Next Article in Journal
Visualizing and Inferring Chromosome Segregation in the Pedigree of an Improved Banana Cultivar (Gold Finger) with Genome Ancestry Mosaic Painting
Previous Article in Journal
Genome-Wide Identification, Evolution, and Expression Analysis of the MAPK Gene Family in Rosaceae Plants
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia

by
Zhanna M. Okhlopkova
1,
Sezai Ercisli
2,
Mayya P. Razgonova
3,4,*,
Natalia S. Ivanova
5,
Elena E. Antonova
1,
Yury A. Egorov
1,
Elena V. Kucharova
1 and
Kirill S. Golokhvast
3,6
1
Department of Biology, North-Eastern Federal University, Belinsky Str., 58, 677000 Yakutsk, Russia
2
Department of Horticulture, Agricultural Faculty, Ataturk University, 25240 Erzurum, Turkey
3
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
4
Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
5
Botanical Garden, North-Eastern Federal University, Belinsky Str., 58, 677000 Yakutsk, Russia
6
Siberian Federal Scientific Centre of Agro-Bio Technologies of the Russian Academy of Sciences, Centralnaya, Presidium, 630501 Krasnoobsk, Russia
*
Author to whom correspondence should be addressed.
Horticulturae 2023, 9(12), 1329; https://doi.org/10.3390/horticulturae9121329
Submission received: 27 August 2023 / Revised: 4 December 2023 / Accepted: 6 December 2023 / Published: 11 December 2023

Abstract

:
Artemisia martjanovii Krasch is a rare representative of the genus Artemisia in Siberia and the Far East. The phytochemical composition of this endangered species is essential for its potential use in medicine. We used tandem mass spectrometry and HPLC-MS/MS methods to describe the metabolome from the stem and leaf extracts of A. martjanovii from Yakutia. The metabolome profile analysis of A. martjanovii grown in the Botanical Garden of the North-Eastern Federal University, Yakutsk, Russia, and the wild A. martjanovii from Khangalassky district, Republic of Sakha (Yakutia) differed significantly both in the polyphenol composition and other compound classes. In total, we identified 104 bioactive constituents from stem and leaf extracts, 56 compounds from the polyphenol group, and 48 from other compound classes. Twenty-seven compounds classified as polyphenol groups, i.e., flavones apigenin, trihydroxy(iso)flavone, salvigenin, cirsiliol, cirsilineol, nevadensin, syringetin, gardenin B, thymonin, and chrysoeriol C-hexoside; flavonols: taxifolin, tetrahydroxy-dimethoxyflavone-hexoside, etc.; and 26 compounds from other classes are being reported for the first time in the genus Artemisia L.

1. Introduction

The genus Artemisia L., or wormwood, is one of the largest genera of the family Asteraceae Dumort (Compositae Giseke). It is distributed throughout the northern hemisphere, in the temperate zone of Eurasia, in North and South Africa, and in North America.
Approximately 180 species of the genus Artemisia have been recorded on the territory of Russia [1]. In the flora of Yakutia, there are thirty-six species of the genus Artemisia, five of which are listed in the “Red Data Book of Yakutia [2]. In the flora of Central Yakutia, there are 22 representatives of the genus Artemisia, of which four species are protected. Seventeen species have passed the introduction test in the conditions of Central Yakutia [3].
One of the rare representatives of the genus Artemisia in Siberia and the Far East is Artemisia martjanovii Krasch, ex Poljakov. It is naturally distributed in the south of the Krasnoyarsk Territory, the north-eastern part of Khakassia, and Central Yakutia. It is listed in the Red Books of the Krasnoyarsk Territory with the status “2” as a vulnerable species, mainly because of its declining and fragmented populations. In Khakassia, however, it is listed with the status “3” as a rare species, and in Yakutia with the status “3d” as an extremely rare subspecies, a relic with a limited geographical area [4].
T. E. Leonova first discovered A. martjanovii on the territory of Yakutia in 1967 on the slopes of the banks of the Lena River near the village of Bulgunnyakhtakh. At present, scattered, limited populations of the species can be found along the left bank of the Lena River near the villages of Bulgunnyakhtakh, Elanka, and Tit-Ary on sandy and rocky slopes. Studies of the ontogenesis and the age spectrum of the coenopopulation of the species show that all age stages are represented near the village of Elanka. It is a perennial shrub with lignified branched stems and annual vegetative and flowering shoots up to 20–50 cm in total height (Figure 1). The plant is covered with thick glandular hairs, the leaves are bipinnately divided, and it has a paniculate inflorescence of spherical baskets with a diameter of 4–5 mm.
Members of the genus Artemisia L. are popularly used for their medicinal properties. Within the wormwood group, almost the entire range of terpene compounds is found in the Asteraceae family. The essential oils of the studied species of wormwood accumulate valuable constituents. Studies have shown the presence of coumarins in the aerial part of A. martjanovii. Additionally, the essential oil of the aerial part of the plant contains monoterpenoids and sesquiterpenoids (pinene, δ-karene, ո-cymol, linalool, borneol, and borneol acetate). These essential oil constituents have been shown to have antibacterial and antifungal properties.
In general, studies of the phytochemical composition of representatives of the genus Artemisia are of great importance for determining their potential use in medicine, in the development of new drugs, and in other pharmaceutical industries. Thus, the aim of this work is to conduct a comparative analysis of the chemical composition of the above-ground phytomass (leaves, stems) of A. martjanovii collected both in controlled grown conditions in the Botanical Garden of the North-Eastern Federal University (NEFU) and in the wild growing conditions in the vicinity of the settlement Elanka, Khangalassky district of Yakutia (N 61°26′75″; E 128°11′11″) during an expedition in June 2022 (Figure 1C).

2. Materials and Methods

2.1. Materials

The object of this study was the aerial parts (leaves, stems) of A. martjanovii collected both under controlled conditions in the Botanical Garden of NEFU and under wild growing conditions near the settlement Elanka, Khangalassky district, Yakutia (N 61°26′75″; E 128°11′11″), Russia. Leaves and stems were collected during the growing season of plants in June 2022. A. martjanovii has been cultivated in the Botanical Garden of NEFU for 19 years. The plant was introduced into cultivation based on a sample collected in 2004 from a rocky slope on the bank of the Lena River near the village of Elanka.

2.2. Chemicals and Reagents

All chemicals used in this study were of analytical grade. High-performance liquid chromatography (HPLC)-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK). Mass-spectrometry (MS)-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared by using a SIEMENS ULTRA clear (SIEMENS Water Technologies, Günzburg, Germany).

2.3. Extraction

The fractional maceration technique was applied to obtain highly concentrated extracts [5]. Approximately 500 g of the aerial parts of A. martjanovii (wild and collected in the Botanical Garden) were randomly selected for maceration. The total amount of the extractant (ethyl alcohol) was divided into three parts, and the parts of the plant were consistently infused with the first, second, and third parts. The solid-to-solvent ratio was 1:15. The infusion of each part of the extractant was completed for 10 days at room temperature.

2.4. Liquid Chromatography

HPLC was performed using a Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV sensor and a C18 silica reverse phase column (4.6 × 150 mm, particle size: 2.7 μm) to perform the separation of multicomponent mixtures. The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0–2 min, 0% B; 2–50 min, 0–100% B; control washing 50–60 min, 100% B. The entire HPLC analysis was performed with a UV–vis detector SPD-20A (Shimadzu, Kyoto, Japan) at a wavelength of 230 nm for identification compounds; the temperature was 40 °C, and the total flow rate was 0.25 mL min−1. The injection volume was 10 μL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

2.5. Mass Spectrometry

Mass spectrometry analysis was performed on an ion trap amaZon SL (BRUKER DALTONIKS, Bremen, Germany) equipped with an ESI source in negative ion mode. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 L/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. An ion trap was used in the scan range m/z 100-1.700 for MS and MS/MS. The chemical constituents were identified by comparing their retention index, mass spectra, and MS fragmentation with an in-house, self-built database (Biotechnology, Bioengineering, and Food Systems Laboratory, Far Eastern Federal University, Russia). The in-house, self-built database are based on data from other spectroscopic techniques, such as nuclear magnetic resonance, ultraviolet spectroscopy, and MS, as well as data from the literature that are continuously updated and revised. The capture rate was one spectrum/s for MS and two spectrum/s for MS/MS. Data acquisition were controlled by Windows software for BRUKER DALTONIKS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented. The structural identification of each compound was carried out on the basis of their accurate mass and MS/MS fragmentation by HPLC–ESI–ion trap–MS/MS.

3. Results and Discussion

We compared the global metabolome profiles of stem and leaf extracts of A. martjanovii growing under controlled conditions in the Botanical Garden of NEFU and under wild growing conditions near the settlement of Elanka, Khangalassky district, Yakutia, Russia.
We identified 104 bioactive compounds from extracts of A. martjanovii (fifty-six chemical constituents from the polyphenol group and forty-eight chemical constituents from other compound classes). The chemical structures of some tentatively identified polyphenols are shown in Figure 2, Figure 3 and Figure 4. All the identified polyphenols and compounds from other compound classes, along with molecular formulas and MS/MS data for A. martjanovii, are summarized in Appendix A (Table A1). Polyphenols are represented by the following compound classes: flavones, flavonols, flavan-3-ols, flavanones, phenolic acids, anthocyanins, lignans, coumarins, stilbenes, and chalcones (Table 1). For the first time in the genus Artemisia L., twenty-seven compounds from the polyphenol group and twenty-six compounds from other compound classes have been tentatively identified. Notably, we found flavones: apigenin, trihydroxy(iso)flavone, salvigenin, cirsiliol, cirsilineol, nevadensin, syringetin, gardenin B, thymonin, chrysoeriol C-hexoside; flavonols: taxifolin, tetrahydroxy-dimethoxyflavone-hexoside, isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); flavan-3-ol (epi)-catechin; flavanones eriodictyol, (S)-eriodictyol-6-C-β-D-glucopyranoside; stilbene resveratrol; coumarins umbelliferone, fraxetin, tomentin; lignan podophyllotoxin, etc. Constituents of other compound classes include amino acids, carboxylic acids, saturated fatty acids, naphthoquinones, sesquiterpenoids, omega-3 fatty acids, oxylipins, etc.
Below is the distribution of the bioactive compounds recorded in our study in A. martjanovii samples from the wild and the Botanical Garden of NEFU.
Figure 2, Figure 3 and Figure 4 show examples of the decoding spectra (Collision-Induced Dissociation (CID) spectrum) of the ion chromatogram obtained using tandem mass spectrometry. The CID-spectrum in positive ion modes of artemisinin C from extracts of leaves of wild A. martjanovii is shown in Figure 2.
The [M + H]+ ion produced five fragment ions at m/z 231.23, at m/z 213.19, at m/z 185.21, at m/z 149.19, and at m/z 121.28 (Figure 2). The fragment ion with m/z 231.23 yields five daughter ions at m/z 213.20, m/z 185.21, m/z 175.25, m/z 149.20, and m/z 123.18. The fragment ion with m/z 213.20 yields four daughter ions at m/z 198.27, m/z 171.20, m/z 157.17, and m/z 121.24. It was identified in the bibliography in extracts of Artemisia annua [6]. The CID-spectrum in positive ion modes of L-tryptophan from extracts of stems of wild A. martjanovii is shown in Figure 3.
The [M + H]+ ion produced one fragment ion at m/z 188.17 (Figure 3). The fragment ion with m/z 188.17 yields one daughter ion at m/z 146.19. The fragment ion with m/z 146.19 yields two daughter ions at m/z 144.19 and m/z 118.23. It has been identified in the bibliography in extracts from Huolisu Oral Liquid [7], Rosa acicularis [8], Camellia kucha [9], Euphorbia hirta [10], Hylocereus polyrhizus [11], and rapeseed flower petals [12]. The CID-spectrum in positive ion modes of atractylenolide II from extracts of A. martjanovii from the Botanical Garden of NEFU are shown in Figure 4. The [M + H]+ ion produced three fragment ions at m/z 187.28, m/z 145.26, and m/z 119.27 (Figure 4). The fragment ion with m/z 187.28 yields three daughter ions at m/z 145.24 and m/z 131.20. The fragment ion with m/z 145.24 yields one daughter ion at m/z 130.39. It has been identified in the bibliography in extracts of Codonopsis Radix, Atractylodes macrocephalae rhizoma [13], and the Chinese herbal formula Jian-Pi-Yi-Shen pill [14].
A Venn diagram showing the similarities and differences in the presence of chemical constituents in wild A. martjanovii and introduced A. martjanovii from the Botanical Garden of NEFU is shown in Figure 5.
A Venn diagram showing the similarities and differences in the presence of chemical constituents in wild and introduced A. martjanovii (stems and leaf extracts) from the Botanical Garden of NEFU is shown in Figure 6.
Table 2 and Table 3 below show the distribution of the bioactive compounds in the stem and leaf extracts of wild A. martjanovii plant samples collected from near the settlement Elanka, Khangalassky district of Yakutia (N 61°26′75″; E 128°11′11″) and from the Botanical Garden of NEFU.
From Table 3, it can be seen that a certain number of chemical compounds were commonly detected in the stem and leaf extracts of both wild and Botanical Garden-grown A. martjanovii. These are the following constituents: undecanedioic acid; deoxyartemisinin I; gardenin B; salvigenin; caffeic acid; artemisin; dihydroxy-trimethoxyflavone; casticin; hydroxy myristic acid; pseudosantonin; dihydroxy-dimethoxyflavone; centaureidin; eupatilin; artemetin; myristoleic acid; atractylenolide I; artemisinic acid; atractylenolide II; artemisinin C; cirsimaritin.
In addition, the following chemical compounds have a fairly significant repeatability in the extracts from A. martjanovii (Botanical Garden) and A. martjanovii (wild) stems: dihydrosantamarin; umbelliferone; trihydroxy(iso)flavone; petunidin; syringetin; vebonol; L-valine; dihydroxy tetramethoxyflavone hexoside; dihydroxy-trimethoxyflavone-O-hexoside; resveratrol; sespendole; linolenic acid; (Epi)-catechin; caffeic acid derivative; hydroxy dodecanoic acid; hydroxydodecenoic acid; chrysartemin A; trihydroxyoctadecadienoic acid; in varieties from A. martjanovii (Botanical Garden) and A. martjanovii (wild), leaves: chrysoeriol C-hexoside; stearidonic acid methyl ester; 4-O-dicaffeoylquinic acid; 3-hydroxy-6,7,4′-trimethoxyflavone; chrysoeriol 6-O-hexoside; 3′-di-O-methyl ellagic acid; artemannuin B; syringic acid; costunolide; jaceosidin; penduletin; trihydroxymethoxyflavone.
Thus, the analyzed samples of ethanol extracts of the above-ground phytomass of A. martjanovii, growing wild and cultivated in the Botanical Garden for 19 years, showed the presence of 50 common compounds of polyphenolic nature and other groups and also contained 27 different compounds. In extracts of plants growing in the wild, a larger number of compounds from other groups were identified (38) compared to plants cultivated under artificial conditions (34). However, a larger number of polyphenolic compounds (43) were identified in cultivated plants than in wild plants (39).
In this study, the qualitative variability of compounds in the phytochemical profile of extracts from above-ground phytomass of wild and cultivated A. martjanovii may be associated with differences in geographical location (rocky slope of the riverbank and flat steppe, respectively), soil type, agronomic practices (in the case of the plants grown in the Botanical Garden of NEFU), as well as natural and anthropogenic disturbances in wild nature and artificial cultivation.
Plant secondary metabolites are formed under the influence of many environmental factors and plant growth conditions. The diversity of chemicals in plants indicates their adaptation strategy to changing conditions, and it is specific to each individual species and may vary depending on intraspecific differentiation (population differences). In this regard, A. martjanovii samples collected from two different habitats showed intraspecific variability in the qualitative composition of polyphenolic compounds and other groups of compounds identified using tandem mass spectrometry and HPLC-MS/MS methods.
The presence of flavonoids (flavones, flavonols, and flavanones), caffeic acid, chlorogenic acid, and dicaffeoylquinic acid in wild and cultivated A. martjanovii shows that this rare plant can be a potential source of antioxidant substances. This can be achieved through introductory cultivation combined with qualitative and quantitative profiling (control) of the constancy of the phytochemical composition. This will reduce the burden on the dwindling wild populations of this rare plant species. The results that we detected stilbene (resveratrol), coumarin, dihydrochalcone, lignan, amino acids, polysaccharides, an abundance of sesquiterpenoids (including santonin, artemisin, etc.), sesquiterpenoid lactones (including artemisinin C and artemannuin B), omega-3 fatty acids, oxylipins, naphthoquinones, and alkaloids (sespendol)—make A. martjanovii a potential source of these biologically active substances. In the future, however, it will be worthwhile to investigate the quantitative composition of the identified secondary metabolites.

4. Conclusions

In this study, the phytochemical profile of a rare plant species, A. martjanovii Krasch ex Poljakov, growing in Central Yakutia, was investigated for the first time. For this, we used HPLC and tandem mass spectrometry methods.
In total, 104 different individual compounds were identified in extracts of the above-ground phytomass of A. martjanovii: various groups of polyphenols, including a whole complex of flavonoids, as well as compounds from other compound classes such as amino acids, polysaccharides, sesquiterpenoids, sesquiterpenoid lactones, fatty acids, naphthoquinones, oxylipins, etc.
We conclude that under conditions of natural growth and introduction, A. martjanovii accumulates artemisinin C both in leaves and stems. However, chlorogenic acid was only found in the leaf and stem extracts of wild plants. Twenty-seven chemical constituents from the polyphenol group (flavones apigenin, trihydroxy(iso)flavone, salvigenin, cirsiliol, cirsilineol, nevadensin, syringetin, gardenin B, thymonin, chrysoeriol C-hexoside; flavonols: taxifolin, tetrahydroxy-dimethoxyflavone-hexoside, etc.) and 26 chemical constituents from other compound classes were identified in genus Artemisia L. for the first time.
In general, A. martjanovii from the Central Yakut population is of interest as a potential source of antioxidants and other profiles of pharmacological activity of substances. The declining natural populations of this rare plant species make it urgent to develop in vitro micropropagation technology based on samples of wild plants with subsequent reintroduction in plantation conditions.

Author Contributions

Conceptualization, Z.M.O., N.S.I. and M.P.R.; methodology, Z.M.O. and E.E.A.; software, M.P.R.; validation, M.P.R. and K.S.G.; formal analysis Y.A.E. and E.V.K.; investigation, Z.M.O. and M.P.R.; resources, Z.M.O. and M.P.R.; data curation, Z.M.O., E.E.A., Y.A.E., N.S.I. and E.V.K.; writing—original draft preparation—Z.M.O. and M.P.R.; writing—review and editing, M.P.R. and K.S.G.; visualization, M.P.R.; supervision, S.E.; project administration, K.S.G. and S.E. All authors have read and agreed to the published version of the manuscript.

Funding

This study was carried out at the North-Eastern Federal University at the expense of Russian Science Foundation Grant No. 22-14-20031, https://rscf.ru/en/project/22-14-20031/ (accessed on 4 December 2023), and the Yakut Science Foundation Grant based on Agreement No. 38.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Compounds were identified from the ethanol extracts of A. martjanovii in positive and negative ionization modes by HPLC-ion trap-MS/MS.
Table A1. Compounds were identified from the ethanol extracts of A. martjanovii in positive and negative ionization modes by HPLC-ion trap-MS/MS.
Class of CompoundsIdentificationFormulaCalculated MassRetention Time (min.)Observed Mass [M-H]−Observed Mass [M+H]+MS/MS Stage 1 FragmentationMS/MS Stage 2 FragmentationMS/MS Stage 3 FragmentationReferences
1FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One] *C15H10O5270.236949.0 271225179 Lonicera henryi [15]; Ribes meyeri [16]; Lonicera japonica [17]; Mexican lupine species [18]; Exocarpium Citri Grandis [19]; Stevia rebaudiana [20]; Propolis [21]; Jatropha [22]
2FlavoneTrihydroxy(iso)flavone *C15H10O5270.236913.0 271215173 Propolis [21]
3FlavoneHispidulinC16H12O6300.262945.8 301282254 Artemisia argyi [23]; Cirsium japonicum [24]; Mentha [25]
4FlavoneTrihydroxymethoxyflavoneC16H12O6300.262930.0 301286; 226; 136258; 132189; 162; 135Artemisia absinthium [6]
5FlavoneCirsimaritin [Scrophulein; 4′,5-Dihydroxy-6,7-Dimethoxyflavone]C17H14O6314.289536.0 315300285; 229257; 229Artemisia annua [6]; Ocimum [26]; Rosmarinus officinalis [27]
6FlavoneSalvigenin *C18H16O6328.316052.5 329296268240; 133Dracocephalum palmatum [28]; Ocimum [26]
7FlavoneJaceosidin [5,7,4′-trihydroxy-6′,5′-dimethoxyflavone]C17H14O7330.288942.3329 314; 229299271Artemisia argyi [23]; Mentha [25]
8FlavoneDihydroxy-dimethoxyflavoneC17H14O7330.288926.5329 313299270Artemisia absinthium [6]
9FlavoneCirsiliol *C17H14O7330.288935.7 331316298270Ocimum [26]; Juglans mandshurica [29]
10Flavone3-Hydroxy-6,7,4′-trimethoxyflavoneC18H16O7344.31547.8343 328313298; 270Artemisia annua [30]
11FlavoneCirsilineol [Eupatrin; Fastigenin; Cirsileneol] *C18H16O7344.31549.1 345312284; 269269Ocimum [26]
12FlavoneNevadensin *C18H16O7344.315441.0 345330312284; 135Mentha [25]; Ocimum [26]
13FlavonePenduletinC18H16O7344.315440.4343 328313298Artemisia annua [6]
14FlavoneEupatilinC18H16O7344.315435.8 345312284269Artemisia argyi [23]
15FlavoneSyringetin *C17H14O8346.288324.3 347332317289C. edulis [31]; Grape [32]
16FlavoneTetrahydroxy-dimethoxyflavoneC17H14O8346.288329.0345 330315287Artemisia absinthium [6]
17FlavoneGardenin B [Demethyltangeretin] *C19H18O7358.34244.4 359326; 344; 295298; 269283; 269; 227Mentha [25]; Ocimum [26]; Actinocarya tibetica [33];
18Flavone3,5 -Dihydroxy -6,7,4′-trimethoxyflavoneC18H16O8360.314835.8358 343328300Artemisia annua [30]
19FlavoneCentaureidin [5,7,3′-Trihydroxy-3,6,4′-trimethoxyflavone]C18H16O8360.314827.5 361328300285Artemisia argyi [23]
20FlavoneDihydroxy-trimethoxyflavoneC18H16O8360.314830.9 361346; 142328; 217300Artemisia absinthium [6]
21FlavoneThymonin [5,6,4′-trihydroxy-7,8,3′-tri-methoxyflavone] *C18H16O8360.314832.8 361345; 187328; 217300; 164Mentha [25,34]
22Flavone3,5-Dihydroxy-6,7,3′,4′-tetramethoxyflavoneC19H18O8374.341437.5373 358343328; 300Artemisia annua [30]
23FlavoneCasticin [Vitexicarpin; Dihydroxy-tetramethoxyflavone]C19H18O8374.341436.5 375342313; 151299; 151Artemisia annua [6,35]; Artemisia argyi [23]
24FlavoneChrysoeriol C-hexoside *C22H22O11462.403642.2 463445; 233427; 229399; 197Triticum aestivum L. [36,37]
25FlavoneChrysoeriol 6-O-hexoside *C22H22O11462.403649.0 463445; 231427; 287; 229409; 229Triticum aestivum L. [38]
26FlavoneDihydroxy-trimethoxyflavone-O-hexosideC23H22O13506.41329.4 507345312284Citrus species [39]
27FlavoneDihydroxy tetramethoxyflavone hexoside *C25H28O13536.482027.3 537375342314; 151F. pottsii [31]
28FlavoneAcacetin C-glucoside methylmalonylated *C26H26O13546.475848.1 547529; 327; 231312; 160284Mexican lupine species [18]
29FlavonolDihydroquercetin (Taxifolin; Taxifoliol) *C15H12O7304.25168.5 305286; 234; 175; 147240; 199; 148157Juglans mandshurica [29]; Glycine soja [40]; millet grains [41]
30FlavonolQuercetin 3-O-glucoside [Isoquercetin; Isoquercitrin; Hirsutrin]C21H20O12464.376350.3 465447; 231187145Lonicera henryi [15]; Ribes meyeri [16]; Lonicera japonica [17]; Mexican lupine species [18]; Juglans mandshurica [29]; Artemisia annua [30]; Vaccinium myrtillus [42]; Embelia [43]
31FlavonolIsorhamnetin 3-O-glucosideC22H22O12478.402923.4 479317302; 165274; 153Artemisia annua [30]; Actinidia valvata [44]; Actinidia polygama [45]
32FlavonolMearnsetin-glucosideC22H22O13494.402331.3 495477; 233459; 244431; 186Artemisia annua [30]
33Dihydroxy-flavonolTetrahydroxy-dimethoxyflavone-hexoside [Syringetin-hexoside; dimethyl-myricetin-hexoside] *C23H24O13508.428924.3 509347332317Mentha [46]; Pomegranate [47]; Vaccinium macrocarpon [48]
34FlavonolIsorhamnetin 3-O-(6″-O-rhamnosyl-hexoside) *C28H32O16624.544124.2623 315; 300300; 255271; 255Lonicera henryi [15]; Bee-pollen [49]
35Flavan-3-ol(Epi)-catechin *C15H14O6290.26817.4 291272; 216240; 216; 184211; 184; 158Glycine soja [40]; millet grains [41]; Vaccinium myrtillus [42]; Vaccinium macrocarpon [50]
36FlavanoneEriodictyol [3′,4′,5,7-tetrahydroxy-flavanone]C15H12O6288.252248.5 289271; 191201160Artemisia absinthium [6]; Propolis [21]; Jatropha [22]; Rosmarinus officinalis [27]; Juglans mandshurica [29]; Embelia [43]
37Flavanone(S)-eriodictyol-6-C-beta-D-glucopyranoside *C21H22O11450.392826.3 451433; 321247; 167231Aspalathus linearis [51]
38AnthocyaninPetunidin *C16H13O7+317.270223.4 317302274; 153246; 153A. cordifolia; C. edulis [31]; Vines [52]
39Hydroxybenzoic acidGallic acidC7H6O5170.119515.7 171152; 138135 Huolisu Oral Liquid [7]; Ribes meyeri [16]; Juglans mandshurica [29]; Vaccinium macrocarpon [50]; Punica granatum [53]; Actinidia [54]
40Hydroxycinnamic acidCaffeic acid [(2E)-3-(3,4-Dihydroxyphenyl)acrylic acid] C9H8O4180.15748.7 181163; 135145; 121117Artemisia argyi [23]; Juglans mandshurica [29]; Soybean leaves [55]
41Methylbenzoic acidMethylgallic acid [Methyl gallate] *C8H8O5184.146139.5 185143116 Grape [32]; Rhus coriaria [56]; Terminalia arjuna [57]; Phyllanthus [58]
42Trans-cinnamic acidFerulic acidC10H10O4194.18426.2193 176132 Lonicera japonica [17]; Juglans mandshurica [29]; Soybean leaves [55]; Soybean [59]; Ribes nigrum [60];
43Hydroxybenzoic acidSyringic acid [Benzoic acid; Cedar acid] *C9H10O5198.172749.8 199197; 171; 157; 143142; 129 Rosa acicularis [8]; Juglans mandshurica [29]; A. cordifolia; G. linguiforme; F. glaucescens [31]; millet grains [41]; Vaccinium macrocarpon [50]; Actinidia [54]
44Cinnamic acid derivativecis-3-Caffeoylquinic acidC16H18O9354.30876.4353 191 Camellia kucha [9]; Lonicera henryi [15]; Crataegus monogyna [61]
45Cinnamic acid derivativeChlorogenic acid [3-O-CaffeoylqChlorogenic acid [3-O-Caffeoylquinic acid]uinic acid]C16H18O9354.308716.5353 191; 321 Artemisia annua [6]; Lonicera henryi [15]; Lonicera japonica [17]; Artemisia argyi [23]; Juglans mandshurica [29]; Vaccinium myrtillus [42]; Vaccinium macrocarpon [48,50]; Rhus coriaria [56]
46Cinnamic acid derivativeNeochlorogenic acid [5-O-Caffeoylquinic acid]C16H18O9354.30877.3353 191; 321127 Artemisia annua [6]; Lonicera henryi [15]; Lonicera japonica [17]; Artemisia argyi [23]; Dracocephalum palmatum [28]; Vaccinium myrtillus [42]
47 Caffeic acid derivativeC16H18O9Na377.29856.4377 341179 Embelia [43]; Bougainvillea [62]
48Phenolic acid3,4-O-dicaffeoylquinic acid [Isochlorogenic acid B]C25H24O12516.45097.2515 353173 Lonicera henryi [15]; Lonicera japonica [17]; Stevia rebaudiana [20]; Artemisia argyi [23]; Artemisia annua [30]
49Phenolic acidTetramethylellagic acid hexoseC26H34O11522.541627.1 523361346328; 217Strawberry [63]
50Phenolic acid3,4,5-Tri-O-caffeoylquinic acidC34H30O15678.593027.8677 515; 353353; 173173Lonicera henryi [15]; Artemisia annua [30]
51StilbeneResveratrol [trans-Resveratrol; 3,4′,5-Trihydroxystilbene; Stilbentriol] *C14H12O3228.24337.5 229172158; 144 Embelia [43]; Grape [32]; A. cordifolia; F. glaucescens; F. herrerae [31]; Radix polygoni multiflori [64]
52HydroxycoumarinUmbelliferone [Skimmetin; Hydragin] *C9H6O3162.14219.2 163145; 121117 F. glaucescens [31]; Actinidia [54]; Sanguisorba officinalis [65]; Zostera marina [66]
53CoumarinFraxetin *C10H8O5208.167536.0 209191117 Jatropha [22]; Embelia [43]; Actinidia [54]
54Natural plant coumarinTomentin *C11H10O5222.194151.1 223208178165Jatropha [22]
55DihydrochalconePhloretin [Dihydronaringenin; Phloretol] *C15H14O5274.268731.3 275257; 147239; 187197; 117Rosa rugosa [8]; G. linguiforme [31]; Punica granatum [53]; Malus toringoides [67]
56LignanPodophyllotoxin [Podofilox; Condylox; Condyline; Podophyllinic acid lactone] *C22H22O8414.405349.0 415397; 195369; 167351; 179Lignans [68]
OTHERS
57Amino acidL-Valine [(S)-2-Amino-Methylbutanoic acid]C5H11NO2117.14637.0 118116 Lonicera japonica [17]; Soybean leaves [55]; Vigna unguiculata [69]
58 L-Ascorbic acid [Vitamin C]C6H8O6176.12417.1 177160; 126158; 141; 132 Potato leaves [70]; Strawberry, Lemon, Papaya [71]; Phoenix dactylifera [72]
59Aromatic amino acidTyrosine [(2S)-2-Amino-3-(4-Hydroxyphnyl)Propanoic acid] *C9H11NO3181.18858.1 182165; 136147; 123119Euphorbia hirta [10]; Hylocereus polyrhizus [11]; Soybean leaves [55]; Vigna unguiculata [69]
60NaphthoquinonePlumbagin *C11H8O3188.179416.8 189187; 133 Juglans mandshurica [29]
61Propenyl phenol derivativeMethoxyeugenol *C11H14O3194.227121.0 195177133131Ocimum [26]
62Carboxylic acid7-Methoxybenzo[d][1,3] dioxole-5-carboxylic acidC9H8O5196.156839.5 197179151123Actinidia [54]
63BenzofuranIsololiolide *C11H16O3196.242939.6 197179151; 149123Jatropha gossypifolia [22]; Olive leaves [73]
64Essential amino acidL-Tryptophan [Tryptophan; (S)-Tryptophan] *C11H12N2O2204.225216.9 205188146144; 118Huolisu Oral Liquid [7]; Rosa acicularis [8]; Camellia kucha [9]; Euphorbia hirta [10]; Hylocereus polyrhizus [11]; Rapeseed petals [12]
65PolysaccharidesGlucaric acid [ D-Glucaric acid; Saccharic acid; D-Glutarate] *C6H10O8210.13888.7 211193; 147147118Soybean [59]; Cherimoya, Papaya [71]
66Saturated fatty acidHydroxydodecenoic acid *C12H22O3214.301339.0 215197195 Jatropha gossypifolia [22]
67Alpha, omega dicarboxylic acidUndecanedioic acid *C11H20O4216.274150.3 217199; 189; 159157; 143143Jatropha [22]; G. linguiforme [31]
68Carboxylic acidMyristoleic acid [Cis-9-Tetradecanoic acid] *C14H26O2226.355020.1 227209; 165121 F. glaucescens [31]; Maackia amurensis [74]
69SesquiterpenoidAtractylenolide I *C15H18O2230.302227.7 231185157142Atractylodes macrocephalae rhizoma [13]; Chinese herbal formula Jian-Pi-Yi-Shen pill [14]
70SesquiterpenoidAtractylenolide II [Asterolide; 2-Atractylenolide] *C15H20O2232.318110.2 233215; 205; 187; 145145; 131 Codonopsis Radix; Atractylodes macrocephalae rhizoma [13]; Chinese herbal formula Jian-Pi-Yi-Shen pill [14]
71GermacranolideCostunolide *C15H20O2232.318141.4 233185143128[75]
72Monocarboxylic acidArtemisinic acid [Artemisic acid; arteannuic acid]C15H22O2234.334028.7 235216187145Artemisia annua [30]
73Hydroxytetradecanoic acidHydroxy myristic acid [2S-Hydroxytetradecanoic acid; Alpha-Hydroxy Myristic acid] *C14H28O3244.370338.6 245228172 F. pottsii [31]
74Medium-chain fatty acidHydroxy dodecanoic acid *C12H22O5246.300126.0 247229; 201187159; 145F. glaucescens [31]
75SesquiterpenoidSantonin [Alpha-Santonin; Semenen; Santoninic anhydride]C15H18O3246.301644.1 247228200 Artemisia absinthium [6]
76Sesquiterpene lactoneArtemisinin CC15H20O3248.317520.6 249231213171Artemisia annua [6]
77Sesquiterpene lactoneArtemannuin BC15H20O3248.317525.3247 203201 Artemisia annua [6,30]
78SesquiterpenoidDihydroarteannuin BC15H22O3250.333427.5 251232215187Artemisia absinthium [6]
79SesquiterpenoidDihydrosantamarinC15H22O3250.333439.3249 205203; 121121Artemisia absinthium [6]
80SesquiterpenoidArtemisinC15H18O4262.301034.3 263245227 Pubchem
81SesquiterpenoidPseudosantoninC15H20O4264.316926.3 265247229201Artemisia absinthium [6]
82SesquiterpenoidDeoxyartemisinin IC15H22O4266.332832.1 267249229213Artemisia absinthium [6]
83Omega-3-fatty acidStearidonic acid [6,9,12,15-Octadecatetraenoic acid; Moroctic acid] *C18H28O2276.413718.5 277217189; 171161; 134Jatropha [22]; G. linguiforme [31]; Rhus coriaria [56]; Salviae Miltiorrhizae [76]
84SesquiterpenoidChrysartemin AC15H18O5278.300442.7 279163145143Artemisia absinthium [6]
85Omega-3-fatty acidLinolenic acid (Alpha-Linolenic acid; Linolenate) *C18H30O2278.429617.1 279261234; 111123Jatropha [22]; Maackia amurensis [74]; Salviae Miltiorrhizae [76]
86Gamma-lactoneArtabsinolide AC15H20O5280.31639.1279 247; 235203 Artemisia absinthium [6]
87SesquiterpenoidDihydroartemisininC15H24O5284.34817.9 285227199130Artemisia annua [30]
88Octadecadienoic acidLinoleic acid (Linolic acid; Telfairic acid) *C18H32O2280.445526.5 281245228183Soybean [59]; Soybean leaves [55]; Jatropha [22];
89Omega-3-fatty acidStearidonic acid methyl esterC19H30O2290.440351.6 291259; 149241; 161173Jatropha [22]
90Diterpenoid naphthoquinoneTanshinone IIA [Tanshinone II; Tanshinone B] *C19H18O3294.344449.5 295277; 241161161; 133Huolisu Oral Liquid [7]; Chinese herbal formula Jian-Pi-Yi-Shen pill [13];
91Polyunsaturated fatty acidAlpha-Kamlolenic Acid [18-Hydroxy-9Z,11E,13E-Octadecatrienoic Acid] *C18H30O3294.429045.3293 275; 171231 G. linguiforme; F. glaucescens; F. pottsii [31]
92Essential faty acidHydroxy octadecadienoic acidC18H32O3296.444947.5295 277; 171275 Artemisia absinthium [6]; Jatropha [22]; A. cordifolia; F. glaucescens; F. herrerae [31]
93OxylipinTrihydroxyoctadecadienoic acidC18H32O5328.443732.4327 229210209Artemisia absinthium [6]; Potato leaves [70]
94Naphthoquinone3,3′-di-O-methyl ellagic acid *C16H10O8330.245830.9 331316298270Juglans mandshurica [29]; Terminalia arjuna [57]
95Oxylipin13- Trihydroxy-Octadecenoic acid [THODE] *C18H34O5330.459633.0329 229209 Jatropha [22]; Phoenix dactylifera [72]; Bituminaria [77]; Broccoli [78]
96NaphthoquinoneTri-O-methylellagic acid *C17H12O8344.272429.6343 328; 300; 247313; 285298; 270Terminalia arjuna [57]
97Sesquiterpene lactoneArtemetin [Artemisetin; Erianthin]C20H20O8388.368041.4 389356; 325313285; 267Pubchem
98Naphthoquinone1,4,8-Trihydroxy-3-tetralone-methyl formate-4-O-beta-D-glucopyranosideC18H20O10396.34548.7 397379; 233217159Juglans mandshurica [29]
99Anabolic steroidVebonol *C30H44O3452.668625.6 453435; 210226; 336210Hylosereus polyrhizus [11]; Rhus coriaria [56]
100Sesquiterpene lactoneAbsinthinC30H40O6496.635030.8 497476; 246228; 172172Artemisia absinthium [6]
101Triterpe3-O-acetyl-betulinic acid *C32H50O4498.737041.4 499480; 233462; 231417; 198Juglans mandshurica [29]
102Sesquiterpene lactoneAbsinthin derivativeC30H38O7510.618530.3 511492; 246474; 246228; 172Artemisia absinthium [6]
103Indole sesquiterpene alkaloidSespendole *C33H45NO4519.714747.3 520184125 Hylosereus polyrhizus [11]; Rhus coriaria [56]
104Product of chlorophyll degradationPheophytin AC55H74N4O5871.199952.4 872593533461Physalis peruviana [79]; Capsicum [80]
* Chemical constituents identified for the first time in genus Artemisia L.

References

  1. Polyakov, P.P. The genus Artemisia L.—Artemisia. Flora USSR 1961, 26, 425–631. (In Russian) [Google Scholar]
  2. Red Book of the Republic of Sakha (Yakutia). Vol. 1: Rare and endangered species of plants and fungi. In Red Book of the Republic of Sakha (Yakutia); Danilova, N.S., Ed.; Publishing House “Reart”: Moscow, Russia, 2017; 412p. (In Russian) [Google Scholar]
  3. Danilova, N.S.; Borisova, S.Z.; Ivanova, N.S. Brief review of the polynyas of Central Yakutia. NEFU Bull. 2022, 4, 13–23. (In Russian) [Google Scholar]
  4. Red Book of the Krasnoyarsk Territory. Vol. 2: Rare and endangered species of wild plants and fungi. In Red Book of the Krasnoyarsk Territory; Stepanov, N.V., Andreeva, E.B., Antipova, E.M., Eds.; Ministry of Natural Resources and Ecology of the Krasnoyarsk Territory: Krasnoyarsk, Russia, 2012; Volume 2, 572p. (In Russian) [Google Scholar]
  5. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
  6. Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Wozniak, K.; Luca, S.V. Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species. Antioxidants 2022, 11, 1017. [Google Scholar] [CrossRef]
  7. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharma. 2021, 12, 710976. [Google Scholar] [CrossRef] [PubMed]
  8. Razgonova, M.P.; Bazhenova, B.A.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Tree Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
  9. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef]
  10. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. S. Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
  11. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef]
  12. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agricult. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
  13. Huang, Y.; Yao, P.; Leung, K.W.; Wang, H.; Kong, X.P.; Wang, L.; Dong, T.T.X.; Chen, Y.; Tsim, K.W.K. The Yin-Yang Property of Chinese Medicinal Herbs Relates to Chemical Composition but Not Anti-Oxidative Activity: An Illustration Using Spleen-Meridian Herbs. Front. Pharmacol. 2018, 9, 1304. [Google Scholar] [CrossRef]
  14. Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef]
  15. Jaiswal, R.; Muller, H.; Muller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
  16. Zhao, Y.; Lu, H.; Wang, Q.; Liu, H.; Shen, H.; Xu, W.; Ge, J.; He, D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J. Sep. Sci. 2021, 44, 1404–1420. [Google Scholar] [CrossRef]
  17. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
  18. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochem 2013, 92, 71–86. [Google Scholar] [CrossRef] [PubMed]
  19. Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef]
  20. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem. Analys. 2021, 33, 249–261. [Google Scholar] [CrossRef] [PubMed]
  21. Belmehdi, O.; Bouyahya, A.; József, J.E.K.Ő.; Cziáky, Z.; Zengin, G.; Sotkó, G.; El Baaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  22. Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L.; et al. Chemical composition and biological properties of two Jatropha species: Different parts and different extraction methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef]
  23. Chang, Y.; Zhang, D.; Yang, G.; Zheng, Y.; Guo, L. Screening of Anti-Lipase Components of Artemisia argyi Leaves Based on Spectrum-Effect Relationships and HPLC-MS/MS. Front. Pharmacol. 2021, 12, 675396. [Google Scholar] [CrossRef] [PubMed]
  24. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC–MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. [Google Scholar] [CrossRef]
  25. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef]
  26. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  27. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef] [PubMed]
  28. Olennikov, D.N.; Chirikova, N.K.; Kim, E.; Kim, S.W.; Zulfugarov, I.S. New glycosides of eriodictyol from Dracocephalum palmatum. Chem. Nat. Compd. 2018, 54, 860–863. [Google Scholar] [CrossRef]
  29. Huo, J.-H.; Du, X.-W.; Sun, G.-D.; Dong, W.-T.; Wang, W.-M. Identification and characterization of major constituents in Juglans mandshurica using ultra performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-ESI-Q-TOF/MS). Chin. J. Nat. Medic. 2018, 16, 0525–0545. [Google Scholar] [CrossRef] [PubMed]
  30. Han, J.; Ye, M.; Qiao, X.; Xu, M.; Wang, B.; Guo, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. Pharm. Biomed. Analysis. 2008, 47, 516–525. [Google Scholar] [CrossRef]
  31. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS –Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
  32. Flamini, R. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols. Hindawi ISRN Spectrosc. 2013, 2013, 813563. [Google Scholar] [CrossRef]
  33. Singh, B.; Jain, S.K.; Bharate, S.B.; Kushwaha, M.; Vishwakarma, R.A. Simultaneous Quantification of Five Bioactive Flavonoids in High Altitude Plant Actinocarya tibetica by LC-ESI-MS/MS. J. AOAC Int. 2015, 98, 907–912. [Google Scholar] [CrossRef]
  34. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The phenolic fraction of Mentha Haplocalyx and its constituent linarin ameliorate inflammatory response through inactivation of NF-κB and MAPKs in lipopolysaccharide-induced RAW264. 7 cells. Molecules 2017, 22, 811. [Google Scholar] [CrossRef] [PubMed]
  35. Zhu, X.X.; Yang, L.; Li, Y.J.; Zhang, D.; Chen, Y.; Kostecka, P.; Kmonickova, E.; Zidek, Z. Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis. Pharmacol. Rep. 2013, 65, 410–420. [Google Scholar] [CrossRef] [PubMed]
  36. Stallmann, J.; Schweiger, R.; Pons, C.A.; Müller, C. Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. Sci. Rep. 2020, 10, 10112. [Google Scholar] [CrossRef] [PubMed]
  37. Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef] [PubMed]
  38. Ioset, J.-R.; Urbaniak, B.; Ndjoko-Ioset, K.; Wirth, J.; Martin, F.; Gruissem, W.; Hostettmann, K.; Sautter, C. Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol. Biol. 2007, 65, 645–654. [Google Scholar] [CrossRef]
  39. Wang, S.; Yang, C.; Tu, H.; Zhou, J.; Liu, X.; Cheng, Y.; Luo, J.; Deng, X.; Zhang, H.; Xu, J. Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Sci. Rep. 2017, 7, 10549. [Google Scholar] [CrossRef]
  40. Li, X.; Li, S.; Wang, J.; Chen, G.; Tao, X.; Xu, S. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds. Antioxidants 2023, 12, 912. [Google Scholar] [CrossRef]
  41. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
  42. Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.; Yang, B. Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef]
  43. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  44. Du, Q.-H.; Zhang, Q.-Y.; Han, T.; Jiang, Y.-P.; Peng, C.; Xin, H.-L. Dynamic changes of flavonoids in Actinidia valvata leaves at different growing stages measured by HPLC-MS/MS. Chin. J. Nat. Medic. 2016, 14, 0066–0072. [Google Scholar]
  45. Syed, A.S.; Jeon, J.-S.; Kim, C.Y. A new diacetylated flavonol triglycoside from the aerial parts of Actinidia polygama. Nat. Prod. Res. 2017, 31, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
  46. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef]
  47. Fischer, U.A.; Dettmann, J.S.; Carle, R.; Kammerer, D.R. Impact of processing and storage on the phenolic profiles and contents of pomegranate (Punica granatum L.) juices. Eur. Food Res. Technol. 2011, 233, 797–816. [Google Scholar] [CrossRef]
  48. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts Ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined In Vivo, Ex Vivo, and In Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef] [PubMed]
  49. Mosic, M.; Trifkovic, J.; Vovk, I.; Gasic, U.; Tesic, Z.; Sikoparija, B.; Milojkovic-Opsenica, D. Phenolic Composition Influences the Health-Promoting Potential of Bee-Pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef]
  50. Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agr. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
  51. Fantoukh, O.I.; Wang, Y.-H.; Parveen, A.; Hawwal, M.F.; Ali, Z.; Al-Hamoud, G.A.; Chittiboyina, A.G.; Joubert, E.; Viljoen, A.; Khan, I.A. Chemical Fingerprinting Profile and Targeted Quantitative Analysis of Phenolic Compounds from Rooibos Tea (Aspalathus linearis) and Dietary Supplements Using UHPLC-PDA-MS. Separations 2022, 9, 159. [Google Scholar] [CrossRef]
  52. Fermo, P.; Comite, V.; Sredojevic, M.; Ciric, I.; Gasic, U.; Mutic, J.; Baosic, R.; Tesic, Z. Elemental Analysis and Phenolic Profiles of Selected Italian Wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef]
  53. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef]
  54. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef] [PubMed]
  55. Liu, Y.; Li, M.; Xu, J.; Liu, X.; Wang, S.; Shi, L. Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions. BMC Plant Biol. 2019, 19, 389. [Google Scholar] [CrossRef] [PubMed]
  56. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
  57. Singh, J.; Kumar, S.; Rathi, B.; Bhrara, K.; Chhikara, B.S. Therapeutic analysis of Terminalia arjuna plant extracts in combinations with different metal nanoparticles. J. Mater. NanoSci. 2015, 2, 1–7. [Google Scholar]
  58. Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef] [PubMed]
  59. Li, M.; Xu, J.; Wang, X.; Fu, H.; Zhao, M.; Wang, H.; Shi, L. Photosynthetic characteristics and metabolic analyses of two soybean genotypes revealed adaptive strategies to low-nitrogen stress. J. Plant Physiol. 2018, 229, 132–141. [Google Scholar] [CrossRef]
  60. Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic Distribution in Liquid Preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef]
  61. Barros, L.; Duenas, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582. [Google Scholar] [CrossRef]
  62. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
  63. Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef]
  64. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharmaceut. Biomed. Analys. 2012, 62, 162–166. [Google Scholar] [CrossRef]
  65. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef] [PubMed]
  66. Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K.S. Zostera marina L. Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
  67. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512. [Google Scholar] [CrossRef] [PubMed]
  68. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107. [Google Scholar] [CrossRef]
  69. Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778. [Google Scholar] [CrossRef] [PubMed]
  70. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef] [PubMed]
  71. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
  72. Said, R.B.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
  73. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods. 2021, 10, 1301. [Google Scholar] [CrossRef]
  74. Razgonova, M.P.; Cherevach, E.I.; Tekutyeva, L.A.; Fedoreev, S.A.; Mishchenko, N.P.; Tarbeeva, D.V.; Demidova, E.N.; Kirilenko, N.S.; Golokhvast, K.S. Maackia amurensis Rupr. et Maxim.: Supercritical CO2-extraction and Mass Spectrometric Characterization of Chemical Constituents. Molecules 2023, 28, 2026. [Google Scholar] [CrossRef]
  75. Zhang, J.; Gao, W.; Liu, Z.; Zhang, Z. Identification and Simultaneous Determination of Twelve Active Components in the Methanol Extracts of Traditional Medicine Weichang’an Pill by HPLC-DAD-ESI-MS/MS. Iran. J. Pharm. Res. 2013, 12, 15–24. [Google Scholar]
  76. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS Analysis for Identification of Hydrophilic Phenolics and Lipophilic Diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef]
  77. Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Industr. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
  78. Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (A)1-42-Induced Learning and Memory Impairment. J. Agric. Food. Chem. 2016, 64, 3353–3361. [Google Scholar]
  79. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. [Google Scholar] [CrossRef] [PubMed]
  80. Penagos-Calvete, D.; Guauque-Medina, J.; Villegas-Torres, M.F.; Montoya, G. Analysis of triacylglycerides, carotenoids and capsaicinoids as disposable molecules from Capsicum agroindustry. Hortic. Environ. Biotechnol. 2019, 60, 227–238. [Google Scholar] [CrossRef]
Figure 1. Habitat (A) and plant appearance (B): Artemisia martjanovii Krasch. ex Poljak (photos by Egorov, June 2022); (C): sample collection site of A. martjanovii. The blue location icon shows the vicinity of the settlement in the Elanka Khangalassky district of Yakutia (N 61°26′75″; E 128°11′11″), Russia.
Figure 1. Habitat (A) and plant appearance (B): Artemisia martjanovii Krasch. ex Poljak (photos by Egorov, June 2022); (C): sample collection site of A. martjanovii. The blue location icon shows the vicinity of the settlement in the Elanka Khangalassky district of Yakutia (N 61°26′75″; E 128°11′11″), Russia.
Horticulturae 09 01329 g001
Figure 2. CID-spectrum of artemisinin C from leaf extracts of wild A. martjanovii, at m/z 249.24.
Figure 2. CID-spectrum of artemisinin C from leaf extracts of wild A. martjanovii, at m/z 249.24.
Horticulturae 09 01329 g002
Figure 3. CID-spectrum of L-tryptophan from stems extracts of wild A. martjanovii, at m/z 205.21.
Figure 3. CID-spectrum of L-tryptophan from stems extracts of wild A. martjanovii, at m/z 205.21.
Horticulturae 09 01329 g003
Figure 4. CID-spectrum of atractylenolide II from extracts of introduced A. martjanovii growing in the Botanical Garden of NEFU, at m/z 233.24.
Figure 4. CID-spectrum of atractylenolide II from extracts of introduced A. martjanovii growing in the Botanical Garden of NEFU, at m/z 233.24.
Horticulturae 09 01329 g004
Figure 5. A Venn diagram showing the similarities and differences in the presence of chemical constituents in wild A. martjanovii and introduced A. martjanovii from the Botanical Garden of NEFU.
Figure 5. A Venn diagram showing the similarities and differences in the presence of chemical constituents in wild A. martjanovii and introduced A. martjanovii from the Botanical Garden of NEFU.
Horticulturae 09 01329 g005
Figure 6. A Venn diagram showing the similarities and differences in the presence of chemical constituents in stem and leaf extracts of wild and introduced A. martjanovii from the Botanical Garden of NEFU.
Figure 6. A Venn diagram showing the similarities and differences in the presence of chemical constituents in stem and leaf extracts of wild and introduced A. martjanovii from the Botanical Garden of NEFU.
Horticulturae 09 01329 g006
Table 1. The distribution of the bioactive compounds in wild and introduced A. martjanovii from the Botanical Garden of NEFU.
Table 1. The distribution of the bioactive compounds in wild and introduced A. martjanovii from the Botanical Garden of NEFU.
SampleNumber of CompoundsCompound Names
A. martjanovii (wild);
A. martjanovii (BG)
50Chrysoeriol C-hexoside; Stearidonic acid methyl ester; Dihydrosantamarin; Undecanedioic acid; Umbelliferone; Trihydroxy(iso)flavone; Deoxyartemisinin I; Petunidin; Syringetin; Vebonol; 3,4-O-dicaffeoylquinic acid; L-Valine; 3-Hydroxy-6,7,4′-trimethoxyflavone; Gardenin B; Dihydroxy tetramethoxyflavone hexoside; Salvigenin; Chrysoeriol 6-O-hexoside; Caffeic acid; Dihydroxy-trimethoxyflavone-O-hexoside; 3,3′-di-O-methyl ellagic acid; Artemisin; Resveratrol; Artemannuin B; Syringic acid; Sespendole; Linolenic acid; Costunolide; Dihydroxy-trimethoxyflavone; Casticin; (Epi)-catechin; Hydroxy myristic acid; Caffeic acid derivative; Hydroxy dodecanoic acid; Pseudosantonin; Dihydroxy-dimethoxyflavone; Centaureidin; Eupatilin; Jaceosidin; Artemetin; Penduletin; Trihydroxymethoxyflavone; Hydroxydodecenoic acid; Myristoleic acid; Atractylenolide I; Artemisinic acid; Atractylenolide II; Artemisinin C; Cirsimaritin; Chrysartemin A; Trihydroxyoctadecadienoic acid
A. martjanovii (wild)27Phloretin; Tyrosine; Tri-O-methylellagic acid; Isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); Santonin; L-Ascorbic acid; Tetrahydroxy-dimethoxyflavone; Dihydroartemisinin; Pheophytin A; 13-Trihydroxy-Octadecenoic acid; Podophyllotoxin; Cirsiliol; Nevadensin; Tomentin; Alpha-Kamlolenic Acid; Dihydroquercetin; Gallic acid; Plumbagin; Methoxyeugenol; Chlorogenic acid; Isololiolide; 1,4,8-Trihydroxy-3-tetralone-methyl formate-4-O-β-D-glucopyranoside; 3,5-Dihydroxy-6,7,3′,4′-tetramethoxyflavone; Cirsilineol; L-Tryptophan; Tanshinone IIA; (S)-eriodictyol-6-C-β-D-glucopyranoside
A. martjanovii (BG)27Artabsinolide A; Stearidonic acid; Eriodictyol; Isorhamnetin 3-O-glucoside; Absinthin derivative; Dihydroarteannuin B; Mearnsetin-glucoside; 7-Methoxybenzo[d][1,3] dioxole-5-carboxylic acid; Glucaric acid; Neochlorogenic acid; 3,5-Dihydroxy-6,7,4′-trimethoxyflavone; Ferulic acid; Hispidulin; cis-3-Caffeoylquinic acid; Methylgallic acid; Linoleic acid; Apigenin; Absinthin; Hydroxy octadecadienoic acid; Thymonin; 3,4,5-Tri-O-caffeoylquinic acid; Quercetin 3-O-glucoside; Acacetin C-glucoside methylmalonylated; 3-O-acetyl-betulinic acid; Fraxetin; Tetrahydroxy-dimethoxyflavone-hexoside; Tetramethylellagic acid hexose
Table 2. The distribution of the constituents in the stem and leaf extracts of wild and introduced A. martjanovii from the Botanical Garden of NEFU.
Table 2. The distribution of the constituents in the stem and leaf extracts of wild and introduced A. martjanovii from the Botanical Garden of NEFU.
SampleNumber of CompoundsNumber of Compounds Identified for the First Time
in Genus Artemisia L.
A. martjanovii (BG)7734
A. martjanovii (wild: leaves)4319
A. martjanovii (wild: stems)6134
Table 3. The distribution of the constituents in stem and leaf extracts of wild and introduced A. martjanovii from the Botanical Garden of NEFU.
Table 3. The distribution of the constituents in stem and leaf extracts of wild and introduced A. martjanovii from the Botanical Garden of NEFU.
SampleTotal Number of CompoundsCompound Names
A. martjanovii
(wild: stems)
16Phloretin; Tyrosine; 3,4-O-dicaffeoylquinic acid; Isorhamnetin 3-O-(6″-O-rhamnosyl-hexoside); L-Ascorbic acid; Tetrahydroxy-dimethoxyflavone; Dihydroartemisinin; 13- Trihydroxy-Octadecenoic acid; Cirsiliol; Nevadensin; Tomentin; Alpha-Kamlolenic Acid; Gallic acid; Methoxyeugenol; 1,4,8-Trihydroxy-3-tetralone-methyl formate-4-O-β-D-glucopyranoside; L-Tryptophan; (S)-eriodictyol-6-C-β-D-glucopyranoside
A. martjanovii
(wild: leaves)
5Tri-O-methylellagic acid; Dihydroquercetin; 3,5-Dihydroxy-6,3′,4′-tetramethoxyflavone; Cirsilineol; Tanshinone IIA
A. martjanovii
(wild: stems+leaves)
6Santonin, Pheophytin A; Podophyllotoxin; Plumbagin; Chlorogenic acid; Isololiolide
A. martjanovii
(wild: stems + leaves);
A. martjanovii (BG)
20Undecanedioic acid; Deoxyartemisinin I; Gardenin B; Salvigenin; Caffeic acid; Artemisin; Dihydroxy-trimethoxyflavone; Casticin; Hydroxy myristic acid; Pseudosantonin; Dihydroxy-dimethoxyflavone; Centaureidin; Eupatilin; Artemetin; Myristoleic acid; Atractylenolide I; Artemisinic acid; Atractylenolide II; Artemisinin C; Cirsimaritin
A. martjanovii (wild: stems);
A. martjanovii (BG)
18Dihydrosantamarin; Umbelliferone; Trihydroxy(iso)flavone; Petunidin; Syringetin; Vebonol; L-Valine; Dihydroxy tetramethoxyflavone hexoside; Dihydroxy-trimethoxyflavone-O-hexoside; Resveratrol; Sespendole; Linolenic acid; (Epi)-catechin; Caffeic acid derivative; Hydroxy dodecanoic acid; Hydroxydodecenoic acid; Chrysartemin A; Trihydroxyoctadecadienoic acid
A. martjanovii (wild: leaves); A. martjanovii (BG)12Chrysoeriol C-hexoside; Stearidonic acid methyl ester; 4-O-dicaffeoylquinic acid; 3-Hydroxy-6,7,4′-trimethoxyflavone; Chrysoeriol 6-O-hexoside; 3′-di-O-methyl ellagic acid; Artemannuin B; Syringic acid; Costunolide; Jaceosidin; Penduletin; Trihydroxymethoxyflavone
A. martjanovii (BG)27Artabsinolide A; Stearidonic acid; Eriodictyol; Isorhamnetin 3-O-glucoside; Absinthin derivative; Dihydroarteannuin B; Mearnsetin-glucoside; 7-Methoxybenzo[d][13] dioxole-5-carboxylic acid; Glucaric acid; Neochlorogenic acid; 3,5-Dihydroxy-6,7,4′-trimethoxyflavone; Ferulic acid; Hispidulin; cis-3-Caffeoylquinic acid; Methylgallic acid; Linoleic acid; Apigenin; Absinthin; Hydroxy octadecadienoic acid; Thymonin; 4,5-Tri-O-caffeoylquinic acid; Quercetin 3-O-glucoside; Acacetin C-glucoside methylmalonylated; 3-O-acetyl-betulinic acid; Fraxetin; Tetrahydroxy-dimethoxyflavone-hexoside; Tetramethylellagic acid hexose
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Okhlopkova, Z.M.; Ercisli, S.; Razgonova, M.P.; Ivanova, N.S.; Antonova, E.E.; Egorov, Y.A.; Kucharova, E.V.; Golokhvast, K.S. Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia. Horticulturae 2023, 9, 1329. https://doi.org/10.3390/horticulturae9121329

AMA Style

Okhlopkova ZM, Ercisli S, Razgonova MP, Ivanova NS, Antonova EE, Egorov YA, Kucharova EV, Golokhvast KS. Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia. Horticulturae. 2023; 9(12):1329. https://doi.org/10.3390/horticulturae9121329

Chicago/Turabian Style

Okhlopkova, Zhanna M., Sezai Ercisli, Mayya P. Razgonova, Natalia S. Ivanova, Elena E. Antonova, Yury A. Egorov, Elena V. Kucharova, and Kirill S. Golokhvast. 2023. "Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia" Horticulturae 9, no. 12: 1329. https://doi.org/10.3390/horticulturae9121329

APA Style

Okhlopkova, Z. M., Ercisli, S., Razgonova, M. P., Ivanova, N. S., Antonova, E. E., Egorov, Y. A., Kucharova, E. V., & Golokhvast, K. S. (2023). Primary Determination of the Composition of Secondary Metabolites in the Wild and Introduced Artemisia martjanovii Krasch: Samples from Yakutia. Horticulturae, 9(12), 1329. https://doi.org/10.3390/horticulturae9121329

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop