2.62 ± 0.04 f |
V4 C | 1.15 ± 0.03 i,j | n.d. | 0.1998 ± 0.0002 g,h | 1.35 ± 0.03 j |
V4 R | 2.68 ± 0.06 c | n.d. | 1.619 ± 0.005 b | 4.30 ± 0.06 d |
VP F | 2.3 ± 0.1 e | 0.85 ± 0.01 b | n.d. | 3.19 ± 0.08 e |
V5 R | 1.03 ± 0.02 j | n.d. | 1.02 ± 0.03 d | 2.05 ± 0.04 h |
V6 | 2.47 ± 0.01 d | n.d. | 4.5 ± 0.1 a | 7.0 ± 0.1 b |
V7 P | 0.70 ± 0.04 k | 0.043 ± 0.001 e | 0.185 ± 0.004 h | 0.93 ± 0.04 k |
V7 F | 0.218 ± 0.008 m | n.d. | 0.2685 ± 0.0007 f,g | 0.486 ± 0.009 l |
V8 | 1.16 ± 0.04 j | n.d. | 0.58 ± 0.02 e | 1.73 ± 0.02 i |
V9 C | 1.70 ± 0.09 g | n.d. | 0.572 ± 0.003 e | 2.3 ± 0.1 g |
V9 R | 2.91 ± 0.06 b | n.d. | 1.24 ± 0.03 c | 4.15 ± 0.04 d |
V10 | 1.97 ± 0.09 f | n.d. | 0.28 ± 0.01 f | 2.3 ± 0.1 g |
V11 | 0.55 ± 0.01 l | n.d. | 4.52 ± 0.07 a | 5.07 ± 0.08 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leichtweis, M.G.; Molina, A.K.; Dias, M.I.; Calhelha, R.C.; Pires, T.C.S.P.; Pavli, O.; Oliveira, M.B.P.P.; Petropoulos, S.A.; Barros, L.; Pereira, C. Variability in Chemical Profile and Bioactivities of the Flesh of Greek Pumpkin Landraces. Horticulturae 2023, 9, 1232. https://doi.org/10.3390/horticulturae9111232
Leichtweis MG, Molina AK, Dias MI, Calhelha RC, Pires TCSP, Pavli O, Oliveira MBPP, Petropoulos SA, Barros L, Pereira C. Variability in Chemical Profile and Bioactivities of the Flesh of Greek Pumpkin Landraces. Horticulturae. 2023; 9(11):1232. https://doi.org/10.3390/horticulturae9111232
Chicago/Turabian StyleLeichtweis, Maria G., Adriana K. Molina, Maria Inês Dias, Ricardo C. Calhelha, Tânia C. S. P. Pires, Ourania Pavli, M. Beatriz P. P. Oliveira, Spyridon A. Petropoulos, Lillian Barros, and Carla Pereira. 2023. "Variability in Chemical Profile and Bioactivities of the Flesh of Greek Pumpkin Landraces" Horticulturae 9, no. 11: 1232. https://doi.org/10.3390/horticulturae9111232
APA StyleLeichtweis, M. G., Molina, A. K., Dias, M. I., Calhelha, R. C., Pires, T. C. S. P., Pavli, O., Oliveira, M. B. P. P., Petropoulos, S. A., Barros, L., & Pereira, C. (2023). Variability in Chemical Profile and Bioactivities of the Flesh of Greek Pumpkin Landraces. Horticulturae, 9(11), 1232. https://doi.org/10.3390/horticulturae9111232