The Chemistry, Sensory Properties and Health Benefits of Aroma Compounds of Black Tea Produced by Camellia sinensis and Camellia assamica
Abstract
:1. Introduction
2. The Main Aroma Compounds of Black Tea
- ➢
- The floral-smelling molecule linalool is typically found in black tea, among other forms of tea. It improves the overall flavor and aroma of the tea.
- ➢
- Another floral component found in black tea is geraniol. It has a rose-like scent and enhances the tea’s fragrant profile.
- ➢
- Black tea contains a chemical called cis-jasmone, which has a fruity scent. It contributes to the tea’s characteristic aroma.
- ➢
- Black tea typically contains the chemical methyl salicylate, which smells like wintergreen. It imparts a pleasant, minty undertone to the entire smell.
- ➢
- Black tea contains the chemical trans-2-hexenal, which has a grassy, green scent. It adds to the tea’s energizing, earthy aroma.
- ➢
- Black tea includes a component known as furfural, which has a distinctive caramel aroma. It imparts a sweet and roasted note to the entire scent.
- ➢
- Black tea is given a sweet and floral aroma with benzyl alcohol.
- ➢
- Black tea contains benzyl acetate, which contributes to black tea’s fruity and floral aroma.
2.1. The Main Processing Technologies of Black Tea
2.1.1. Withering
2.1.2. Rolling
2.1.3. Fermentation (Enzymatic Oxidation)
2.1.4. Drying
2.2. The Formation Pathway of Critical Aroma Compounds
2.3. The Variation in Critical Aroma Compounds during Processing
2.3.1. The Effects of Manufacturing Parameters on Critical Aroma Compounds
2.3.2. The Effects of Season, Horticultural Practice, and Growing Area on the Aroma Compounds
2.4. The Health Benefits of Critical Aroma Compounds of Black Tea
2.4.1. Neuro-Regulation Effects
2.4.2. Anti-Microbial Effects
2.4.3. Digestive Tract Protective Effects
3. Conclusions
- ➢
- Notwithstanding, there are a few subtle variances in the aromatic patterns of both types of tea. For instance, black tea from Camellia assamica often has a stronger, maltier aroma than Camellia sinensis. Furthermore, according to the cultivar and specific growing conditions, Camellia assamica teas have a slightly fruity or floral aroma. Conclusively, the aroma sensory analysis of black tea from Camellia sinensis and Camellia assamica involves the analysis of volatile compounds formed during tea processing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, C.; Yang, H.; Wang, S.; Zhao, J.; Liu, C.; Gao, L.; Xia, E.; Lu, Y.; Tai, Y.; She, G.; et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc. Natl. Acad. Sci. USA 2018, 115, E4151–E4158. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Xiong, T.; Chen, J.H.; Ye, F.; Cao, J.J.; Chen, Y.R.; Zhao, Z.W.; Luo, T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J. Mol. Evol. 2023, 91, 156–168. [Google Scholar] [CrossRef]
- Meng, X.-H.; Li, N.; Zhu, H.-T.; Wang, D.; Yang, C.-R.; Zhang, Y.-J. Plant Resources, Chemical Constituents, and Bioactivities of Tea Plants from the Genus Camellia Section Thea. J. Agric. Food Chem. 2019, 67, 5318–5349. [Google Scholar] [CrossRef]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Zhao, D.; Shah, N.P. Antiradical and tea polyphenol-stabilizing ability of functional fermented soymilk-tea beverage. Food Chem. 2014, 158, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Abudureheman, B.; Yu, X.; Fang, D.; Zhang, H. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules 2022, 27, 942. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef]
- FAOSTAT-Agriculture. Statistical Databases. Available online: https://www.fao.org/3/cc0238en/cc0238en.pdf (accessed on 1 October 2023).
- Yang, Z.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Sanderson, G.W.; Grahamm, H.N. Formation of black tea aroma. J. Agric. Food Chem. 1973, 21, 576–585. [Google Scholar] [CrossRef]
- Wu, H.; Huang, W.; Chen, Z.; Chen, Z.; Shi, J.; Kong, Q.; Sun, S.; Jiang, X.; Chen, D.; Yan, S. GC-MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Res. Int. 2019, 120, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, Y.; Liu, Y.; Liu, Y.; Dong, C.; Lin, Z.; Teng, J. Black tea aroma formation during the fermentation period. Food Chem. 2022, 374, 131640. [Google Scholar] [CrossRef]
- Owuor, P.O.; Obanda, M.; Nyirenda, H.E.; Mandala, W.L. Influence of region of production on clonal black tea chemical characteristics. Food Chem. 2008, 108, 263–271. [Google Scholar] [CrossRef]
- Owuor, P.O.; Obanda, M. The changes in black tea quality due to variations of plucking standard and fermentation time. Food Chem. 1998, 61, 435–441. [Google Scholar] [CrossRef]
- Ravichandran, R.; Parthiban, R. The impact of processing techniques on tea volatiles. Food Chem. 1998, 62, 347–353. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Yuan, H.; Ouyang, W.; Li, J.; Hua, J.; Jiang, Y. Effects of Fermentation Temperature and Time on the Color Attributes and Tea Pigments of Yunnan Congou Black Tea. Foods 2022, 11, 1845. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, L.; Liao, Y.; Zhou, Y.; Xu, X.; Dong, F.; Yang, Z. An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chem. 2019, 270, 17–24. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, D.; Jiang, H.; Sun, H.; Zhang, C.; Zhao, H.; Li, X.; Yan, F.; Chen, C.; Xu, Z. Aroma characterization of Hanzhong black tea (Camellia sinensis) using solid phase extraction coupled with gas chromatography-mass spectrometry and olfactometry and sensory analysis. Food Chem. 2019, 274, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.; Liu, S.Q.; Xu, Y.Q.; Lassabliere, B.; Sun, J.; Yu, B. Characterising volatiles in tea (Camellia sinensis). Part I: Comparison of headspace-solid phase microextraction and solvent assisted flavour evaporation. LWT 2018, 94, 178–189. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C.; Xie, J.; Yang, X. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Cao, X.; Zhu, J.; Chen, F.; Niu, Y. Characterization of the key aroma compounds in three world-famous black teas. Eur. Food Res. Technol. 2022, 248, 2237–2252. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, D.; Jiang, X.; Fang, K.; Li, B.; Wang, Q.; Pan, C.; Ni, E.; Li, H.; Chen, D.; et al. Characterization of the Aroma Profiles of Guangdong Black Teas Using Non-Targeted Metabolomics. Foods 2023, 12, 1560. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.P.; Zhang, Y.; Dai, W.D.; Guo, L.; Tan, J.F.; Peng, Q.H.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef]
- Yue, C.; Yang, P.; Qin, D.; Cai, H.; Wang, Z.; Li, C.; Wu, H. Identification of volatile components and analysis of aroma characteristics of Jiangxi Congou black tea. Int. J. Food Prop. 2020, 23, 2160–2173. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, D.; Huang, G.; Jiang, X.; Fang, K.; Wang, Q.; Ni, E.; Li, B.; Pan, C.; Li, H.; et al. Identification and characterization of the key volatile flavor compounds in black teas from distinct regions worldwide. J. Food Sci. 2022, 87, 3433–3446. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Ma, Y.; Xiao, Z.; Zhu, J.; Xiong, W.; Chen, F. Characterization of the Key Aroma Compounds of Three Kinds of Chinese Representative Black Tea and Elucidation of the Perceptual Interactions of Methyl Salicylate and Floral Odorants. Molecules 2022, 27, 1631. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Qiao, Y.; Du, L.; Li, Y.; Huang, S.; Liu, F.; Xiao, D. Evaluation and Optimization of a Superior Extraction Method for the Characterization of the Volatile Profile of Black Tea by HS-SPME/GC-MS. Food Anal. Methods 2017, 10, 2481–2489. [Google Scholar] [CrossRef]
- Kumar, S.; Panchariya, P.C.; Prasad, P.B.; Sharma, A. In Non-Destructive Classification of Assam Black Tea Using Ultra-fast Gas Chromatography (UFGC) Coupled with Soft Independent Modeling of Class Analogy (SIMCA). Sens. Transducers 2015, 186, 104–111. [Google Scholar]
- Wang, B.; Chen, H.; Qu, F.; Song, Y.; Di, T.; Wang, P.; Zhang, X. Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC–MS and GC–O analysis. Eur. Food Res. Technol. 2022, 248, 647–657. [Google Scholar] [CrossRef]
- Yan, T.; Lin, J.; Zhu, J.; Ye, N.; Huang, J.; Wang, P.; Jin, S.; Zheng, D.; Yang, J. Aroma analysis of Fuyun 6 and Jinguanyin black tea in the Fu’an area based on E-nose and GC–MS. Eur. Food Res. Technol. 2022, 248, 947–961. [Google Scholar] [CrossRef]
- Sharma, P.; Ghosh, A.; Tudu, B.; Bhuyan, L.P.; Tamuly, P.; Bhattacharyya, N.; Bandyopadhyay, R.; Chatterjee, A. Detection of linalool in black tea using a quartz crystal microbalance sensor. Sens. Actuators B Chem. 2014, 190, 318–325. [Google Scholar] [CrossRef]
- Muthumani, T.; Senthil Kumar, R.S. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 2007, 101, 98–102. [Google Scholar] [CrossRef]
- Chaturvedula, V.S.P.; Prakash, I. The aroma, taste, color and bioactive constituents of tea. J. Med. Plants Res. 2011, 5, 2110–2124. [Google Scholar]
- Joshi, R.; Gulati, A. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea. Food Chem. 2015, 167, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Schuh, C.; Schieberle, P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion. J. Agric. Food Chem. 2006, 54, 916–924. [Google Scholar] [CrossRef]
- Su, D.; He, J.; Zhou, Y.-Z.; Li, Y.-L.; Zhou, H.-J. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chem. 2021, 373, 131587. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Wen, J.; An, K.; Wu, J.; Yu, Y.; Zou, B.; Guo, M. A comparative study of aromatic characterization of Yingde Black Tea infusions in different steeping temperatures. LWT 2021, 143, 110860. [Google Scholar] [CrossRef]
- Zhang, J.S. Comparative analysis of aroma compositions in different-grades Yunnan Congou black tea. J. South. Agric. 2012, 43, 489–492. [Google Scholar]
- Mao, S.; Lu, C.; Li, M.; Ye, Y.; Wei, X.; Tong, H. Identification of key aromatic compounds in Congou black tea by partial least-square regression with variable importance of projection scores and gas chromatography-mass spectrometry/gas chromatography-olfactometry. J. Sci. Food Agric. 2018, 98, 5278–5286. [Google Scholar] [CrossRef]
- Ma, L.; Gao, M.; Zhang, L.; Qiao, Y.; Li, J.; Du, L.; Zhang, H.; Wang, H. Characterization of the key aroma-active compounds in high-grade Dianhong tea using GC-MS and GC-O combined with sensory-directed flavor analysis. Food Chem. 2022, 378, 132058. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Wang, H.; Niu, Y.; Liu, Q.; Zhu, J.; Chen, H.; Ma, N. Characterization of aroma compositions in different Chinese congou black teas using GC-MS and GC-O combined with partial least squares regression. Flavour Fragr. J. 2017, 32, 265–276. [Google Scholar] [CrossRef]
- Jolvis Pou, K.R. Fermentation: The Key Step in the Processing of Black Tea. J. Biosyst. Eng. 2016, 41, 85–92. [Google Scholar] [CrossRef]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Liu, Z. Tea: From Historical Documents to Modern Technology. Molecules 2023, 28, 2992. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, L.; Liao, Y.; Li, J.; Zhou, B.; Yang, Z.; Tang, J. Enzymatic Reaction-Related Protein Degradation and Proteinaceous Amino Acid Metabolism during the Black Tea (Camellia sinensis) Manufacturing Process. Foods 2020, 9, 66. [Google Scholar] [CrossRef]
- Yao, H.; Su, H.; Ma, J.; Zheng, J.; He, W.; Wu, C.; Hou, Z.; Zhao, R.; Zhou, Q. Widely targeted volatileomics analysis reveals the typical aroma formation of Xinyang black tea during fermentation. Food Res. Int. 2023, 164, 112387. [Google Scholar] [CrossRef]
- Omiadze, N.T.; Mchedlishvili, N.I.; Rodrigez-Lopez, J.N.; Abutidze, M.O.; Sadunishvili, T.; Pruidze, N.G. Biochemical processes at the stage of withering during black tea production. Appl. Biochem. Microbiol. 2014, 50, 394–397. [Google Scholar] [CrossRef]
- Mahanta, P.K.; Baruah, S. Relationship between process of withering and aroma characteristics of black tea. J. Sci. Food Agric. 1989, 46, 461–468. [Google Scholar] [CrossRef]
- Liang, Y.; Lu, J.; Zhang, L.; Wu, S.; Wu, Y. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 2003, 80, 283–290. [Google Scholar] [CrossRef]
- Lee, L.-S.; Kim, Y.-C.; Park, J.-D.; Kim, Y.-B.; Kim, S.-H. Changes in major polyphenolic compounds of tea (Camellia sinensis) leaves during the production of black tea. Food Sci. Biotechnol. 2016, 25, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kurasawa, E.; Yamaguchi, Y.; Kubota, K.; Kobayashi, A. Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J. Agric. Food Chem. 2001, 49, 1900–1903. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, N.; Seth, S.; Tudu, B.; Tamuly, P.; Jana, A.; Ghosh, D.; Bandyopadhyay, R.; Bhuyan, M. Monitoring of black tea fermentation process using electronic nose. J. Food Eng. 2007, 80, 1146–1156. [Google Scholar] [CrossRef]
- Co, H.; Sanderson, G.W. Biochemistry of tea fermentation: Conversion of amino acids to black tea aroma constituents. J. Food Sci. 1970, 35, 160–164. [Google Scholar] [CrossRef]
- Sharma, P.; Ghosh, A.; Tudu, B.; Sabhapondit, S.; Baruah, B.D.; Tamuly, P.; Bhattacharyya, N.; Bandyopadhyay, R. Monitoring the fermentation process of black tea using QCM sensor based electronic nose. Sens. Actuators B Chem. 2015, 219, 146–157. [Google Scholar] [CrossRef]
- Tozlu, B.; Okumuş, H. A new approach to automation of black tea fermentation process with electronic nose. Automatika 2018, 59, 374–382. [Google Scholar] [CrossRef]
- Samanta, T.; Cheeni, V.; Das, S.; Roy, A.; Ghosh, B.C.; Mitra, A. Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J. Food Sci. Technol. 2015, 52, 2387–2393. [Google Scholar] [CrossRef]
- Polat, A.; Şat, İ.G.; Ilgaz, Ş. Comparison of black tea volatiles depending on the grades and different drying temperatures. J. Food Process. Preserv. 2018, 42, e13653. [Google Scholar] [CrossRef]
- Can Ağca, A.; Vural, N.; Şarer, E. Determination of volatile compounds in green tea and black tea from Turkey by using HS-SPME and GC-MS. İstanbul J. Pharm. 2020, 50, 111–115. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. Cell Mol. Biol. 2008, 54, 712–732. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Wang, D.; Yoshimura, T.; Kubota, K.; Kobayashi, A. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J. Agric. Food Chem. 2000, 48, 5411–5418. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food Chem. 2002, 78, 23–28. [Google Scholar] [CrossRef]
- Tomlins, K.I.; Mashingaidze, A. Influence of withering, including leaf handling, on the manufacturing and quality of black teas: A review. Food Chem. 1997, 60, 573–580. [Google Scholar] [CrossRef]
- Wang, H.; Provan, G.J.; Helliwell, K. Tea flavonoids: Their functions, utilization and analysis. Trends Food Sci. Technol. 2000, 11, 152–160. [Google Scholar] [CrossRef]
- Selvendran, R.R.; Reynolds, J.; Galliard, T. Production of volatiles by degradation of lipids during manufacture of black tea. Phytochemistry 1978, 17, 233–236. [Google Scholar] [CrossRef]
- Deka, H.; Sarmah, P.P.; Devi, A.; Tamuly, P.; Karak, T. Changes in Major Catechins, Caffeine, and Antioxidant Activity During CTC Processing of Black Tea from North East India RSC Advances. 2021, pp. 11457–11467. Available online: http://europepmc.org/abstract/MED/35423631 (accessed on 1 October 2023).
- Lin, J.; Tu, Z.; Zhu, H.; Chen, L.; Wang, Y.; Yang, Y.; Lv, H.; Zhu, Y.; Yu, L.; Ye, Y. Effects of Shaking and Withering Processes on the Aroma Qualities of Black Tea. Horticulturae 2022, 8, 549. [Google Scholar] [CrossRef]
- Ravichandran, R.; Parthiban, R. Lipid occurrence, distribution and degradation to flavour volatiles during tea processing. Food Chem. 2000, 68, 7–13. [Google Scholar] [CrossRef]
- Mühlemann, J.; Klempien, A.; Dudareva, N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Lee, J.Y.; Chung, J.O.; Baik, J.H.; So, S.; Park, S.K. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds. Food Chem. 2008, 109, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Dong, Q.; Sun, W.-J.; Huang, Y.; Wang, Q.; Zhou, W. Discrimination of Chinese teas with different fermentation degrees by stepwise linear discriminant analysis (S-LDA) of the chemical compounds. J. Agric. Food Chem. 2014, 62, 9336–9344. [Google Scholar] [CrossRef]
- Choudhury, M.N.D.; Bajaj, K.L. Biochemical changes during withering of tea shoots. Two Bud 1980, 27, 13–16. [Google Scholar]
- Ohgami, S.; Ono, E.; Horikawa, M.; Murata, J.; Totsuka, K.; Toyonaga, H.; Ohba, Y.; Dohra, H.; Asai, T.; Matsui, K.; et al. Volatile Glycosylation in Tea Plants: Sequential Glycosylations for the Biosynthesis of Aroma beta-Primeverosides Are Catalyzed by Two Camellia sinensis Glycosyltransferases. Plant Physiol. 2015, 168, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zeng, L.; Gui, J.; Liao, Y.; Li, J.; Tang, J.; Meng, Q.; Dong, F.; Yang, Z. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Res. Int. 2017, 96, 206–214. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, T.; Li, W.; Jiang, Z.; Zhou, T.; Zhang, L.; Yu, Y. Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya. Food Res. Int. 2022, 162, 112169. [Google Scholar] [CrossRef]
- Gohain, B.; Borchetia, S.; Bhorali, P.; Agarwal, N.; Bhuyan, L.P.; Rahman, A.; Sakata, K.; Mizutani, M.; Shimizu, B.-I.; Gurusubramaniam, G.; et al. Understanding Darjeeling tea flavour on a molecular basis. Plant Mol. Biol. 2012, 78, 577–597. [Google Scholar] [CrossRef] [PubMed]
- Takakura, Y.; Ono, T.; Danjo, K.; Nozaki, H. Efficient enzymatic production of benzaldehyde from l-phenylalanine with a mutant form of 4-hydroxymandelate synthase. Biosci. Biotechnol. Biochem. 2022, 86, 1718–1725. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Zeng, W.; Tong, X.; Feng, W.; Chen, Y.; Ni, D. The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT 2020, 117, 108646. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Bowyer, M.C.; Roach, P.D. L-Theanine: Properties, synthesis and isolation from tea. J. Sci. Food Agric. 2011, 91, 1931–1939. [Google Scholar] [CrossRef]
- Mahanta, P.K.; Tamuli, P.; Bhuyan, L.P. Changes of fatty acid contents, lipoxygenase activities, and volatiles during black tea manufacture. J. Agric. Food Chem. 1993, 41, 1677–1683. [Google Scholar] [CrossRef]
- Wright, A.J.; Fishwick, M.J. Lipid degradation during manufacture of black tea. Phytochemistry 1979, 18, 1511–1513. [Google Scholar] [CrossRef]
- Soheilifard, F.; Ghassemzadeh, H.; Salvatian, S. Impact of withering time duration on some biochemical properties and sensory quality attributes of black tea. Biol. Forum. Int. J. 2015, 7, 1045–1049. [Google Scholar]
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent Advances in Volatiles of Teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef]
- Teshome, K. Effect of tea processing methods on biochemical composition sensory quality of black tea (Camellia sinensis (L), O. Kuntze): A review. J. Hortic. For. 2019, 11, 84–95. [Google Scholar]
- Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT 2019, 99, 112–118. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Wu, J.; Wen, J.; Yu, Y.; An, K.; Zou, B. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res. Int. 2021, 150, 110784. [Google Scholar] [CrossRef]
- Piyasena, K.G.N.P.; Hettiarachchi, L.S.K. Comparison of tea quality parameters of conventionally and organically grown tea, and effects of fertilizer on tea quality: A mini-review. Food Chem. Adv. 2023, 3, 100399. [Google Scholar] [CrossRef]
- Huang, J.; Yan, T.; Yang, J.; Xu, H. Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose. Horticulturae 2023, 9, 885. [Google Scholar] [CrossRef]
- De Bruin, E.A.; Rowson, M.J.; Van Buren, L.; Rycroft, J.A.; Owen, G.N. Black tea improves attention and self-reported alertness. Appetite 2011, 56, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.A.; Amit, T.; Weinreb, O.; Youdim, M.B. Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. J. Alzheimers Dis. 2011, 25, 187–208. [Google Scholar] [CrossRef]
- Tan, L.C.S.; Koh, W.-P.; Yuan, J.-M.; Wang, R.; Au, W.L.; Tan, J.J.H.; Tan, E.K.; Yu, M.C. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am. J. Epidemiol. 2007, 167, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Tan, C.; Fook-Chong, S.M.C.; Lum, S.Y.; Chai, A.; Chung, H.; Shen, H.; Zhao, Y.; Teoh, M.L.; Yih, Y.; et al. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: A study in ethnic Chinese. J. Neurol. Sci. 2003, 216, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Checkoway, H.; Powers, K.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T., Jr.; Swanson, P.D. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am. J. Epidemiol. 2002, 155, 732–738. [Google Scholar] [CrossRef]
- Hu, T.; Shi, S.; Ma, Q. Modulation effects of microorganisms on tea in fermentation. Front. Nutr. 2022, 9, 931790. [Google Scholar] [CrossRef] [PubMed]
- Nobre, A.C.; Rao, A.; Owen, G.N. L-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. S1), 167–168. [Google Scholar]
- Banerjee, S.; Chatterjee, J. Efficient extraction strategies of tea (Camellia sinensis) biomolecules. J. Food Sci. Technol. 2015, 52, 3158–3168. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Guo, C.; Li, H. The Antibacterial Activity of Natural Product Black Tea Theaflavins on Streptococcus Mutans. IOP Conf. Ser. Mater. Sci. Eng. 2019, 612, 022003. [Google Scholar] [CrossRef]
- Mughal, T.; Tahir, A.; Qureshi, S.; Nazir, T.; Rasheed, M. Antibacterial activity of black tea against streptococcus mutans and its synergism with antibiotics. J. Appl. Pharm. 2010, 2, 60–67. [Google Scholar]
- Patil, M.; Patil, K.T.; Ngabire, D.; Seo, Y.B.; Kim, G.D. Phytochemical, antioxidant and antibacterial activity of black tea (Camellia sinensis). Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 341–346. [Google Scholar]
- Sarkar, S.; Sett, P.; Chowdhury, T.; Ganguly, D.K. Effect of black tea on teeth. J. Indian Soc. Pedod. Prev. Dent. 2000, 18, 139–140. [Google Scholar]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef]
- Hervert-Hernández, D.; Goñi, I. Dietary Polyphenols and Human Gut Microbiota: A Review. Food Rev. Int. 2011, 27, 154–169. [Google Scholar] [CrossRef]
- Chan, E.C.; Tie, P.; Soh, E.; Law, Y. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Pharmacogn. Res. 2011, 3, 266. [Google Scholar] [CrossRef]
- Pan, M.-H.; Tung, Y.-C.; Yang, G.; Li, S.; Ho, C.-T. Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct. 2016, 7, 4481–4491. [Google Scholar] [CrossRef]
- Yee, Y.K.; Koo, M.; Szeto, M.-l. Chinese tea consumption and lower risk of Helicobacter infection. J. Gastroenterol. Hepatol. 2002, 17, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, H.; Goetze, O.; Menne, D.; Iten, P.X.; Fruehauf, H.; Vavricka, S.R.; Schwizer, W.; Fried, M.; Fox, M. Effect on gastric function and symptoms of drinking wine, black tea, or schnapps with a Swiss cheese fondue: Randomized controlled crossover trial. BMJ 2010, 341, c6731. [Google Scholar] [CrossRef]
- Mitra, S.; Khandelwal, S. Health Benefits of Tea. In Exploring the Nutrition and Health Benefits of Functional Foods; IGI Global: Hershey, PA, USA, 2017; pp. 99–116. [Google Scholar]
- Adhikary, B.; Yadav, S.K.; Roy, K.; Bandyopadhyay, S.K.; Chattopadhyay, S. Black Tea and Theaflavins Assist Healing of Indomethacin-Induced Gastric Ulceration in Mice by Antioxidative Action. Evid. Based Complement. Altern. Med. 2011, 2011, 546560. [Google Scholar] [CrossRef] [PubMed]
Extraction Method | Technique | Detector/ Sensor | Application | Reference |
---|---|---|---|---|
Solid phase extraction (SPE) | GC-MS | Used with SPME, and solvent-assisted flavor evaporation (SAFE), respectively, for the analysis of tea body notes, tea infusion, and dry tea aroma from six model manufacturing processes | [19] | |
GC | Mass spectrometry (MS), flame ionization (FID) and olfactometry (O) | Used to extract and characterize the aroma compounds in the infusion of Hanzhong black tea | [20] | |
Solid-phase microextraction (SPME) | Optimized to study the effect of grinding and brewing on tea volatiles of tea (Camellia sinensis) and SAFE applied for the analysis of tea volatiles in tea | [21] | ||
GC-MS | Used to detect volatile compounds in black teas after withering–shaking and shaking–withering processing. | [22] | ||
Stir bar sorptive extraction (SBSE) | GC-O, GC-MS | Gas chromatography-flame photometric detector (GC-FPD) | Used to extracted compound of three famous black teas from around the world—Darjeeling, Keemun, and Ceylon | [23] |
Headspace solid-phase microextraction (HS-SPME) | GC-MS | Analyzed the volatile flavor compounds of 31 black tea samples from 7 districts in Guangdong | [24] | |
GC×GC-TOF-MS combined with GC-O/GC-TOF-MS | Analyzed the aroma components of 24 samples of the world’s four black teas | [25] | ||
GC-MS | Aroma characteristics and volatile components of Jiangxi Congou black tea. | [26] | ||
GC-MS | Analyzed volatile flavor compounds in 112 black teas from seven countries by untargeted metabolomics | [27] | ||
GC-MS, GC-O | Optimized with SAFE method to analyse characteristics of key aroma compounds of three kinds of Chinese representative black tea | [28] | ||
GC-MS | To extract the volatile compounds when analyzing the volatile profile of black tea | [29] | ||
Ultra-fast Gas Chromatography (UFGC) analyzer | E-nose detector | Used to identify the variations of Assam black tea (Camellia Sinensis (L.) O. Kuntze) with their aroma compounds | [30] | |
GC×GC-TOF-MS | Used to identify 158 volatile compounds during the fermentation period of black tea | [13] | ||
GC-MS, GC-O | Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude regions | [31] | ||
GC-MS | E-nose | Main aroma components and aroma differences of black tea produced from two tea cultivars, Fuyun 6 and Jinguanyin | [32] | |
GC-MS | Quartz crystal microbalance (QCM) | Used to detect linalool gas in orthodox black tea | [33] |
Group | Compounds | Ots (ug/L) | C.sinensis | C.assamica | Aroma Quality | Identification | References |
---|---|---|---|---|---|---|---|
Aldehydes | (E)-2-Hexenal | 82 | ✓ | ✓ | Green apple-like, bitter almond-like, green grass | MS, RI, STD | [20,21,28,47] |
Benzeneacetaldehyde | 52 | ✓ | ✓ | Rose-like floral, honey | MS, RI, STD | [21,25,28] | |
Citral | 5 | ✓ | × | Fruity, citrus | MS, RI, STD | [24,47,48] | |
Benzaldehyde | 320 | ✓ | ✓ | Nutty, bitter almond, oily, green, floral | MS, RI, STD | [21,25,28] | |
(E,E)-2,4-heptadienal | 56 | ✓ | × | Fatty, green, vegetable | MS, RI, STD | [23,28] | |
Furfural | 9.56 | ✓ | ✓ | Sweet, woody, almond smell | MS, RI, STD | [23,28] | |
Hexanal | 2.4 | ✓ | ✓ | Fresh green grass | MS, RI, STD | [23,28] | |
Neral | n.m | - | - | Lemon peel, citrus | MS, RI, STD | [28] | |
(E)-2-Pentenal | 310 | ✓ | × | Fruity | MS, RI, STD | [20,43] | |
(E,E)-2,4-Nonadienal | 0.06 | ✓ | ✓ | Fatty | MS, RI, STD | [20,25,37,47] | |
Nonanal | 1 | ✓ | ✓ | Floral, fresh | MS, RI, STD | [25] | |
(E,Z)-2,6-Nonadienal | 0.0045 | ✓ | ✓ | Fresh, cucumber-like | MS, RI, STD | [20,25,37,47] | |
(E)-2-Nonenal | 0.39 | ✓ | ✓ | Fatty, green | MS, RI, STD | [23,25,37] | |
(E)-2-Octenal | 3 | ✓ | ✓ | Fatty, greece odor | MS, RI, STD | [24,25,48] | |
5-Methyl furfural | 500 | ✓ | ✓ | Sweet, maple | MS, RI, STD | [28] | |
2-Methylbutanal | 1.5 | ✓ | ✓ | Musty, cocoa | MS, RI, STD | [23,28,48] | |
3-Methylbutanal | 0.5 | ✓ | ✓ | Fruity, chocolate | MS, RI, STD | [23,25,28,48] | |
2-Methylpropanal | 1.9 | ✓ | ✓ | Fresh aldehyde | MS, RI, STD | [25,48] | |
beta-Cyclocitral | 3 | ✓ | × | Tropical saffron, herbal | MS, RI, STD | [23,28] | |
(1R)-(-)-Myrtenal | n.m | - | - | sweet, minty | MS, RI, STD | [28] | |
2-Phenyl-2-Butenal | n.m | - | - | Floral, black tea | MS, RI, STD | [28] | |
Ketones | 6-Methyl-5-hepten-2-one | 160 | ✓ | ✓ | Citrus, green | MS, RI, STD | [25,28,43,47] |
α-Ionone | 58 | ✓ | × | Woody, floral, violet incense | MS, RI, STD | [20,24,25,28,47,48] | |
β-Ionone | 21 | ✓ | ✓ | Woody, floral, fruity, violet odor | MS, RI, STD | [20,23,24,25,28,37,43,47,48] | |
2-Nonanone | 5 | ✓ | ✓ | Green | MS, RI, STD | [25] | |
Coumarin | n.m | - | - | Sweet, hay, bean | MS, RI, STD | [23,28] | |
(E,E)-3,5-Octadien-2-one | 150 | ✓ | × | Fruity, green | MS, RI, STD | [28,48] | |
3-methylnonane- 2,4-dione | 0.01 | ✓ | ✓ | Hay-like | MS, RI, STD | [28,37] | |
1-Octen-3-one | 0.5 | ✓ | ✓ | Mushroom-like | MS, RI, STD | [20,25,37,47] | |
β-Damascenone | 0.004 | ✓ | × | Floral, fruity | MS, RI, STD | [28,37] | |
cis-Jasmone | 24 | ✓ | × | Woody, herbal | MS, RI, STD | [25,28,43] | |
2-Heptanone | 0.14 | ✓ | × | Fruity, cheese | MS, RI, STD | [28,43] | |
Isophorone | n.m | - | - | Sweet, woody | MS, RI, STD | [28] | |
Alcohols | Linalool | 19 | ✓ | ✓ | Citrus, floral | MS, RI, STD | [20,23,24,25,28,48] |
Geraniol | 27 | ✓ | ✓ | Sweet floral | MS, RI, STD | [20,23,24,25,28,37,43,47,48] | |
Phenylethyl alcohol | 772 | ✓ | ✓ | Rose, floral | MS, RI, STD | [20,24,25,28,37,43,48] | |
(Z)-3-Hexenol | 70 | ✓ | ✓ | Fresh grass | MS, RI, STD | [25,28,37] | |
Benzyl alcohol | 11,076 | ✓ | ✓ | Floral, bitter almond-like | MS, RI, STD | [20,23,24,25,28,43] | |
cis-Linaloloxide | 320 | ✓ | ✓ | Citrus, floral, sweet woody | MS, RI, STD | [24,28] | |
Nerol | 528 | ✓ | × | Neroli, citrus | MS, RI, STD | [24,28] | |
α-Terpineol | 404 | ✓ | ✓ | Lilac, woody, terpene | MS, RI, STD | [23,28,37,43,47] | |
1-Hexanol | 500 | ✓ | ✓ | Oily, fruity | MS, RI, STD | [24,28,43] | |
(Z)-3-Hexen-1-ol | 8 | ✓ | × | Green, grass, sweet | MS, RI, STD | [23,25,43] | |
(E)-2-hexen-1-ol | 1900 | ✓ | ✓ | Green, Leaf, walnut, woody | MS, RI, STD | [23,24,37,43,48] | |
trans-Linaloloxide | 320 | ✓ | ✓ | Citrus, floral | MS, RI, STD | [25,28] | |
2-Pentenol | 400 | ✓ | × | Fruity | MS, RI, STD | [28] | |
1-Penten-3-ol | 400 | ✓ | × | Green, radish | MS, RI, STD | [20,28] | |
2-Ethyl-1-hexanol | 300 | ✓ | ✓ | Citrus, sweet | MS, RI, STD | [28] | |
Furfuryl alcohol | 4.5 | × | ✓ | Sweet, caramel | MS, RI, STD | [28] | |
1-Octen-3-ol | 45 | ✓ | ✓ | Mushroom, earthy | MS, RI, STD | [20,23,25,28,43] | |
Hotrienol | 110 | ✓ | ✓ | Lavender | MS, RI, STD | [25,28] | |
Acids | Benzoic acid | n.m | - | - | Faint, balsam | MS, RI, STD | [28] |
Geranic acid | n.m | - | - | Green, woody | MS, RI, STD | [28] | |
(E)-2-Hexenoic acid | 1900 | ✓ | ✓ | Fruity, sweet | MS, RI, STD | [28] | |
(E)-3-Hexenoic acid | n.m | - | - | Green, woody | MS, RI, STD | [28] | |
Hexanoic acid | 1000 | ✓ | ✓ | Fatty, cheesy, sweet odor | MS, RI, STD | [24,28] | |
Butanoic acid | 1000 | ✓ | × | Sharp acetic | MS, RI, STD | [28] | |
Esters | Methyl salicylate | 75 | ✓ | ✓ | Winter green-like | MS, RI, STD | [23,25,28,48] |
Dihydroactinidiolide | 0.0021 | ✓ | × | Musk, rose-like, fruit, woody | MS, RI, STD | [23,25,28,43,48] | |
Methyl hexanoate | 10 | ✓ | × | Fruity, pineapple | MS, RI, STD | [28] | |
Benzyl acetate | 30 | ✓ | × | Floral, fruity | MS, RI, STD | [28] | |
γ-Butyrolactone | 50 | ✓ | ✓ | Creamy, oily | MS, RI, STD | [28] | |
Hydrocarbons | β-Ocimene | 48 | ✓ | ✓ | Citrus, tropical | MS, RI, STD | [28] |
β-Myrcene | 1.2 | ✓ | ✓ | Pepper woody, sweet citrus, balsamic aroma | MS, RI, STD | [23,25,28] | |
D-Limonene | 200 | ✓ | ✓ | Citrus, orange, light flowers | MS, RI, STD | [23,28,48] | |
Styrene | 50 | ✓ | ✓ | Sweet floral, balsam | MS, RI, STD | [28,48] | |
Longifolene | n.m | - | - | Sweet, woody | MS, RI, STD | [28] | |
Naphthalene | n.m | - | - | Balmy | MS, RI, STD | [28] | |
Sulfide | Dimethyl sufide | 0.84 | ✓ | ✓ | Corn | MS, RI, STD | [28] |
Dimethyl disulfide | 1.1 | × | ✓ | Sulfurous, vegetable | MS, RI, STD | [25,28] | |
Pyrazines | 2-Methylpyrazine | 60 | ✓ | ✓ | Popcorn, nutty | MS, RI, STD | [25,28] |
2,6-Dimethyl pyrazine | 6 | ✓ | × | Roasted, coffee, roasted nut, roast beef | MS, RI, STD | [25,28] | |
2-Ethyl-pyrazine | 4 | ✓ | ✓ | Nutty, musty | MS, RI, STD | [28] | |
Others | 1-Ethyl-1H-pyrrole-2-carbaldehyde | n.m | - | - | Burnt, roasted, smoky | MS, RI, STD | [28] |
2-Formyl-1H-pyrrole | n.m | - | - | Musty, beefy | MS, RI, STD | [28] | |
2-Acetyl pyrrole | n.m | - | - | Musty, sweet | MS, RI, STD | [28] | |
2-Ethylfuran | 100 | ✓ | ✓ | Bread, sweet | MS, RI, STD | [28] | |
2-Pentylfuran | 4.8 | ✓ | ✓ | Fruity, green | MS, RI, STD | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parveen, A.; Qin, C.-Y.; Zhou, F.; Lai, G.; Long, P.; Zhu, M.; Ke, J.; Zhang, L. The Chemistry, Sensory Properties and Health Benefits of Aroma Compounds of Black Tea Produced by Camellia sinensis and Camellia assamica. Horticulturae 2023, 9, 1253. https://doi.org/10.3390/horticulturae9121253
Parveen A, Qin C-Y, Zhou F, Lai G, Long P, Zhu M, Ke J, Zhang L. The Chemistry, Sensory Properties and Health Benefits of Aroma Compounds of Black Tea Produced by Camellia sinensis and Camellia assamica. Horticulturae. 2023; 9(12):1253. https://doi.org/10.3390/horticulturae9121253
Chicago/Turabian StyleParveen, Asma, Chun-Yin Qin, Feng Zhou, Guoping Lai, Piaopiao Long, Mengting Zhu, Jiaping Ke, and Liang Zhang. 2023. "The Chemistry, Sensory Properties and Health Benefits of Aroma Compounds of Black Tea Produced by Camellia sinensis and Camellia assamica" Horticulturae 9, no. 12: 1253. https://doi.org/10.3390/horticulturae9121253
APA StyleParveen, A., Qin, C. -Y., Zhou, F., Lai, G., Long, P., Zhu, M., Ke, J., & Zhang, L. (2023). The Chemistry, Sensory Properties and Health Benefits of Aroma Compounds of Black Tea Produced by Camellia sinensis and Camellia assamica. Horticulturae, 9(12), 1253. https://doi.org/10.3390/horticulturae9121253