Impact of Gibberellic Acid on Water Status, Growth, and Development of Cape Gooseberry in Newly Reclaimed Sandy Lands within Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements of Vegetative Growth and Yield
- The plant height, an indicator of plant growth, was measured from the base of the plant to the tip of the main stem.
- The number of branches, as an indicator of plant branching and canopy development, which can influence fruit production.
- The fresh weight of the entire plant (g/plant), which provides insight into the overall plant size and vitality.
- The total number of fruits, which reflects the fruit production capacity of the plants.
- The fresh weight of fruits, which provides valuable data on fruit size and overall yield.
- The fruit diameter, as a factor in evaluating fruit quality and marketability.
2.2. Total Soluble Solids (TSS)
2.3. Total Chlorophyll Content
2.4. Relative Water Content
2.5. Leaf Temperature
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of GA3 Levels on Plant Growth Parameters, Yield, and Fruit Characteristics
3.2. Effects of GA3 Levels on Total Chlorophyll Content, Relative Water Content, and Leaf Temperature of Cape Gooseberry Leaves
3.3. Effects of GA3 Levels on Plant Generative Development Parameters—Yield, Fruit Characteristics, and Total Soluble Solids of Fruits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, G.; Kaur, A.P.; Singh, B.; Singh, S. Effect of Plant Growth Regulators on Fruit Quality of Cape Gooseberry (Physalis peruviana L.) cv. ‘Aligarh’. Int. J Agric. Sci. 2013, 9, 633–635. Available online: http://researchjournal.co.in/online/IJAS/IJAS%209(2)/9_633-635_A.pdf (accessed on 1 December 2018).
- Singh, M.B.; Kumar, P.; Kundu, M.; Samanta, D.; Sengupta, S. Optimization of stage of gibberellin spray in Cape gooseberry (Physalis peruviana L.) for the improvement of yield and fruit quality under subtropical conditions. Emer Life Sci. Res. 2022, 8, 206–213. [Google Scholar] [CrossRef]
- Kumar, B.M.; Prasad, B.M.; Singh, R.S.; Das, A.K. Effect of Plant Growth Regulators on Fruit Quality in Cape Gooseberry (Physalis peruviana L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1362–1366. Available online: https://ijcmas.com/special-issue-7.php (accessed on 1 December 2018).
- Wanyama, D.O.; Wamocha, L.S.; Ngamau, K.; Ssonkko, R.N. Effect of Gibberrellic Acid on Growth and Fruit Yield of Greenhouse-Grown Cape Gooseberry. Afr. Crop Sci. J. 2006, 14, 319–323. [Google Scholar]
- Kaur, G.; Kaur, A. Plant growth and fruit yield attributes of Cape gooseberry cv. Aligarh is affected by the use of different growth regulators. Agric. Sci. Digest. 2016, 36, 138–141. [Google Scholar] [CrossRef]
- Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Gocher, A.K.; Dwivedi, D.H.; Bairwa, R.K. Effect of Foliar Application of GA3 and Homa Ash on Vegetative Growth and Yield of Cape Gooseberry (Physalis peruviana L.) Grown under Subtropical Conditions. Int. J. Pure Appl. Biosci. 2017, 5, 499–504. [Google Scholar] [CrossRef]
- Shah, S.H.; Islam, S.; Mohammad, F.; Siddiqui, M.H. Gibberellic Acid: A Versatile Regulator of Plant Growth, Development and Stress Responses. J. Plant Growth Regul. 2023, 42, 7352–7373. [Google Scholar] [CrossRef]
- Singh, D.K.; Lal, G. Effect of plant bio-regulators on the growth and yield of tomato (Lycopersicon esculentum Mill.). Progress. Hortic. 2001, 33, 6164. [Google Scholar]
- Shehata, S.M.; Tohamy, W.A.; Shehata, M.A. An attempt to reduce nitrate hazard in spinach plant by using foliar application treatments under two sources of nitrogen fertilization. Egypt. J. Hortic. 2001, 28, 447–462. [Google Scholar]
- Kumar, R.; Singh, S.P.; Tiwari, A.; Maji, S.; Patidar, V.L. Effect of Gibberellic acid (GA3) on Fruit Yield and Quality of Cape Gooseberry (Physalis peruviana L.). IJABR 2017, 7, 724–727. Available online: http://www.scienceandnature.org/IJABR/IJABR_Vol7(4)2017/IJABR_V7(4)17-17.pdf (accessed on 1 December 2018).
- El-Tohamy, W.A.; El-Abagy, H.M.; Badr, M.A.; Ghoname, A.A.; Abou-Hussein, S.D. Improvement of productivity and quality of Cape gooseberry (Physalis peruviana L.) by foliar application of some chemical substances. J. Appl. Sci. Res. 2012, 8, 2366–2370. [Google Scholar]
- Alary, V.; Aboul-Naga, A.; Osman, M.A.; Daoud, I.; Abdelraheem, S.; Salah, E.; Juanes, X.; Bonnet, P. Desert land reclamation programs and family land dynamics in the Western Desert of the Nile Delta (Egypt), 1960–2010. World Dev. 2018, 104, 140–153. [Google Scholar] [CrossRef]
- Jianjun, F.; Linlin, L.; Shuang, W.; Na, Y.; Hong, S.; Zhensheng, S.; Fenghai, L.; Xuemei, Z. Effect of gibberellic acid on photosynthesis and oxidative stress response in maize under weak light conditions. Front. Plant Sci. 2023, 16, 1128780. [Google Scholar] [CrossRef]
- Khan, N.A.; Nazar, R.; Iqbal, N.; Anjum, N.A. Phytohormones and Abiotic Stress Tolerance in Plants; Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Al Mahmud, J.M.; Biswas, P.K.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobot. 2019, 72, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.; Cang, J.; Zeng, Y.; Yu, J.; Liu, L.; Zhang, D.; Wang, J. Effects of Exogenous GA3 on Wheat Cold Tolerance. J. Agric. Sci. Technol. 2015, 17, 921–934. [Google Scholar]
- Nagar, S.; Singh, V.P.; Arora, A.; Dhakar, R.; Singh, N.; Singh, G.P.; Meena, S.; Kumar, S.; Ramakrishnan, R.S. Understanding the Role of Gibberellic Acid and Paclobutrazol in Terminal Heat Stress Tolerance in Wheat. Front. Plant Sci. 2021, 12, 692252. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. Guidelines for computing crop water requirements. In FAO Irrigation and Drainage; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agriculture Research, 2nd ed.; Wiley Interscience Publ. John Willey and Sons: New York, NY, USA, 1984. [Google Scholar]
- Qian, Y.L.; Guang, S.G.; Zhen, F.Q.; Xiao, D.L.; Bing, S.Z.; Chun, J.F. Exogenous GA3 application altered morphology, anatomic and transcriptional regulatory networks of hormones in Eucalyptus grandis. Protoplasma 2018, 255, 1107–1119. [Google Scholar]
- Gupta, R.; Chakrabarty, S.K. Gibberellic acid in plants is still a mystery unresolved. Plant Signal. Behav. 2013, 8, e25504. [Google Scholar] [CrossRef]
- Khangjarakpam, G.; Singh, L.J.; Maitra, S.; Mandal, S. Influence of foliar application of Gibberellic acid on growth, development, yield and biochemical constituents of African marigold cv. ‘Pusa Narangi Gainda’. J. Pharmacogn. Phytochem. 2019, 8, 1581–1585. [Google Scholar]
- Jacob-Wilk, D.; Holland, D.; Goldschmidt, E.E.; Riov, J.; Eyal, Y. Chlorophyll breakdown by chlorophyllase: Isolation and functional expression of the Chlase1 gene from ethylene treated Citrus fruit and its regulation during development. Plant J. 1999, 20, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.; Islam, B.; Renu, N.A.; Hakim, M.A.; Islam, M.R.; Chowdhury, M.K.; Ueda, A.; Saneoka, H.; Raza, M.A.; Fahad, S.; et al. Responses of Water and Pigments Status, Dry Matter Partitioning, Seed Production, and Traits of Yield and Quality to Foliar Application of GA3 in Mungbean (Vigna radiata L.). Front. Agron. 2021, 2, 596850. [Google Scholar] [CrossRef]
- Maggio, A.; Barbieri, G.; Raimondi, G.; De Pascale, S. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J. Plant Growth Regul. 2010, 29, 63–72. [Google Scholar] [CrossRef]
- Liu, Y.; Subhasha, C.; Yan, J.; Song, C.; Zhao, J.; Li, J. Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Environ. Exp. Bot. 2011, 71, 158–165. [Google Scholar] [CrossRef]
- Hirayama, M.; Wada, Y.; Nemoto, H. Estimating drought tolerance based on leaf temperature in upland rice breeding. Breed. Sci. 2006, 56, 47–54. [Google Scholar] [CrossRef]
- Talebi, R. Evaluation of chlorophyll content and canopy temperature as indicators for drought tolerance in durum wheat (Triticum durum Desf.). Aust. J. Basic Appl. Sci. 2011, 5, 1457–1462. [Google Scholar]
- Singh, M.B.; Kumar, P.; Kundu, M.; Sahay, S.; Kumar, V. Split Application of GA3: Effective to improve growth, yield and quality of cape gooseberry (Physalis peruviana L.). Ecol. Environ. Conserv. 2022, 28, 863–868. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.B.; Tanny, J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies—A review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.S.; Blanke, M.M. Securing Horticulture in a Changing Climate—A Mini Review. Horticulturae 2019, 5, 56. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Katsoulas, N.; Kittas, C. Smart greenhouse production practices to manage and mitigate the impact of climate change in protected cultivation. Acta Hortic. 1320, 2021, 189–196. [Google Scholar] [CrossRef]
- El-Tohamy, W.A.; El-Abagy, H.M.; Abou-Hussein, S.D.; Gruda, N. Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions. Gesunde Pflanz. 2009, 61, 123–127. [Google Scholar] [CrossRef]
Treatments | Plant Height (cm) | Number of Branches (per Plant) | Fresh Weight (g/Plant) |
---|---|---|---|
GA (100 ppm) | 83.8 c | 16.1 c | 511.9 d |
GA (150 ppm) | 96.2 b | 16.5 bc | 634.2 c |
GA (200 ppm) | 111.3 a | 22.5 a | 990.2 a |
GA (250 ppm) | 106.1 a | 18.3 b | 663.7 b |
Control | 65.6 d | 14.6 d | 427.3 e |
Treatment | Total Chlorophyll Content (SPAD) | Relative Water Content (%) | Leaf Temperature (°C) |
---|---|---|---|
GA (100 ppm) | 34.08 b | 68.38 c | 34.35 ab |
GA (150 ppm) | 35.05 b | 73.88 ab | 34.28 ab |
GA (200 ppm) | 38.50 a | 74.75 a | 33.90 b |
GA (250 ppm) | 35.75 b | 71.38 b | 34.08 b |
Control | 31.13 c | 67.25 c | 34.88 a |
Treatment | Number of Fruits (per Plant) | Fruit Weight (g/Plant) | Fruit Diameter (cm) | Total Soluble Solids of Fruits |
---|---|---|---|---|
GA (100 ppm) | 52.6 d | 92.1 d | 1.5 c | 11.2 cd |
GA (150 ppm) | 117.5 b | 197.7 b | 1.6 c | 12.2 bc |
GA (200 ppm) | 136.3 a | 215.2 a | 1.9 a | 13.5 a |
GA (250 ppm) | 92.8 c | 170.7 c | 1.7 b | 12.6 ab |
Control | 47.7 e | 71.8 e | 1.3 d | 10.5 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Tohamy, W.A.; Dasgan, H.Y.; Gruda, N.S. Impact of Gibberellic Acid on Water Status, Growth, and Development of Cape Gooseberry in Newly Reclaimed Sandy Lands within Arid Regions. Horticulturae 2023, 9, 1283. https://doi.org/10.3390/horticulturae9121283
El-Tohamy WA, Dasgan HY, Gruda NS. Impact of Gibberellic Acid on Water Status, Growth, and Development of Cape Gooseberry in Newly Reclaimed Sandy Lands within Arid Regions. Horticulturae. 2023; 9(12):1283. https://doi.org/10.3390/horticulturae9121283
Chicago/Turabian StyleEl-Tohamy, Wael A., Hayriye Yildiz Dasgan, and Nazim S. Gruda. 2023. "Impact of Gibberellic Acid on Water Status, Growth, and Development of Cape Gooseberry in Newly Reclaimed Sandy Lands within Arid Regions" Horticulturae 9, no. 12: 1283. https://doi.org/10.3390/horticulturae9121283
APA StyleEl-Tohamy, W. A., Dasgan, H. Y., & Gruda, N. S. (2023). Impact of Gibberellic Acid on Water Status, Growth, and Development of Cape Gooseberry in Newly Reclaimed Sandy Lands within Arid Regions. Horticulturae, 9(12), 1283. https://doi.org/10.3390/horticulturae9121283