Nitrogen Fertilization Improves Growth and Bioactive Compound Content for Salvia miltiorrhiza Bunge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Cultivation
2.2. Plant Growth
2.3. Root Nitrogen Analyses
2.4. Photosynthetic Activities
2.5. Preparation of Danshen Extract
2.6. Analysis of Tanshinone I, Tanshinone IIA, Cryptotanshinone, and Salvianolic Acid B
2.7. Experimental Design and Statistical Analysis
3. Results
3.1. Plant Growth Index, Leaf SPAD Values, Shoot Number, and Root Number
3.2. Shoot Fresh Weight, Dry Weight, Maximum Root Length, and Maximum Root Diameter
3.3. Root Fresh Weight, Root Dry Weight, Shoot: Root Ratio, and N Concentration in Root
3.4. Photosynthetic Activities
3.5. Tanshinone I, Tanshinone IIA, Cryptotanshinone, and Salvianolic Acid B
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, Z.Q.; Li, X.F.; Wang, H.G.; Wang, J.H. Genetic diversity and population structure of Salvia miltiorrhiza Bunge in China revealed by ISSR and SRAP. Genetica 2010, 138, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Q. Salvia miltiorrhiza: Chemical and pharmacological review of a medicinal plant. J. Med. Plant Res. 2010, 4, 2813–2820. [Google Scholar]
- Salvia multiorrhiza-Bunge. Available online: https//pfaf.org/USER/Plant.aspx?LaatinName=Salvia+miltiorrhiza (accessed on 27 September 2022).
- Clebsch, B. The New Book of Salvias: Sages for Every Garden; Timber Press: Portland, OR, USA, 2003; Volume 99, p. 1263. [Google Scholar]
- Liang, Y.; Kang, L.Y.; Qi, Z.H.; Gao, X.; Quan, H.L.; Lin, H.F. Salvia miltiorrhiza solution and its active compounds ameliorate human granulosa cell damage induced by H2O2. Exp. Ther. Med. 2021, 21, 64. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.L.; Pu, Z.Q.; Cao, G.; You, D.W.; Zhou, Y.; Deng, C.P.; Shi, M.; Nile, S.H.; Wang, Y.; Zhou, W.; et al. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J. Adv. Res. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Zhong, G.X.; Li, P.; Zeng, L.J.; Guan, J.I.A.; Li, D.Q.; Li, S.P. Chemical characteristics of Salvia miltiorrhiza (Danshen) collected from different locations in China. J. Agric. Food Chem. 2009, 57, 6879–6887. [Google Scholar] [CrossRef]
- Fong, H.H.S. Integration of herbal medicine into modern medical practices: Issues and prospects. Integr. Cancer Ther. 2002, 1, 287–293. [Google Scholar] [CrossRef]
- Lin, Y.S.; Peng, W.H.; Shih, M.F.; Cherng, J.Y. Anxiolytic effect of an extract of Salvia miltiorrhiza Bunge (Danshen) in mice. J. Ethnopharmacol. 2021, 264, 113285. [Google Scholar] [CrossRef]
- Jung, I.; Kim, H.; Moon, S.; Lee, H.; Kim, B. Overview of Salvia miltiorrhiz a as a potential therapeutic agent for various diseases: An update on efficacy and mechanisms of action. Antioxidants 2020, 9, 857. [Google Scholar] [CrossRef]
- Liu, H.M.; Ma, S.L.; Xia, H.R.; Lou, H.X.; Zhu, F.L.; Sun, L.R. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J. Ethnopharmacol. 2018, 222, 201–207. [Google Scholar] [CrossRef]
- Orgah, J.O.; He, S.; Wang, Y.L.; Jiang, M.M.; Wang, Y.F.; Orgah, E.A.; Duan, Y.J.; Zhao, B.C.; Zhang, B.L.; Han, J.H.; et al. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharm. Res. 2020, 153, 104654. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, T.; Huang, K.; Shen, L.; Tao, Y.Y.; Liu, C.H. Salvia miltiorrhiza ameliorates liver fibrosis by activating hepatic natural killer cells in vivo and in vitro. Front. Pharmacol. 2018, 9, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kum, K.Y.; Kirchhof, R.; Luick, R.; Heinrich, M. Danshen (Salvia miltiorrhiza) on the global market: What are the implications for products’ quality? Front. Pharmacol. 2021, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.L.; Xu, J.; Kochanek, K.D.; Arias, E. Mortality in the United States, 2017; CDC: Atlanta, GA, USA, 2018; p. 4. [Google Scholar]
- Ahmad, F.B.; Anderson, R.N. The leading causes of death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef] [PubMed]
- Tasly Pharmaceuticals Seeks Final US Approval for T89 Drug. Available online: https://www.taslyus.com/wp-content/uploads/2019/01/Tasly-ChinaDaily_Page-1.pdf (accessed on 27 September 2022).
- Kussow, W.R. Fertilizers and fertilization: Introduction and practical guide to crop fertilization. Soil Sci. 1983, 136, 195. [Google Scholar] [CrossRef]
- Roberts, T.L. The role of fertilizer in growing the world’s food. BC 2009, 93, 12–15. [Google Scholar]
- Azimi, S.; Kaur, T.; Gandhi, T.K. A deep learning approach to measure stress level in plants due to nitrogen deficiency. Measurement 2021, 173, 108650. [Google Scholar] [CrossRef]
- Amanullah, J.; Stewart, B.A. Dry matter partitioning, growth analysis and water use efficiency response of oats (Avena sativa L.) to excessive nitrogen and phosphorus application. J. Agric. Sci. Technol. 2013, 15, 479–489. [Google Scholar]
- He, C.E.; Lu, L.L.; Jin, Y.; Wei, J.H.; Christie, P. Effects of nitrogen on root development and contents of bioactive compounds in Salvia miltiorrhiza Bunge. Crop Sci. 2013, 53, 2028–2039. [Google Scholar] [CrossRef]
- Xia, G.H.; Wang, Q.L.; Wang, W.Q.; Hou, J.L.; Song, Q.Y.; Luo, L.; Zhang, D.D.; Yang, X. Effects of different concentrations of nitrogen and phosphorus on growth and active components of Salvia miltiorrhiza. China J. Chin. Mater. Med. 2016, 41, 4175–4182. [Google Scholar]
- Donnelly, A.; Yu, R.; Rehberg, C.; Meyer, G.; Young, E.B. Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll. Ann. For. Sci. 2020, 77, 1–12. [Google Scholar] [CrossRef]
- Sheng, S. Cultivation and quality studies of Danshen (Salvia miltiorrhiza) in Australia. Ph.D. Dissertation, RMIT University, Melbourne, Australia, 2007. [Google Scholar]
- Bremner, J.M. Methods of soil analysis. Agronomy 1965, 9, 1195–1198. [Google Scholar]
- Yuan, X.K.; Yang, Z.Q.; Li, Y.X.; Liu, Q.; Han, W. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 2016, 54, 28–39. [Google Scholar] [CrossRef]
- Yu, Z.X.; Zhang, Y.Y.; Zhao, X.X.; Yu, L.; Chen, X.B.; Wan, H.T.; Jin, W.F. Simultaneous optimization of ultrasonic-assisted extraction of Danshen for maximal tanshinone IIA and salvianolic acid B yields and antioxidant activity: A comparative study of the response surface methodology and artificial neural network. Ind. Crops Prod. 2021, 161, 113199. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Gao, W.; Huang, L.Q. Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front. Pharmacol. 2019, 10, 202. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China 2020; China Medical Science Press: Beijing, China, 2020; pp. 76–77. [Google Scholar]
- Ren, J.; Jiang, T.; Li, C.; Gu, L.H.; Li, J.M. Content determination of tanshinol and salvianolic acid B in Zhongfeng Huichun Capsule by HPLC. Pharm. Today 2021, 31, 32–34. [Google Scholar]
- Máximo, W.P.F.; Almeida Santos, P.A.; Mendonça, E.G.; Santos, B.R.; Paiva, L.V. Nitrate (NO3−) and ammonium (NH4+) ratios for propagation of ‘Eucalyptus’ hybrid in two different ‘in vitro’ cultivation systems. Aust. J. Crop Sci. 2015, 9, 1242–1248. [Google Scholar]
- Zhang, X.D.; Yu, Y.G.; Yang, D.F.; Qi, Z.C.; Liu, R.Z.; Deng, F.T.; Liang, Z.S. Chemotaxonomic variation in secondary metabolites contents and their correlation between environmental factors in Salvia miltiorrhiza Bunge from natural habitat of China. Ind. Crops Prod. 2018, 113, 335–347. [Google Scholar] [CrossRef]
- Gendy, A.S.; Said-Al Ahl, H.A.; Mahmoud, A.A.; Mohamed, H.F. Effect of nitrogen sources, bio-fertilizers and their interaction on the growth, seed yield and chemical composition of guar plants. Life Sci. 2013, 10, 389–402. [Google Scholar]
- Shalaby, A.S.; El-Gengaihi, S.E.; Agina, E.A.; El-Khayat, A.S.; Hendawy, S.F. Growth and yield of Echinacea purpurea L. as influenced by planting density and fertilization. J. Herbs Spices Med. Plants. 1997, 5, 69–76. [Google Scholar] [CrossRef]
- Rueda, D.; Valencia, G.; Soria, N.; Rueda, B.B.; Manjunatha, B.; Kundapur, R.R.; Selvanayagam, M. Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J. Appl. Pharm. Sci. 2016, 6, 48–54. [Google Scholar] [CrossRef]
- Chowdhury, M.K.; Rosario, E.L. Phosphorus utilization efficiency as affected by component population, rhizobial inoculation and applied nitrogen in maize/mungbean intercropping. Exp. Agric. 1992, 28, 255–263. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Gonçalves, W.V.; Vieira, M.D.C.; Carnevali, T.D.O.; Zárate, N.A.H.; Aran, H.D.V.R.; Mineli, K.C.S. Nitrogen and phosphorus fertilization promotes aerial part development and affect nutrient uptake by carobinha of the Brazilian Cerrado. Am. J. Plant Physiol. 2017, 8, 3377. [Google Scholar] [CrossRef]
- Reyes, J.F.; Correa, C.; Zuniga, J. Reliability of different color spaces to estimate nitrogen SPAD values in maize. Comput. Electron. Agric. 2017, 143, 14–22. [Google Scholar] [CrossRef]
- Vos, J.; Biemond, H. Effects of nitrogen on the development and growth of the potato plant. 1. Leaf appearance, expansion growth, life spans of leaves and stem branching. Ann. Bot. 1992, 70, 27–35. [Google Scholar] [CrossRef]
- Evans, J.R. Improving photosynthesis. Plant Physiol. 2013, 162, 1780–1793. [Google Scholar] [CrossRef] [PubMed]
- Fahl, J.I.; Carelli, M.L.C.; Vega, J.; Magalhães, A.C. Nitrogen and irradiance levels affecting net photosynthesis and growth of young coffee plants (Coffea arabica L.). J. Hortic. Sci. Biotechnol. 1994, 69, 161–169. [Google Scholar] [CrossRef]
- Shangguan, Z.P.; Shao, M.G.; Dyckmans, J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J. Plant Physiol. 2000, 156, 46–51. [Google Scholar] [CrossRef]
- Cun, Z.; Zhang, J.Y.; Wu, H.M.; Zhang, L.; Chen, J.W. High nitrogen inhibits photosynthetic performance in a shade-tolerant and N-sensitive species Panax notoginseng. Photosynth. Res. 2021, 147, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Cechin, I.; Fumis, T.D.F. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci. 2004, 166, 1379–1385. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, A.Z.; Wu, J.B.; Yuan, F.H.; Guan, D.X.; Jin, C.J.; Zhang, Y.S.; Gong, C.J. Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Sci. Rep. 2020, 10, 10038. [Google Scholar] [CrossRef] [PubMed]
- Rajaona, A.M.; Brueck, H.; Asch, F. Leaf gas exchange characteristics of Jatropha as affected by nitrogen supply, leaf age and atmospheric vapour pressure deficit. J. Agron. Crop Sci. 2013, 199, 144–153. [Google Scholar] [CrossRef]
- Han, J. Regulation of Salvia miltiorrhizae growth and danshensu and tanshion Ⅱ_A accumulation under nitrogen and phosphorus. Chin. Tradit. Herb. Drugs. 1994, 5, 756–759. [Google Scholar]
- Walch-Liu, P.I.A.; Ivanov, I.I.; Filleur, S.; Gan, Y.; Remans, T.; Forde, B.G. Nitrogen regulation of root branching. Ann. Bot. 2006, 97, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, L.T.; Wang, Z.B.; Zhang, Y.J.; Sun, H.C.; Song, S.J.; Bai, Z.Y.; Lu, Z.Y.; Li, C.D. Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. Front. Plant Sci. 2020, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, W.; Wei, Y.Y.; Zhou, J.; Wang, X.; Geng, Y.L.; Li, F.S. Effect of the cultivation pattern on photosynthesis and yield of Salvia miltiorrhiza. J. Chin. Med. 2016, 39, 704–707. [Google Scholar]
- Ågren, G.I.; Franklin, O. Root: Shoot ratios, optimization and nitrogen productivity. Ann. Bot. 2003, 92, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Y. Effects of different nitrogen sources on accumulation of active components in hairy roots of Salvia miltiorrhiza and Salvia castanea f. tomentosa. Chin. Tradit. Herb. Drugs. 2020, 24, 2538–2547. [Google Scholar]
- Han, J.P.; Liang, Z.S.; Sun, Q.; Wang, W.L.; Wei, Y.S.; Ye, Z.L.; Wang, J.M. Effects of nitrogenous and phosphorous on the root growth and accumulation of total tanshinones of Salvia miltiorrh iza. Acta Bot. Sin. 2003, 23, 603–607. [Google Scholar]
- Chen, X.Y. Effect of fertilization combination of nitrogen, phosphorus, and potassium on yield and quality of Salvia miltiorrhiza. Chin. Tradit. Herb. Drugs. 2019, 24, 722–730. [Google Scholar]
- Zeng, H.T.; Su, S.L.; Xiang, X.; Sha, X.X.; Zhu, Z.H.; Wang, Y.Y.; Guo, S.; Yan, H.; Qian, D.W.; Duan, J.N. Comparative analysis of the major chemical constituents in Salvia miltiorrhiza roots, stems, leaves and flowers during different growth periods by UPLC-TQ-MS/MS and HPLC-ELSD methods. Molecules 2017, 22, 771. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yu, Z. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review. J. Pharm. Anal. 2015, 5, 277–284. [Google Scholar] [CrossRef]
- Liu, S.H.; Zhang, X.G.; Sun, S.Q. Discrimination and feature selection of geographic origins of traditional Chinese medicine herbs with NIR spectroscopy. Chin. Sci. Bull. 2005, 50, 179–184. [Google Scholar] [CrossRef]
- Woo, Y.A.; Kim, H.J.; Cho, J.; Chung, H. Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques. J. Pharm. Biomed. Anal. 1999, 21, 407–413. [Google Scholar] [CrossRef] [PubMed]
N Rate (g) | PGI 1 | SPAD | Shoot Number (Per Plant) | Root Number (Per Plant) 2 | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
0 | 22.8 ± 2.8 d 3 | 23.4 ± 1.7 d | 16.3 ± 2.6 d | 12.3 ± 1.1 e | 4.8 ± 0.8 c | 5.0 ± 0.7 c | 20.0 ± 1.2 c | 21.8 ± 3.0 d |
2 | 31.4 ± 3.8 c | 35.1 ± 3.0 c | 22.0 ± 2.2 c | 22.1 ± 2.3 d | 8.0 ± 1.0 b | 5.8 ± 0.8 bc | 33.8 ± 4.6 b | 37.8 ± 3.6 c |
4 | 36.5 ± 4.7 c | 39.1 ± 3.7 c | 23.6 ± 3.0 c | 25.4 ± 2.2 c | 8.4 ± 1.3 b | 7.0 ± 0.7 b | 37.8 ± 2.5 b | 39.8 ± 3.1 bc |
6 | 50.7 ± 4.6 b | 54.9 ± 4.1 b | 29.9 ± 3.2 b | 31.0 ± 2.9 b | 10.8 ± 1.3 a | 10.3 ± 1.1 a | 38.6 ± 3.8 b | 44.6 ± 4.0 b |
8 | 56.0 ± 4.0 a | 61.7 ± 6.2 a | 35.7 ± 7.3 a | 35.9 ± 3.3 a | 11.8 ± 0.8 a | 11.6 ± 1.1 a | 62.6 ± 5.9 a | 55.2 ± 4.9 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
N Rate (g) | Shoot Fresh Weight (g Per Plant) | Shoot Dry Weight (g Per Plant) | Maximum Root Length (cm) 1 | Maximum Root Diameter (mm) 2 | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
0 | 27.0 ± 1.1 e 3 | 26.3 ± 3.2 e | 10.4 ± 0.8 e | 10.8 ± 1.3 e | 35.2 ± 1.8 c | 33.6 ± 2.3 b | 7.4 ± 1.5 c | 8.8 ± 0.4 c |
2 | 57.7 ± 1.2 d | 53.4 ± 3.0 d | 16.7 ± 1.3 d | 16.3 ± 0.8 d | 42.8 ± 3.1 b | 34.0 ± 2.6 b | 10.6 ± 1.6 b | 9.7 ± 1.0 c |
4 | 64.0 ± 2.2 c | 65 ± 2.8 c | 19.9 ± 1.8 c | 20.6 ± 1.9 c | 45.2 ± 1.5 b | 45.2 ± 2.2 a | 11.7 ± 1.5 b | 12.5 ± 1.2 b |
6 | 103.7 ± 3.9 b | 103.3 ± 5.9 b | 25.2 ± 2.8 b | 24.3 ± 1.9 b | 48.4 ± 1.1 a | 45.4 ± 2.3 a | 14.4 ± 1.7 a | 15.2 ± 0.7 a |
8 | 125.6 ± 2.7 a | 124 ± 3.5 a | 27.6 ± 1.8 a | 27.8 ± 1.4 a | 50.0 ± 1.7 a | 47.0 ± 4.3 a | 14.4 ± 1.5 a | 15.9 ± 0.6 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
N Rate (g) | Root Fresh Weight (g Per Plant) | Root Dry Weight (g Per Plant) | Shoot:Root Ratio | N Concentration in Root (%) | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
0 | 110.2 ± 6.7 c 1 | 109.4 ± 7.2 c | 43.6 ± 1.4 c | 42.8 ± 2.0 c | 0.24 ± 0.02 d | 0.24 ± 0.02 e | 0.75 ± 0.12 e | 0.81 ± 0.07 d |
2 | 205.6 ± 21.4 b | 201 ± 12.7 b | 64 ± 2.7 b | 65.8 ± 1.0 b | 0.29 ± 0.01 c | 0.27 ± 0.01 d | 0.9 ± 0.05 d | 1.02 ± 0.08 c |
4 | 210.1 ± 25.4 b | 204.2 ± 16.4 b | 68.4 ± 1.9 b | 68 ± 2.0 b | 0.31 ± 0.03 c | 0.32 ± 0.01 c | 1.1 ± 0.13 c | 1.18 ± 0.1 b |
6 | 289.2 ± 25.1 a | 281.8 ± 14.1 a | 87.6 ± 1.7 a | 88.1 ± 1.6 a | 0.34 ± 0.02 b | 0.37 ± 0.01 b | 1.23 ± 0.08 b | 1.27 ± 0.1 b |
8 | 311.5 ± 28.2 a | 294 ± 19.7 a | 92.1 ± 7.6 a | 88.8 ± 5.6 a | 0.37 ± 0.02 a | 0.42 ± 0.02 a | 1.4 ± 0.1 a | 1.5 ± 0.11 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
N Rate (g) | Pn 2 | gs 3 | Ci 4 | Trmmol 5 | VPDL 6 |
---|---|---|---|---|---|
(μmol m−2 s−1) | (mol m−2 s−1) | (umol mol−1) | (mmol m−2 s−1) | (kPa) | |
0 | 11.1 ± 1.6 c 1 | 0.08 ± 0.007 c | 130.7 ± 7.9 d | 3.35 ± 0.28 b | 2.25 ± 0.16 b |
2 | 12.9 ± 1.2 b | 0.132 ± 0.009 b | 250.32 ± 22.29 a | 4.16 ± 0.41 a | 2.49 ± 0.17 a |
4 | 16.8 ± 1.4 a | 0.17 ± 0.02 a | 224.04 ± 12.43 b | 3.67 ± 0.33 b | 2.04 ± 0.06 c |
6 | 16.2 ± 1.2 a | 0.168 ± 0.008 a | 221.71 ± 12.02 b | 3.58 ± 0.31 b | 1.97 ± 0.1 c |
8 | 13.7 ± 0.4 b | 0.134 ± 0.01 b | 199.9 ± 15.8 c | 2.8 ± 0.22 c | 2.24 ± 0.12 b |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
N Rate (g) | Tanshinone I (%) | Tanshinone IIA (%) | Cryptotanshinone (%) | Salvianolic Acid B (%) | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
0 | 0.02 ± 0.005 d 1 | 0.014 ± 0.002 d | 0.215 ± 0.007 d | 0.225 ± 0.005 d | 0.079 ± 0.011 c | 0.073 ± 0.007 d | 2.425 ± 0.063 d | 2.399 ± 0.036 d |
2 | 0.05 ± 0.006 c | 0.053 ± 0.003 c | 0.243 ± 0.01 c | 0.247 ± 0.007 c | 0.106 ± 0.017 b | 0.1 ± 0.006 c | 2.849 ± 0.111 c | 2.799 ± 0.11 c |
4 | 0.061 ± 0.001 b | 0.065 ± 0.004 b | 0.315 ± 0.01 b | 0.308 ± 0.011 b | 0.118 ± 0.008 b | 0.119 ± 0.008 b | 3.304 ± 0.223 b | 3.269 ± 0.231 b |
6 | 0.077 ± 0.004 a | 0.082 ± 0.007 a | 0.344 ± 0.008 a | 0.346 ± 0.007 a | 0.153 ± 0.012 a | 0.159 ± 0.005 a | 3.926 ± 0.193 a | 3.855 ± 0.099 a |
8 | 0.078 ± 0.005 a | 0.078 ± 0.006 a | 0.339 ± 0.01 a | 0.344 ± 0.013 a | 0.143 ± 0.01 a | 0.158 ± 0.011 a | 3.868 ± 0.101 a | 3.848 ± 0.06 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Bi, G.; Li, T.; Zhang, Q.; Knight, P.R. Nitrogen Fertilization Improves Growth and Bioactive Compound Content for Salvia miltiorrhiza Bunge. Horticulturae 2023, 9, 254. https://doi.org/10.3390/horticulturae9020254
Xing Z, Bi G, Li T, Zhang Q, Knight PR. Nitrogen Fertilization Improves Growth and Bioactive Compound Content for Salvia miltiorrhiza Bunge. Horticulturae. 2023; 9(2):254. https://doi.org/10.3390/horticulturae9020254
Chicago/Turabian StyleXing, Zhiheng, Guihong Bi, Tongyin Li, Qianwen Zhang, and Patricia R. Knight. 2023. "Nitrogen Fertilization Improves Growth and Bioactive Compound Content for Salvia miltiorrhiza Bunge" Horticulturae 9, no. 2: 254. https://doi.org/10.3390/horticulturae9020254
APA StyleXing, Z., Bi, G., Li, T., Zhang, Q., & Knight, P. R. (2023). Nitrogen Fertilization Improves Growth and Bioactive Compound Content for Salvia miltiorrhiza Bunge. Horticulturae, 9(2), 254. https://doi.org/10.3390/horticulturae9020254