Widely Targeted Metabolomics Provides New Insights into the Flavonoid Metabolism in ‘Kyoho’ Grapes under a Two-Crop-a-Year Cultivation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Vineyard Conditions and Two-Crop-a-Year Viticulture Practices
2.2. Meteorological Survey
2.3. Sampling Method and Physical and Chemical Index Monitoring
2.4. Widely Targeted Metabolomics Methods
2.4.1. Sample Preparation and Metabolite Extraction
2.4.2. UPLC Conditions
2.4.3. ESI-Q TRAP-MS/MS
2.5. Statistical Analysis
2.5.1. PCA and HCA
2.5.2. Differential Metabolite Analysis
2.5.3. Kyoto Encyclopedia of Genes and Genomes (KEGG) Annotation and Enrichment Analysis
3. Results and Analysis
3.1. Meteorological Characteristics
3.2. Physical and Chemical Indexes of Summer and Winter Grapes
3.3. Overview of the Metabolites of the Grapes from the Two Crops
3.4. Differential Accumulation of Metabolites
3.5. Differential Metabolism of Flavonoids in Grapes from Two Crops
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, X.; Li, Y.; Huang, J.; Liu, J.; Peng, H.; Xie, T.; Wen, R. One-year-two-harvest cultural technique system for Kyoho grape in southern region of Guangxi. Southwest China J. Agric. Sci. 2008, 21, 953–955. [Google Scholar] [CrossRef]
- Khalil-Ur-Rehman, M.; Wang, W.; Dong, Y.; Faheem, M.; Xu, Y.; Gao, Z.; Guo Shen, Z.; Tao, J. Comparative Transcriptomic and Proteomic Analysis to Deeply Investigate the Role of Hydrogen Cyanamide in Grape Bud Dormancy. Int. J. Mol. Sci. 2019, 20, 3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Wang, B.; Cheng, G.; Lin, L.; Cao, X.; Zhang, Y.; Xie, T.; Bai, X. Research advances in regionalization for two-crop-a-year grape cultivation in China. J. South. Agric. 2016, 47, 2091–2097. [Google Scholar] [CrossRef]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Walker, A.R.; Barril, C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. J. Exp. Bot. 2019, 70, 397–423. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, Y.-J. Advances in Genomic, Transcriptomic, and Metabolomic Analyses of Fruit Quality in Fruit Crops. Hortic. Plant J. 2020, 6, 361–371. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario-A Review. Front. Plant Sci. 2021, 12, 643258. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines, 1st ed.; Academic Press: Burlington, MA, USA, 2010; pp. 212–220. [Google Scholar] [CrossRef]
- Cheng, G.; He, Y.N.; Yue, T.X.; Wang, J.; Zhang, Z.W. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules 2014, 19, 13683–13703. [Google Scholar] [CrossRef]
- Torres, N.; Martinez-Luscher, J.; Porte, E.; Kurtural, S.K. Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Front. Plant Sci. 2020, 11, 931. [Google Scholar] [CrossRef]
- Sun, R.Z.; Cheng, G.; Li, Q.; He, Y.N.; Wang, Y.; Lan, Y.B.; Li, S.Y.; Zhu, Y.R.; Song, W.F.; Zhang, X.; et al. Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.Z.; Cheng, G.; Li, Q.; Zhu, Y.R.; Zhang, X.; Wang, Y.; He, Y.N.; Li, S.Y.; He, L.; Chen, W.; et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC Plant Biol. 2019, 19, 583. [Google Scholar] [CrossRef] [Green Version]
- Shinomiya, R.; Fujishima, H.; Muramoto, K.; Shiraishi, M. Impact of temperature and sunlight on the skin coloration of the ‘Kyoho’ table grape. Sci. Hortic. 2015, 193, 77–83. [Google Scholar] [CrossRef]
- Yang, B.; He, S.; Liu, Y.; Liu, B.; Ju, Y.; Kang, D.; Sun, X.; Fang, Y. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries. Food Chem. 2020, 314, 126170. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, S.; Zhang, J.; Huang, X.; Bai, X.; Xie, T.; Guo, R.; Liu, J.; Yu, H.; Xie, L. Comparison of transcriptional expression patterns of phenols and carotenoids in ‘Kyoho’ grapes under a two-crop-a-year cultivation system. PLoS ONE 2019, 14, e0210322. [Google Scholar] [CrossRef]
- Cao, X.; Deng, H.; Bai, X.; Zhang, Y.; Wen, R.; Xie, T. Analysis of Anthocyanins in Summer and Winter Fruit of Kyoho Grape by HPLC. Southwest China J. Agric. Sci. 2014, 27, 1228–1232. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, L.; Wei, R.; Shi, X.; Zhang, Y. Comparative analysis of the quality of three grape varieties in Nanning. South. Hortic. 2015, 26, 22–24. [Google Scholar]
- Cheng, G.; Zhang, J.; Zhou, S.; Xie, L.; Zhang, Y.; Yang, Y.; Guan, J.; Xie, T. Difference in anthocyanin composition between winter and summer grape berries of ‘Cabernet Sauvignon’ under two-crop-a-year cultivation. J. Fruit Sci. 2017, 34, 1125–1133. [Google Scholar] [CrossRef]
- Chen, W.K. Study of Targeted Metabolome and Transcriptome in Grape Berries Grown under Double Cropping Viticulture System. Ph.D. Thesis, China Agricultural University, Beijing, China, October 2018. [Google Scholar]
- Liu, F.Z.; Duan, C.Q. Technical Manual for Grape Production, 1st ed.; China Agriculture Press: Beijing, China, 2013; p. 137. [Google Scholar]
- Bai, X.; Chen, A.; He, J.; Wang, B.; Qin, B.; Song, Y.; Tang, R. Delayed planting and two-crop-a-year of ‘Kyoho’ Grape. South China Fruits 2016, 45, 167–168. [Google Scholar] [CrossRef]
- Coombe, B.G. Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Wei, R.; Cheng, G.; Zhou, Y.; Liu, J.; Xie, T.; Guo, R.; Zhou, S. Widely Targeted Metabolomics Profiling Reveals the Effect of Powdery Mildew on Wine Grape Varieties with Different Levels of Tolerance to the Disease. Foods 2022, 11, 2461. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Y.; Wu, W.; Zhu, C.; Zhang, R.; Chen, J.; Zeng, J. Metabolomics Analysis of the Peels of Different Colored Citrus Fruits (Citrus reticulata cv. ‘Shatangju’) During the Maturation Period Based on UHPLC-QQQ-MS. Molecules 2020, 25, 396. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Wu, J.; Shahid, M.Q.; He, Y.; Lin, S.; Liu, Z.; Yang, X. Identification of key taste components in loquat using widely targeted metabolomics. Food Chem. 2020, 323, 126822. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Zhang, H.; Lai, B.; Liu, L.; Pan, X.; Ma, Z.; Wang, Y.; Xie, J.; Shi, S.; Wei, Y. Integrative Analysis of the Coloring Mechanism of Red Longan Pericarp through Metabolome and Transcriptome Analyses. J. Agric. Food Chem. 2021, 69, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Yan, P.; Du, K.; Li, M.; Xie, Y.; Gao, P. Nutritional component analyses of kiwifruit in different development stages by metabolomic and transcriptomic approaches. J. Sci. Food Agric. 2020, 100, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, J.; Zhang, Q.; Li, X.; Li, M.; Yang, Y.; Zhou, J.; Wei, Q.; Zhou, B. Integrative physiological, transcriptome, and metabolome analysis reveals the effects of nitrogen sufficiency and deficiency conditions in apple leaves and roots. Environ. Exp. Bot. 2021, 192, 104633. [Google Scholar] [CrossRef]
- Peng, L.; Gao, W.; Song, M.; Li, M.; He, D.; Wang, Z. Integrated Metabolome and Transcriptome Analysis of Fruit Flavor and Carotenoids Biosynthesis Differences Between Mature-Green and Tree-Ripe of cv. “Golden Phoenix” Mangoes (Mangifera indica L.). Front. Plant Sci. 2022, 13, 816492. [Google Scholar] [CrossRef]
- Wang, B.; He, J.; Duan, C.; Yu, X.; Zhu, L.; Xie, Z.; Zhang, C.; Xu, W.; Wang, S. Root restriction affects anthocyanin accumulation and composition in berry skin of ‘Kyoho’ grape (Vitis vinifera L. × Vitis labrusca L.) during ripening. Sci. Hortic. 2012, 137, 20–28. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Zhu, S.; Liang, Y.; An, X.; Kong, F.; Yin, H. Response of fruit quality of table grape (Vitis vinifera L.) to foliar selenium fertilizer under different cultivation microclimates. Eur. J. Hortic. Sci. 2019, 84, 332–342. [Google Scholar] [CrossRef]
- Wang, W.; Khalil-Ur-Rehman, M.; Wei, L.L.; Nieuwenhuizen, N.J.; Zheng, H.; Tao, J.M. Effect of Thidiazuron on Terpene Volatile Constituents and Terpenoid Biosynthesis Pathway Gene Expression of Shine Muscat (Vitis labrusca x V. vinifera) Grape Berries. Molecules 2020, 25, 2578. [Google Scholar] [CrossRef]
- Xue, H.K.; Tan, J.Q.; Liu, C.; Liu, C.H. Isolation, Purification, Structure Identification and Anti-tumor Activity of Anthocyanin from Kyoho Grape Skins. Food Sci. 2020, 41, 39–48. [Google Scholar] [CrossRef]
- Liao, H.S.; Yang, C.C.; Ming-Hsiun, H. Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by histone deacetylase15 in arabidopsis. J. Exp. Bot. 2022, 11, 3726–3742. [Google Scholar] [CrossRef]
- Poudel, P.R.; Koyama, K.; Goto-Yamamoto, N. Evaluating the influence of temperature on proanthocyanidin biosynthesis in developing grape berries (Vitis vinifera L.). Mol. Biol. Rep. 2020, 47, 3501–3510. [Google Scholar] [CrossRef]
- Azuma, A.; Yakushiji, H.; Koshita, Y.; Kobayashi, S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 2012, 236, 1067–1080. [Google Scholar] [CrossRef]
- Yin, Y.; Li, M.; Jia, N.; Sun, Y.; Han, B.; Liu, C.; Liu, S.; Zhao, S.; Guo, Z. Effects of trellis system and berry thinning intensity on vine performance and quality composition of two table grape cultivars under protected cultivation in northern China. Sci. Hortic. 2022, 299, 111045. [Google Scholar] [CrossRef]
- Carbonell-Bejerano, P.; Diago, M.-P.; Martínez-Abaigar, J.; Martínez-Zapater, J.M.; Tardáguila, J.; Núñez-Olivera, E. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol. 2014, 14, 183. [Google Scholar] [CrossRef]
- Zhang, K.; Li, W.; Ju, Y.; Wang, X.; Sun, X.; Fang, Y.; Chen, K. Transcriptomic and Metabolomic Basis of Short- and Long-Term Post-Harvest UV-C Application in Regulating Grape Berry Quality Development. Foods 2021, 10, 625. [Google Scholar] [CrossRef]
Meteorological Data | E-L 4–19 | E-L 19–26 | E-L 26–35 | E-L 35–38 | ||||
---|---|---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | |
Phenology | 27 February–30 March | 5 September–22 September | 31 March–7 April | 23 September–28 September | 8 April–26 May | 29 September–6 November | 27 May–29 June | 7 November–28 December |
Number of days | 33 | 18 | 8 | 6 | 49 | 39 | 34 | 52 |
Number of days ≥35 °C | 0 | 12 | 0 | 1 | 0 | 1 | 27 | 0 |
Active T a (°C) | 686.08 | 518.12 | 131.73 | 155.48 | 1269.39 | 913.93 | 1015.791 | 901.49 |
Effective T b (°C) | 356.08 | 338.12 | 51.73 | 95.48 | 779.39 | 523.93 | 675.79 | 381.49 |
Relative humidity c (%) | 85.71 | 80.95 | 91.63 | 84.44 | 77.87 | 77.59 | 80.50 | 75.69 |
Solar radiation Intensity d (W/m2) | 52.68 | 110.37 | 37.05 | 80.71 | 108.44 | 89.64 | 132.20 | 73.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, G.; Zhou, S.; Liu, J.; Feng, Q.; Wei, R.; Yu, H.; Wang, B.; Zhang, Y.; Bai, X. Widely Targeted Metabolomics Provides New Insights into the Flavonoid Metabolism in ‘Kyoho’ Grapes under a Two-Crop-a-Year Cultivation System. Horticulturae 2023, 9, 154. https://doi.org/10.3390/horticulturae9020154
Cheng G, Zhou S, Liu J, Feng Q, Wei R, Yu H, Wang B, Zhang Y, Bai X. Widely Targeted Metabolomics Provides New Insights into the Flavonoid Metabolism in ‘Kyoho’ Grapes under a Two-Crop-a-Year Cultivation System. Horticulturae. 2023; 9(2):154. https://doi.org/10.3390/horticulturae9020154
Chicago/Turabian StyleCheng, Guo, Sihong Zhou, Jinbiao Liu, Qiyan Feng, Rongfu Wei, Huan Yu, Bo Wang, Ying Zhang, and Xianjin Bai. 2023. "Widely Targeted Metabolomics Provides New Insights into the Flavonoid Metabolism in ‘Kyoho’ Grapes under a Two-Crop-a-Year Cultivation System" Horticulturae 9, no. 2: 154. https://doi.org/10.3390/horticulturae9020154
APA StyleCheng, G., Zhou, S., Liu, J., Feng, Q., Wei, R., Yu, H., Wang, B., Zhang, Y., & Bai, X. (2023). Widely Targeted Metabolomics Provides New Insights into the Flavonoid Metabolism in ‘Kyoho’ Grapes under a Two-Crop-a-Year Cultivation System. Horticulturae, 9(2), 154. https://doi.org/10.3390/horticulturae9020154