Application of Encapsulation Technology: In Vitro Screening of Two Ficus carica L. Genotypes under Different NaCl Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Encapsulation Procedure and Culture Conditions
2.3. Data Collection
2.3.1. Measurement of Photosynthetic Pigments and Biochemical Traits
2.3.2. Statistical Analysis
3. Results
3.1. Effect of Salt Concentrations on Growth Traits
3.2. Effect of Alginate Coating Treatment on Growth Activity
3.3. Variability on Photosynthetic Pigments and Biochemical Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okon, O.G. Effect of Salinity on Physiological Processes in Plants. In Microorganisms in Saline Environments: Strategies and Functions; Giri, B., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Germany, 2019; Volume 56, pp. 237–262. ISBN 978-3-030-18974-7. [Google Scholar]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global Mapping of Soil Salinity Change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J.; Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; et al. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. In Climate Change and Agriculture; IntechOpen: London, UK, 2019; ISBN 978-1-78985-668-2. [Google Scholar]
- Shannon, M.C. Adaptation of Plants to Salinity. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1997; Volume 60, pp. 75–120. ISBN 978-0-12-000760-8. [Google Scholar]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Sarwar, M.I.; Shoukat, A.; Hussan, M.U.; Sarwar, M.I. A Review: Impact of Salinity on Plant Growth. Nat. Sci. 2019, 1, 34–40. [Google Scholar] [CrossRef]
- Abogadallah, G.M. Insights into the Significance of Antioxidative Defense under Salt Stress. Plant Signal. Behav. 2010, 5, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Sun, S.; Nawaz, M.A.; Sun, J.; Cao, H.; Lu, J.; Huang, Y.; Bie, Z. Grafting Cucumber Onto Pumpkin Induced Early Stomatal Closure by Increasing ABA Sensitivity Under Salinity Conditions. Front. Plant Sci. 2019, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Li, G.; Yang, J.; Huang, X.; Ji, Q.; Liu, Z.; Ke, W.; Hou, H. Effect of Salt Stress on Growth, Physiological Parameters, and Ionic Concentration of Water Dropwort (Oenanthe javanica) Cultivars. Front. Plant Sci. 2021, 12, 660409. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, C.; Lakshmi, A.; Surabhi, G.K. Changes in the Antioxidant Enzyme Efficacy in Two High Yielding Genotypes of Mulberry (Morus alba L.) under NaCl Salinity. Plant Sci. 2001, 161, 613–619. [Google Scholar] [CrossRef]
- Evlakov, P.M.; Zapletin, V.Y.; Rzhevsky, S.G. Salt Stress Effect on Morphometrical and Anatomical Leaf Traits of Promising Poplar Biotypes. IOP Conf. Ser. Earth Environ. Sci. 2019, 392, 012041. [Google Scholar] [CrossRef]
- Manzoor, M.; Naz, S.; Muhammad, H.M.D.; Ahmad, R. Smart Reprogramming of Jujube Germplasm against Salinity Tolerance through Molecular Tools. Funct. Integr. Genom. 2023, 23, 222. [Google Scholar] [CrossRef]
- Javadisaber, J.; Dumanoğlu, H.; Şahin, Ö.; Sarıkamış, G.; Ergül, A.; Çakır Aydemir, B. Salt Stress Tolerance of Pyrus spp. and Cydonia oblonga Genotypes Assessed by Morphological, Biochemical and Dehydrin Gene Expression Analysis. J. Plant Growth Regul. 2023, 23, 1–13. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Bracci, T.; Minnocci, A.; Sebastiani, L. In Vitro Olive (Olea europaea L.) Cvs Frantoio and Moraiolo Microshoot Tolerance to NaCl. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2008, 142, 563–571. [Google Scholar] [CrossRef]
- Shiyab, S.; Shibli, R.; Mohammad, M. Influence of Sodium Chloride Salt Stress on Growth and Nutrient Acquisition of Sour Orange in vitro. J. Plant Nutr. 2003, 26, 985–996. [Google Scholar] [CrossRef]
- Ayaz Tilkat, E. Increasing the Production of Some Specific Cytotoxic Triterpenoids and Evaluation of the Morpho-Physiological Response Associated with in Vitro Salt Stress in Pistacia khinjuk Stocks. J. Chem. Metrol. 2021, 15, 76–87. [Google Scholar] [CrossRef]
- Standardi, A.; Micheli, M. Encapsulation of in Vitro-Derived Explants: An Innovative Tool for Nurseries. Protoc. Micropropag. Sel. Econ.-Important Hortic. Plants 2013, 2013, 397–418. [Google Scholar]
- Benelli, C.; Micheli, M.; De Carlo, A. An Improved Encapsulation Protocol for Regrowth and Conservation of Four Ornamental Species. Acta Soc. Bot. Pol. 2017, 86, 3. [Google Scholar] [CrossRef]
- Qrunfleh, I.M.; Shatnawi, M.M.; Al-Ajlouni, Z.I. Effect of Different Concentrations of Carbon Source, Salinity and Gelling Agent on in Vitro Growth of Fig (Ficus carica L.). Afr. J. Biotechnol. 2013, 12, 9. [Google Scholar]
- Flaishman, M.A.; Rodov, V.; Stover, E. The Fig: Botany, Horticulture, and Breeding. Hortic. Rev. 2008, 34, 113–197. [Google Scholar]
- Costa, F.; Marchese, A.; Mafrica, R.; Di Vaio, C.; Ferrara, G.; Fretto, S.; Quartararo, A.; Marra, F.P.; Mennone, C.; Vitale, F.; et al. Genetic Diversity of Fig (Ficus carica L.) Genotypes Grown in Southern Italy Reveled by the Use of SSR Markers. In Proceedings of the V International Symposium on Fig, Napoli, Italy, 31 August–3 September 2015; Volume 1173, pp. 75–80. [Google Scholar] [CrossRef]
- Mafrica, R.; Marchese, A.; Bruno, M.; Costa, F.; Fretto, S.; Marra, F.P.; Pangallo, S.; Quartararo, A.; Caruso, T. Morphological and Molecular Variability within the Fig Cultivar ’Dottato’ in the Italian Protected Designation Origin Area “Fichi Di Cosenza”. In Proceedings of the V International Symposium on Fig, Napoli, Italy, 31 August–3 September 2015; Volume 1173, pp. 29–34. [Google Scholar]
- Silvestri, C.; Celletti, S.; Cristofori, V.; Astolfi, S.; Ruggiero, B.; Rugini, E. Olive (Olea europaea L.) Plants Transgenic for Tobacco Osmotin Gene Are Less Sensitive to in Vitro-Induced Drought Stress. Acta Physiol. Plant. 2017, 39, 229. [Google Scholar] [CrossRef]
- Bashir, M.A.; Silvestri, C.; Coppa, E.; Brunori, E.; Cristofori, V.; Rugini, E.; Ahmad, T.; Hafiz, I.A.; Abbasi, N.A.; Nawaz Shah, M.K.; et al. Response of Olive Shoots to Salinity Stress Suggests the Involvement of Sulfur Metabolism. Plants 2021, 10, 350. [Google Scholar] [CrossRef]
- Astolfi, S.; Zuchi, S.; Passera, C. Effect of Cadmium on H+ATPase Activity of Plasma Membrane Vesicles Isolated from Roots of Different S-Supplied Maize (Zea mays L.) Plants. Plant Sci. 2005, 169, 361–368. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Bashir, M.A.; Silvestri, C.; Coppa, E.; Brunori, E.; Cristofori, V.; Rugini, E.; Ahmad, T.; Hafiz, I.A.; Abbasi, N.A.; Nawaz Shah, M.K.; et al. Response of Olive Shoots to Salinity Stress Suggests the Involvement of Sulfur Metabolism. Plants 2021, 10, 350. [Google Scholar] [CrossRef]
- Santangelo, E.; Fonzo, V.; Astolfi, S.; Zuchi, S.; Caccia, R.; Mosconi, P.; Mazzucato, A.; Soressi, G.P. The Cf-2/Rcr3esc Gene Interaction in Tomato (Lycopersicon esculentum) Induces Autonecrosis and Triggers Biochemical Markers of Oxidative Burst at Cellular Level. Funct. Plant Biol. 2003, 30, 1117. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Lutts, S. NaCl-Induced Senescence in Leaves of Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Compton, M. Statistical Methods Suitable for Analysis of Plant Tissue Culture Data. Plant Cell Tissue Organ Cult. 1994, 37, 217–242. [Google Scholar] [CrossRef]
- Rahneshan, Z.; Nasibi, F.; Moghadam, A.A. Effects of Salinity Stress on Some Growth, Physiological, Biochemical Parameters and Nutrients in Two Pistachio (Pistacia vera L.) Rootstocks. J. Plant Interact. 2018, 13, 73–82. [Google Scholar] [CrossRef]
- Vijayan, K.; Chakraborti, S.P.; Ghosh, P.D. In Vitro Screening of Mulberry (Morus Spp.) for Salinity Tolerance. Plant Cell Rep. 2003, 22, 350–357. [Google Scholar] [CrossRef]
- Zarei, M.; Azizi, M.; Rahemi, M.; Tehranifar, A. Evaluation of NaCl Salinity Tolerance of Four Fig Genotypes Based on Vegetative Growth and Ion Content in Leaves, Shoots, and Roots. HortScience 2016, 51, 1427–1434. [Google Scholar] [CrossRef]
- Hnilickova, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef]
- Jamil, M.; Rehman, S.; Rha, E.S. Salinity Effect on Plant Growth, PSII Photochemistry and Chlorophyll Content in Sugar Beet (Beta vulgaris L.) and Cabbage (Brassica oleracea capitata L.). Pak J. Bot. 2007, 39, 753–760. [Google Scholar]
- Wang, Y.; Nii, N. Changes in Chlorophyll, Ribulose Bisphosphate Carboxylase-Oxygenase, Glycine Betaine Content, Photosynthesis and Transpiration in Amaranthus tricolor Leaves during Salt Stress. J. Hortic. Sci. Biotechnol. 2000, 75, 623–627. [Google Scholar] [CrossRef]
- Ekinci, M.; Yildirim, E.; Dursun, A.; Turan, M. Mitigation of Salt Stress in Lettuce (Lactuca sativa L. Var. Crispa) by Seed and Foliar 24-Epibrassinolide Treatments. HortScience 2012, 47, 631–636. [Google Scholar] [CrossRef]
- Silvestri, C.; Caceres, M.E.; Ceccarelli, M.; Pica, A.L.; Rugini, E.; Cristofori, V. Influence of Continuous Spectrum Light on Morphological Traits and Leaf Anatomy of Hazelnut Plantlets. Front. Plant Sci. 2019, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Hatsugai, N.; Katagiri, F. Quantification of Plant Cell Death by Electrolyte Leakage Assay. BIO-Protocol. 2018, 8, e2758. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.N.; Silveira, J.A.G.; Rodrigues, C.R.F.; Viégas, R.A. Physiological Adjustment to Salt Stress in Jatropha Curcas Is Associated with Accumulation of Salt Ions, Transport and Selectivity of K+, Osmotic Adjustment and K+/Na+ Homeostasis. Plant Biol. 2015, 17, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Demidchik, V.; Straltsova, D.; Medvedev, S.S.; Pozhvanov, G.A.; Sokolik, A.; Yurin, V. Stress-Induced Electrolyte Leakage: The Role of K+-Permeable Channels and Involvement in Programmed Cell Death and Metabolic Adjustment. J. Exp. Bot. 2014, 65, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S. Salinity and Programmed Cell Death: Unravelling Mechanisms for Ion Specific Signalling. J. Exp. Bot. 2009, 60, 709–712. [Google Scholar] [CrossRef]
- Türkan, I.; Demiral, T. Recent Developments in Understanding Salinity Tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Tsujii, M.; Kera, K.; Hamamoto, S.; Kuromori, T.; Shikanai, T.; Uozumi, N. Evidence for Potassium Transport Activity of Arabidopsis KEA1-KEA6. Sci. Rep. 2019, 9, 10040. [Google Scholar] [CrossRef]
- Yassin, M.; El Sabagh, A.; Islam, M.S.; Hossain, A.; Barutçular, C.; Alharby, S.; Liu, L.; Ueda, A.; Saneoka, H. Comparative Performance of Two Bread Wheat (Triticum aestivum L.) Genotypes under Salinity Stress. Appl. Ecol. Environ. Res. 2019, 17, 5029–5041. [Google Scholar] [CrossRef]
- Flowers, T.J.; Yeo, A.R. Breeding for Salinity Resistance in Crop Plants: Where Next? Funct. Plant Biol. 1995, 22, 875–884. [Google Scholar] [CrossRef]
- Lu, Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. Front. Plant Sci. 2016, 7, 168. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, F.R.; Oliveira, J.T.A.; Martins-Miranda, A.S.; Viégas, R.A.; Silveira, J.A.G. Superoxide Dismutase, Catalase and Peroxidase Activities Do Not Confer Protection against Oxidative Damage in Salt-Stressed Cowpea Leaves. New Phytol. 2004, 163, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Huang, L.; Lin, X.; Sun, C. Hydrogen Peroxide Alleviates Salinity-Induced Damage through Enhancing Proline Accumulation in Wheat Seedlings. Plant Cell Rep. 2020, 39, 567–575. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Nutritional and Bioactive Constituents and Scavenging Capacity of Radicals in Amaranthus hypochondriacus. Sci. Rep. 2020, 10, 19962. [Google Scholar] [CrossRef]
- Rejeb, K.B.; Abdelly, C.; Savouré, A. How Reactive Oxygen Species and Proline Face Stress Together. Plant Physiol. Biochem. 2014, 80, 278–284. [Google Scholar] [CrossRef]
- Sharif, P.; Seyedsalehi, M.; Paladino, O.; Van Damme, P.; Sillanpää, M.; Sharifi, A.A. Effect of Drought and Salinity Stresses on Morphological and Physiological Characteristics of Canola. Int. J. Environ. Sci. Technol. 2018, 15, 1859–1866. [Google Scholar] [CrossRef]
Genotype | Viability (%) | Regrowth (%) | Rooting (%) | Conversion (%) | |
---|---|---|---|---|---|
Houmairi | NaCl concentrations | 97.6 ± 0.17 a | 90.4 ± 0.34 a | 66.4 ± 0.41 a | 66.4 ± 0.41 a |
Palazzo | NaCl concentrations | 84 ± 0.29 b | 65.6 ± 0.34 b | 40 ± 0.28 b | 37.6 ± 0.31 b |
Treatment | |||||
0 (Control) | Genotypes average | 96.0 ± 0.19 | 88.0 ± 0.28 | 80.0 ± 0.3 a | 80.0 ± 0.3 a |
50 | Genotypes average | 96.0 ± 0.20 | 84.0 ± 0.36 | 62.0 ± 0.46 ab | 60.0 ± 0.47 ab |
100 | Genotypes average | 92.0 ± 0.27 | 82.0 ± 0.39 | 54.0 ± 0.34 ab | 54.0 ± 0.34 ab |
150 | Genotypes average | 88.0 ± 0.32 | 66.0 ± 0.36 | 42.0 ± 0.17 bc | 40.0 ± 0.19 bc |
200 | Genotypes average | 82.0 ± 0.27 | 70.0 ± 0.45 | 28.0 ± 0.3 c | 26.0 ± 0.34 c |
Genotype × NaCl concentrations | NaCl (mM) | ||||
Houmairi | 0 (Control) | 100 ± 0.00 | 100 ± 0.00 | 92 ± 0.25 | 92 ± 0.25 |
50 | 100 ± 0.00 | 100 ± 0.00 | 84 ± 0.31 | 84 ± 0.31 | |
100 | 100 ± 0.00 | 100 ± 0.00 | 76 ± 0.28 | 76 ± 0.28 | |
150 | 96 ± 0.25 | 72 ± 0.37 | 52 ± 0.19 | 52 ± 0.19 | |
200 | 92 ± 0.25 | 80 ± 0.37 | 28 ± 0.30 | 28 ± 0.30 | |
Palazzo | 0 (Control) | 92 ± 0.25 | 76 ± 0.10 | 68 ± 0.19 | 68 ± 0.19 |
50 | 92 ± 0.25 | 68 ± 0.34 | 40 ± 0.37 | 36 ± 0.37 | |
100 | 84 ± 0.31 | 64 ± 0.37 | 32 ± 0.12 | 32 ± 0.12 | |
150 | 80 ± 0.37 | 60 ± 0.40 | 32 ± 0.12 | 28 ± 0.12 | |
200 | 72 ± 0.12 | 60 ± 0.48 | 28 ± 0.33 | 24 ± 0.40 | |
Significance of ANOVA | |||||
Genotype | *** | *** | *** | *** | |
NaCl concentrations | ** | * | *** | *** | |
Genotype × NaCl concentrations | ns | ns | ns | ns |
Genotype | Number of Shoots | Shoots Length (cm) | Number of Roots | Roots Length (cm) | |
---|---|---|---|---|---|
Houmairi | NaCl concentrations | 0.82 ± 0.50 a | 1.60 ± 1.39 a | 0.59 ± 0.85 b | 3.06 ± 2.19 a |
Palazzo | NaCl concentrations | 0.28 ± 0.16 b | 0.23 ± 0.19 b | 0.66 ± 0.64 a | 0.94 ± 1.35 b |
Treatment | |||||
0 (Control) | Genotypes average | 0.92 ± 0.59 a | 1.29 ± 1.30 ab | 1.92 ± 0.58 a | 3.78 ± 1.13 a |
50 | Genotypes average | 0.70 ± 0.41 ab | 1.81 ± 1.77 a | 1.42 ± 1.01 ab | 2.82 ± 2.64 ab |
100 | Genotypes average | 0.46 ± 0.40 bc | 0.64 ± 0.62 bc | 1.24 ± 0.92 b | 2.29 ± 2.46 b |
150 | Genotypes average | 0.40 ± 0.36 bc | 0.58 ± 0.94 bc | 0.72 ± 0.49 c | 0.70 ± 0.56 c |
200 | Genotypes average | 0.26 ± 0.13 c | 0.24 ± 0.17 c | 0.32 ± 0.23 c | 0.40 ± 0.43 c |
Genotype × NaCl concentrations | NaCl (mM) | ||||
Houmairi | 0 (Control) | 1.40 ± 0.40 a | 2.40 ± 0.92 ab | 2.20 ± 0.42 a | 4.30 ± 0.81 a |
50 | 1.10 ± 0.30 ab | 3.14 ± 1.61 a | 2.24 ± 0.52 a | 4.96 ± 1.88 a | |
100 | 0.72 ± 0.41 bc | 1.14 ± 0.50 bc | 2.08 ± 0.36 a | 4.29 ± 1.90 a | |
150 | 0.56 ± 0.48 bc | 1.03 ± 1.23 bc | 1.12 ± 0.30 bc | 1.17 ±0.35 bc | |
200 | 0.36 ±0.09 c | 0.34 ± 0.18 c | 0.32 ± 0.18 c | 0.57 ± 0.52 c | |
Palazzo | 0 (Control) | 0.44 ± 0.22 c | 0.21 ± 0.11 c | 1.64 ± 0.62 ab | 3.28 ± 1.25 ab |
50 | 0.36 ± 0.09 c | 0.49 ± 0.26 c | 0.60 ± 0.60 c | 0.67 ± 0.82 c | |
100 | 0.21 ± 0.14 c | 0.15 ± 0.11 c | 0.40 ± 0.14 c | 0.28 ± 0.13 c | |
150 | 0.24 ± 0.09 c | 0.14 ± 0.05 c | 0.32 ± 0.23 c | 0.23 ± 0.17 c | |
200 | 0.16 ± 0.09 c | 0.14 ± 0.10 c | 0.32 ± 0.30 c | 0.22 ± 0.26 c | |
Significance of ANOVA | |||||
Genotype | *** | *** | *** | *** | |
NaCl concentrations | *** | *** | *** | *** | |
Genotype × NaCl concentrations | ** | *** | *** | *** |
Genotype | Viability (%) | Regrowth (%) | Rooting (%) | Conversion (%) | Number of Roots | Roots Length (cm) | |
---|---|---|---|---|---|---|---|
Houmairi | Treatments average | 100 ± 0.00 | 94 ± 0.13 | 84 ± 0.21 a | 84 ± 0.21 a | 2.36 ± 0.69 a | 4.33 ± 1.48 a |
Palazzo | Treatments average | 96 ± 0.20 | 82 ± 0.15 | 58 ± 0.20 b | 58 ± 0.20 b | 1.26 ± 0.67 b | 2.32 ± 1.42 b |
Treatment | |||||||
No coating | Genotypes average | 100 ± 0.00 | 88 ± 0.30 | 62 ± 0.4 b | 62 ± 0.4 b | 1.70 ± 1.1 | 2.90 ± 2.2 |
Coating | Genotypes average | 96 ± 0.20 | 88 ± 0.30 | 80 ± 0.3 a | 80 ± 0.3 a | 1.90 ± 0.6 | 3.80 ± 1.1 |
Genotype × Treatment | |||||||
Houmairi | No coating | 100 ± 0.00 | 88 ± 0.18 | 76 ± 0.26 | 76 ± 0.26 | 2.52 ± 0.91 | 4.36 ± 2.06 |
Coating | 100 ± 0.00 | 100 ± 0.00 | 92 ± 0.11 | 92 ± 0.11 | 2.21 ± 0.42 | 4.30 ± 0.81 | |
Palazzo | No coating | 100 ± 0.00 | 88 ± 0.18 | 48 ± 0.18 | 48 ± 0.18 | 0.88 ± 0.52 | 1.37 ± 0.85 |
Coating | 92 ± 0.11 | 76 ± 0.09 | 68 ± 0.18 | 68 ± 0.18 | 1.64 ± 0.62 | 3.27 ± 1.25 | |
Significance of ANOVA | |||||||
Genotype | ns | ns | ** | ** | * | * | |
Treatment | ns | ns | * | * | ns | ns | |
Genotype × Treatment | ns | ns | ns | ns | ns | ns |
Genotype | Treatment | Number of Shoots | Shoots Length (cm) |
---|---|---|---|
Houmairi | Treatments average | 0.94 ± 0.61 a | 1.46 ± 1.23 a |
Palazzo | Treatments average | 0.44 ± 0.16 b | 0.20 ± 0.08 b |
Treatment | |||
No coating | Genotypes average | 0.5 ± 0.3 b | 0.4 ± 0.50 b |
Coating | Genotypes average | 0.9 ± 0.6 a | 1.3 ± 1.03 a |
Genotype × Treatment | |||
Houmairi | No coating | 0.48 ± 0.39 b | 0.56 ± 0.70 b |
Coating | 1.40 ± 0.40 a | 2.37 ± 0.92 a | |
Palazzo | No coating | 0.44 ± 0.09 b | 0.19 ± 0.05 b |
Coating | 0.44 ± 0.22 b | 0.21 ± 0.11 b | |
Significance of ANOVA | |||
Genotype | *** | *** | |
Treatment | *** | *** | |
Genotype × Treatment | ** | *** |
Genotype | Chlorophyll (μg/cm2) | Flavanols (μg/cm2) | Anthocyanin (μg/cm2) | NBI (Chl./Flav.) | |
---|---|---|---|---|---|
Houmairi | NaCl concentrations | 28.65 ± 3.83 | 0.42 ± 0.06 b | 0.07 ± 0.05 | 70.27 ± 15.76 a |
Palazzo | NaCl concentrations | 27.60 ± 4.90 | 0.46 ± 0.09 a | 0.07 ± 0.03 | 62.56 ± 14.48 b |
Treatment | |||||
0 (Control) | Genotypes average | 25.63 ± 4.57 b | 0.41 ± 0.05 c | 0.08 ± 0.04 ab | 63.57 ± 12.67 |
50 | Genotypes average | 29.00 ± 4.00 ab | 0.44 ± 0.06 ab | 0.06 ± 0.03 bc | 66.90 ± 15.60 |
100 | Genotypes average | 28.50 ± 3.68 ab | 0.48 ± 0.11 a | 0.05 ± 0.03 c | 62.68 ± 17.25 |
150 | Genotypes average | 27.63 ± 4.87 ab | 0.44 ± 0.07 ab | 0.10 ± 0.03 a | 64.75 ± 17.29 |
200 | Genotypes average | 30.11 ± 3.88 a | 0.41 ± 0.06 c | 0.07 ± 0.04 abc | 74.17 ± 13.03 |
Genotype × NaCl concentrations | NaCl (mM) | ||||
Houmairi | 0 (Control) | 26.05 ± 6.95 | 0.42 ± 0.05 b | 0.07 ± 0.04 bc | 62.63 ± 22.69 |
50 | 28.69 ± 5.83 | 0.45 ± 0.06 ab | 0.06 ± 0.04 bc | 65.81 ± 20.78 | |
100 | 28.89 ± 4.07 | 0.42 ± 0.06 b | 0.04 ± 0.02 c | 70.82 ± 17.86 | |
150 | 30.38 ± 3.67 | 0.42 ± 0.09 b | 0.13 ± 0.02 a | 74.93 ± 15.25 | |
200 | 29.25 ± 8.59 | 0.39 ± 0.06 b | 0.07 ± 0.05 bc | 77.14 ± 26.75 | |
Palazzo | 0 (Control) | 25.22 ± 5.35 | 0.39 ± 0.06 b | 0.10 ± 0.04 ab | 64.52 ± 5.86 |
50 | 29.31 ± 3.96 | 0.44 ± 0.06 b | 0.06 ± 0.02 bc | 68.00 ± 9.24 | |
100 | 28.12 ± 4.57 | 0.54 ± 0.12 a | 0.07 ± 0.03 bc | 54.54 ± 11.25 | |
150 | 24.89 ± 4.53 | 0.46 ± 0.05 ab | 0.07 ± 0.02 bc | 54.56 ± 8.41 | |
200 | 30.97 ± 3.81 | 0.44 ± 0.05 b | 0.07 ± 0.02 bc | 71.19 ± 5.71 | |
Significance of ANOVA | |||||
Genotype | ns | ** | ns | ** | |
Treatment | * | ** | ** | ns | |
Genotype × NaCl concentrations | ns | ** | ** | ns |
Genotype | EL (%) | PROT (mg g−1 FW) | MDA (µg g−1 FW) | POD (∆470 min−1-mg−1 prot) | CAT (∆240 min−1-mg−1 prot) | Proline (µg g−1 FW) | |
---|---|---|---|---|---|---|---|
Houmairi | NaCl concentrations | 18.41 ± 3.16 b | 5.74 ± 0.91 | 4.36 ± 0.85 b | 7.25 ± 3.21 | 2.12 ± 0.23 | 3.57 ± 0.79 |
Palazzo | NaCl concentrations | 33.25 ± 5.41 a | 5.67 ± 1.52 | 4.60 ± 1.21 a | 8.08 ± 4.05 | 2.25 ± 0.23 | 4.01 ± 1.78 |
Treatment | |||||||
0 (Control) | Genotypes average | 24.26 ± 5.82 | 4.98 ± 1.06 d | 4.24 ± 0.90 c | 4.21 ± 0.35 b | 2.07 ± 0.23 | 2.59 ± 0.72 b |
50 | Genotypes average | 23.74 ± 6.21 | 4.86 ± 0.26 d | 3.67 ± 0.06 d | 5.03 ± 0.63 b | 2.22 ± 0.23 | 3.27 ± 0.84 b |
100 | Genotypes average | 28.52 ± 10.31 | 6.89 ± 1.55 a | 3.77 ± 0.69 d | 6.45 ± 2.15 b | 2.31 ± 0.20 | 3.18 ± 0.54 b |
150 | Genotypes average | 25.62 ± 11.72 | 6.56 ± 0.84 b | 5.72 ± 1.10 a | 10.81 ± 3.40 a | 2.11 ± 0.26 | 4.73 ± 1.17 a |
200 | Genotypes average | 27.01 ± 10.28 | 5.22 ± 0.39 c | 5.01 ± 0.26 b | 11.83 ± 1.40 a | 2.23 ± 0.25 | 5.18 ± 1.47 a |
Genotype × NaCl concentrations | NaCl (mM) | ||||||
Houmairi | 0 (Control) | 20.07 ± 3.14 bcd | 5.15 ± 0.12 b | 5.05 ± 0.10 b | 4.14 ± 0.24 d | 2.16 ± 0.30 | 2.87 ± 0.96 c |
50 | 19.19 ± 3.85 bcd | 5.06 ± 0.21 b | 3.63 ± 0.05 d | 4.68 ± 0.44 cd | 2.07 ± 0.14 | 3.15 ± 0.30 bc | |
100 | 19.37 ± 0.63 bcd | 5.49 ± 0.16 c | 3.14 ± 0.08 e | 7.5 ± 2.56 bc | 2.21 ± 0.23 | 3.26 ± 0.82 c | |
150 | 15.49 ± 3.03 d | 7.32 ± 0.12 a | 4.72 ± 0.05 c | 7.98 ± 1.93 b | 1.93 ± 0.05 | 3.84 ± 0.74 bc | |
200 | 17.92 ± 4.01 cd | 4.88 ± 0.12 c | 5.24 ± 0.04 a | 11.94 ± 1.85 a | 2.22 ± 0.34 | 3.93 ± 0.83 bc | |
Palazzo | 0 (Control) | 28.45 ± 4.71 ab | 4.01 ± 0.04 e | 3.42 ± 0.06 e | 4.28 ± 0.49 c | 1.98 ± 0.13 | 2.30 ± 0.35 c |
50 | 28.28 ± 4.42 abc | 4.66 ± 0.07 d | 3.70 ± 0.05 d | 5.38 ± 0.65 c | 2.36 ± 0.23 | 2.60 ± 0.58 c | |
100 | 37.68 ± 3.74 a | 8.30 ± 0.12 a | 4.40 ± 0.10 c | 5.38 ± 1.27 c | 2.40 ± 0.12 | 3.11 ± 0.17 c | |
150 | 35.75 ± 5.11 a | 5.80 ± 0.11 b | 6.72 ± 0.08 a | 13.64 ± 1.05 a | 2.30 ± 0.25 | 5.63 ± 0.68 ab | |
200 | 36.10 ± 0.60 a | 5.57 ± 0.12 c | 4.77 ± 0.12 b | 11.72 ± 1.20 b | 2.23 ± 0.21 | 6.42 ± 0.16 a | |
Significance of ANOVA | |||||||
Genotype | ** | ns | ** | ns | ns | ns | |
Treatment | ns | ** | ** | ** | ns | ** | |
Genotype × NaCl concentrations | * | ** | ** | ** | ns | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granata, I.; Regni, L.; Micheli, M.; Silvestri, C.; Germanà, M.A. Application of Encapsulation Technology: In Vitro Screening of Two Ficus carica L. Genotypes under Different NaCl Concentrations. Horticulturae 2023, 9, 1344. https://doi.org/10.3390/horticulturae9121344
Granata I, Regni L, Micheli M, Silvestri C, Germanà MA. Application of Encapsulation Technology: In Vitro Screening of Two Ficus carica L. Genotypes under Different NaCl Concentrations. Horticulturae. 2023; 9(12):1344. https://doi.org/10.3390/horticulturae9121344
Chicago/Turabian StyleGranata, Irene, Luca Regni, Maurizio Micheli, Cristian Silvestri, and Maria Antonietta Germanà. 2023. "Application of Encapsulation Technology: In Vitro Screening of Two Ficus carica L. Genotypes under Different NaCl Concentrations" Horticulturae 9, no. 12: 1344. https://doi.org/10.3390/horticulturae9121344
APA StyleGranata, I., Regni, L., Micheli, M., Silvestri, C., & Germanà, M. A. (2023). Application of Encapsulation Technology: In Vitro Screening of Two Ficus carica L. Genotypes under Different NaCl Concentrations. Horticulturae, 9(12), 1344. https://doi.org/10.3390/horticulturae9121344