Chemical Composition, and Antioxidant and Cholinesterase Inhibitory Activities of Lindera glauca Fruit Essential Oil and Molecular Docking Studies of Six Selected Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction of Essential Oil
2.3. GC-MS and GC-FID Analysis
2.4. Antioxidant Activity Assays
2.5. Cholinesterase Inhibitory Activities
2.6. Molecular Docking Study
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of the LGFEO
3.2. Antioxidant Activity of the LGFEO
3.3. Cholinesterase Inhibitory Activity of the LGFEO
3.4. Molecular Docking
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Xuan, B.; Peng, B.; Li, C.; Chai, X.; Tu, P. The genus Lindera: A source of structurally diverse molecules having pharmacological significance. Phytochem. Rev. 2015, 15, 869–906. [Google Scholar] [CrossRef]
- Huh, G.W.; Park, J.H.; Kang, J.H.; Jeong, T.S.; Kang, H.C.; Baek, N.I. Flavonoids from Lindera glauca Blume as low-density lipoprotein oxidation inhibitors. Nat. Prod. Res. 2014, 28, 831–834. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.S.; Baek, J.; Park, H.B.; Moon, E.; Kim, S.Y.; Choi, S.U.; Kim, K.H. A new rearranged eudesmane sesquiterpene and bioactive sesquiterpenes from the twigs of Lindera glauca (Sieb. et Zucc.) Blume. Arch. Pharm. Res. 2016, 39, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.F.; Jiang, S.Q.; Zheng, X.Y.; Tang, Y.Q.; Yang, B.; Yi, T.; Jin, J.; Cui, H.; Zhao, Z. Pseudoguaianelactones A-C: Three unusual sesquiterpenoids from Lindera glauca with anti-inflammatory activities by inhibiting the LPS-induced expression of iNOS and COX-2. Chem. Commun. 2020, 56, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.F.; Pan, W.C.; Zhao, M.; Tang, Y.Q.; Chen, X.J.; Bai, J.Y.; Jin, J.; Cui, H.; Zhao, Z.X. Butyrolactone and sesquiterpene derivatives as inhibitors of iNOS from the roots of Lindera glauca. Bioorg. Chem. 2021, 111, 104871. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Tang, Y.; Zhou, Y.; Deng, H.; He, J.; Liu, Y.; Zhao, Z.; Cui, H. Lindera sesterterpenoids A and B: Two 7-cyclohexyldecahydroazulene carbon skeleton sesterterpenoids isolated from the root of Lindera glauca. Org. Lett. 2022, 24, 3717–3720. [Google Scholar] [CrossRef]
- Kim, K.H.; Moon, E.; Ha, S.K.; Suh, W.S.; Kim, H.K.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Bioactive lignan constituents from the twigs of Lindera glauca. Chem. Pharm. Bull. 2014, 62, 1136–1140. [Google Scholar] [CrossRef] [Green Version]
- Suh, W.S.; Kim, K.H.; Kim, H.K.; Choi, S.U.; Lee, K.R. Three new lignan derivatives from Lindera glauca (Siebold et Zucc.) Blume. Helv. Chim. Acta 2015, 98, 1087–1094. [Google Scholar] [CrossRef]
- Huh, G.W.; Park, J.H.; Shrestha, S.; Lee, Y.H.; Ahn, E.M.; Kang, H.C.; Baek, N.I. Sterols from Lindera glauca Blume stem wood. J. Appl. Biol. Chem. 2011, 54, 309–312. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, Z.; Dong, S. Biodiesel from Lindera glauca oil, a potential non-food feedstock in Southern China. Ind. Crops Prod. 2018, 122, 107–113. [Google Scholar] [CrossRef]
- Qi, J.; Xiong, B.; Ju, Y.; Hao, Q.; Zhang, Z. Study on fruit growth regularity and lipid accumulation of Lindera glauca. Chin. Agric. Sci. Bull. 2015, 31, 29–33. [Google Scholar]
- Huh, G.W.; Park, J.H.; Shrestha, S.; Lee, Y.H.; Ahn, E.M.; Kang, H.C.; Kim, Y.B.; Baek, N.I. New diarylpropanoids from Lindera glauca Bl. heartwood. Holzforschung 2012, 66, 585–590. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, C.Y.; Chang, F.R.; Wu, Y.C. Alkaloids from Lindera glauca. J. Chin. Chem. Soc. 2001, 48, 811–815. [Google Scholar] [CrossRef]
- Wang, R.; Tang, S.; Zhai, H.; Duan, H. Studies on anti-tumor metastatic constituents from Lindera glauca. China J. Chin. Mater. Med. 2011, 36, 1032–1036. [Google Scholar]
- Liu, Y.; Li, W.Y.; Liu, X.W.; Qi, C.M.; Yuan, Z.H. Chemical constituents from the roots of Lindera glauca and their antitumor activity on four different cancer cell lines. J. Chin. Med. Mater. 2016, 39, 1789–1792. [Google Scholar]
- Wei, G.; Chen, H.; Nie, F.; Ma, X.; Jiang, H. 1, 3, 6-Trihydroxy-7-methyl-9, 10-anthracenedione isolated from genus Lindera with anti-cancer activity. Anticancer. Agents Med. Chem. 2017, 17, 1604–1607. [Google Scholar] [CrossRef]
- Kim, Y.U.; Moon, H.R.; Han, I.; Yun, J.M. Anti-proliferative and apoptotic activity of extracts of Lindera glauca Blume root in human HCT116 colorectal cancer cells. J. Korean Soc. Food Cult. 2021, 36, 235–245. [Google Scholar]
- Park, S.; Song, J.H.; Nhiem, N.X.; Ko, H.J.; Kim, S.H. The chemical constituents from twigs of Lindera glauca (Siebold & Zucc.) Blume and their antiviral activities. Phytochem. Lett. 2018, 25, 74–80. [Google Scholar]
- Kim, Y.S.; Kim, E.K.; Dong, X.; Park, J.S.; Shin, W.B.; Kim, S.J.; Go, E.A.; Park, P.J.; Lim, B.O. Lindera glauca (Siebold et Zucc.) Blume stem extracts protect against tert-butyl hydroperoxide-induced oxidative stress. J. Med. Food 2019, 22, 508–520. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, B.H.; Park, S.J.; Yang, W.I.; Kim, M.S.; Lee, B.S.; Cha, D.S.; Lee, S.Y.; Kwon, J.; Jeon, H. Anti-inflammatory and anti-nociceptive effects of ethyl acetate fraction of Lindera glauca. Korean J. Pharmacogn. 2022, 53, 49–56. [Google Scholar]
- Kim, Y.; Cho, S.H. Lindera glauca Blume ameliorates amyloid-beta(1-42)-induced memory impairment in mice with neuroprotection and activation of the CREB-BDNF pathway. Neurochem. Int. 2021, 147, 105071. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, F.; Ren, S.; Zhang, H.; Peng, J. Chemical constituents of the essential oil from the fruits of Lindera glauca and its antifungal activities. J. Chin. Med. Mater. 1999, 22, 295–298. [Google Scholar]
- Sun, H.L.; Wang, J.X.; Gu, X.Z.; Kang, W.Y. Analysis of volatile compounds from leaves and fruits of Lindera glauca. Chin. J. Exp. Tradit. Med. Formulae 2011, 17, 94–97. [Google Scholar]
- Zhu, B.; Hou, X.; Niu, J.; Li, P.; Fang, C.; Qiu, L.; Ha, D.; Zhang, Z.; Sun, J.; Li, Y.; et al. Volatile constituents from the fruits of Lindera glauca (Sieb. et Zucc.) with different maturities. J. Essent. Oil Bear. Plants 2016, 19, 926–935. [Google Scholar] [CrossRef]
- Chen, F.; Miao, X.; Lin, Z.; Xiu, Y.; Shi, L.; Zhang, Q.; Liang, D.; Lin, S.; He, B. Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against Shigella flexneri. Food Control 2021, 130, 108282. [Google Scholar] [CrossRef]
- Chau, D.T.M.; An, N.T.G.; Huong, L.T.; Ogunwande, I.A. Compositions and antimicrobial activity of essential oils from the leaves of Beilschmiedia fordii Dunn. and Lindera glauca (Siebold & Zucc.) Blume from Vietnam. J. Essent. Oil Bear. Plants 2022, 25, 93–102. [Google Scholar]
- Zhao, T.; Ma, C.; Zhu, G. Chemical composition and biological activities of essential oils from the leaves, stems, and roots of Kadsura coccinea. Molecules 2021, 26, 6259. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, J.; Gary, E.N.; Shiomi, K.; Rosenberry, T.L. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med. Chem. Lett. 2013, 4, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Meden, A.; Knez, D.; Jukic, M.; Brazzolotto, X.; Grsic, M.; Pislar, A.; Zahirovic, A.; Kos, J.; Nachon, F.; Svete, J.; et al. Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer’s disease. Chem. Commun. 2019, 55, 3765–3768. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 523–524, 9–20. [Google Scholar] [CrossRef]
- Comai, S.; Dall’Acqua, S.; Grillo, A.; Castagliuolo, I.; Gurung, K.; Innocenti, G. Essential oil of Lindera neesiana fruit: Chemical analysis and its potential use in topical applications. Fitoterapia 2010, 81, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, N.; Kitajima, M.; Takamagi, S.; Fujioka, M.; Tomisawa, T. Comparison of chemical composition between Kuromoji (Lindera umbellata) essential oil and hydrosol and determination of the deodorizing effect. Molecules 2020, 25, 4195. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Li, Y.; Fan, J.; Tan, R.; Jiang, H. Chemical composition, antioxidant and antimicrobial activities of essential oil from the leaves of Lindera fragrans Oliv. Rec. Nat. Prod. 2020, 15, 65–70. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chu, S.S.; Jiang, C.H.; Hou, J.; Liu, Q.Z.; Jiang, G.H. Composition and insecticidal activity of the essential oil of Lindera aggregate root tubers against Sitophilus zeamais and Tribolium castaneum. J. Essent. Oil Bear. Plants 2016, 19, 727–733. [Google Scholar] [CrossRef]
- Farre-Armengol, G.; Filella, I.; Llusia, J.; Penuelas, J. Beta-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadordizadeh, T.; Mahdian, E.; Hesarinejad, M.A. Application of encapsulated Indigofera tinctoria extract as a natural antioxidant and colorant in ice cream. Food Sci. Nutr. 2023, 00, 1–12. [Google Scholar] [CrossRef]
- Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem. 2006, 54, 6303–6307. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Silva-Espinoza, B.A.; Ortega-Ramirez, L.A.; Leyva, J.M.; Siddiqui, M.W.; Cruz-Valenzuela, M.R.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1717–1727. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Roberto, D.; Micucci, P.; Sebastian, T.; Graciela, F.; Anesini, C. Antioxidant activity of limonene on normal murine lymphocytes: Relation to H2O2 modulation and cell proliferation. Basic Clin. Pharmacol. Toxicol. 2010, 106, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; GómezSerranillos, M.P. Major selected monoterpenes α-pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharm. Biol. 2015, 53, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Seibel, R.; Schneider, R.H.; Gottlieb, M.G.V. Effects of spices (saffron, rosemary, cinnamon, turmeric and ginger) in Alzheimer’s disease. Curr. Alzheimer Res. 2021, 18, 347–357. [Google Scholar] [CrossRef]
- Chen, S.X.; Xiang, J.Y.; Han, J.X.; Yang, F.; Li, H.Z.; Chen, H.; Xu, M. Essential oils from spices inhibit cholinesterase activity and improve behavioral disorder in AlCl3 induced dementia. Chem. Biodivers. 2022, 19, e202100443. [Google Scholar] [CrossRef]
- Burcul, F.; Blazevic, I.; Radan, M.; Politeo, O. Terpenes, phenylpropanoids, sulfur and other essential oil constituents as inhibitors of cholinesterases. Curr. Med. Chem. 2020, 27, 4297–4343. [Google Scholar] [CrossRef]
- Kang, J.S.; Kim, E.; Lee, S.H.; Park, I.-K. Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelen chusxylophilus, by phytochemicals from plant essential oils. Pestic. Biochem. Physiol. 2013, 105, 50–56. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 2011, 16, 7672–7690. [Google Scholar] [CrossRef] [Green Version]
- Park, I.-K. Fumigant toxicity of Oriental sweetgum (Liquidambar orientalis) and valerian (Valeriana wallichii) essential oils and their components, including their acetylcholinesterase inhibitory activity, against Japanese termites (Reticulitermes speratus). Molecules 2014, 19, 12547–12558. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by tea tree oil and constituent terpenoids. Flavour Fragr. J. 2006, 21, 198–201. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Kan, Y.; Şener, B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z. Nat. C J. Biosci. 2008, 63, 547–553. [Google Scholar]
- Lee, D.C.; Ahn, Y.-J. Laboratory and simulated field bioassays to evaluate larvicidal activity of Pinus densiflora hydrodistillate, its constituents and structurally related compounds against Aedes albopictus, Aedes aegypti and Culexpipiens pallens in relation to their inhibitory effects on acetylcholinesterase activity. Insects 2013, 4, 217–229. [Google Scholar] [PubMed] [Green Version]
- Jimbo, D.; Kimura, Y.; Taniguchi, M.; Inoue, M.; Urakami, K. Effect of aromatherapy on patients with Alzheimer’s disease. Psychogeriatrics 2009, 9, 173–179. [Google Scholar] [CrossRef]
Protein | PDB ID | Centre Coordinates | Size |
---|---|---|---|
acetylcholinesterase | 4M0E | x = −0.733 y = −37.62 z = 33.673 | x = 62 y = 64 z = 74 |
butyrylcholinesterase | 6QAA | x = 18.163 y = 31.938 z = 39.042 | x = 64 y = 60 z = 76 |
No. | Compound | RI Calc. | RI Lit. | Identification | Relative Percentage (%) |
---|---|---|---|---|---|
1 | α-pinene | 931 | 932 | MS, RI | 0.73 ± 0.01 |
2 | camphene | 946 | 946 | MS, RI | 0.39 ± 0.02 |
3 | β-pinene | 977 | 974 | MS, RI | 0.22 ± 0.01 |
4 | 6-methyl-hept-5-en-2-one | 988 | 986 | MS, RI | 0.33 ± 0.01 |
5 | myrcene | 991 | 988 | MS, RI | 1.90 ± 0.02 |
6 | 3-carene | 1009 | 1008 | MS, RI | 5.89 ± 0.02 |
7 | α-terpinene | 1015 | 1014 | MS, RI | 0.14 ± 0.01 |
8 | p-cymene | 1021 | 1017 | MS, RI | 0.66 ± 0.02 |
9 | o-cymene | 1023 | 1022 | MS, RI | 0.82 ± 0.01 |
10 | limonene | 1027 | 1024 | MS, RI | 2.14 ± 0.03 |
11 | eucalyptol | 1030 | 1026 | MS, RI | 3.57 ± 0.02 |
12 | (Z)-β-ocimene | 1037 | 1032 | MS, RI | 0.74 ± 0.01 |
13 | (E)-β-ocimene | 1048 | 1044 | MS, RI | 41.53 ± 0.11 |
14 | γ-terpinene | 1058 | 1054 | MS, RI | 0.58 ± 0.02 |
15 | isoterpinolene | 1085 | 1081 | MS, RI | 0.32 ± 0.01 |
16 | terpinolene | 1087 | 1085 | MS, RI | 0.91 ± 0.01 |
17 | linalool | 1100 | 1095 | MS, RI | 0.33 ± 0.01 |
18 | n-nonanal | 1104 | 1099 | MS, RI | 0.27 ± 0.02 |
19 | fenchol | 1112 | 1110 | MS, RI | 0.03 ± 0.00 |
20 | isopinocarveol | 1162 | 1160 | MS, RI | 0.03 ± 0.01 |
21 | terpinen-4-ol | 1176 | 1174 | MS, RI | 0.55 ± 0.02 |
22 | α-terpineol | 1190 | 1186 | MS, RI | 0.11 ± 0.01 |
23 | geraniol | 1254 | 1249 | MS, RI | 0.84 ± 0.03 |
24 | trans-2-decenal | 1261 | 1260 | MS, RI | 0.37 ± 0.01 |
25 | bornyl acetate | 1285 | 1280 | MS, RI | 0.19 ± 0.03 |
26 | 2-undecanone | 1294 | 1293 | MS, RI | 0.11 ± 0.01 |
27 | methyl geranate | 1324 | 1322 | MS, RI | 0.12 ± 0.01 |
28 | ylangene | 1372 | 1372 | MS, RI | 0.10 ± 0.01 |
29 | α-copaene | 1376 | 1374 | MS, RI | 13.17 ± 0.06 |
30 | geranyl acetate | 1384 | 1379 | MS, RI | 1.17 ± 0.03 |
31 | β-caryophyllene | 1419 | 1416 | MS, RI | 1.63 ± 0.02 |
32 | α-guaiene | 1439 | 1438 | MS, RI | 0.47 ± 0.01 |
33 | α-humulene | 1453 | 1448 | MS, RI | 0.25 ± 0.04 |
34 | γ-muurolene | 1476 | 1474 | MS, RI | 1.83 ± 0.02 |
35 | α-amorphene | 1479 | 1483 | MS, RI | 0.16 ± 0.01 |
36 | β-selinene | 1486 | 1486 | MS, RI | 0.51 ± 0.01 |
37 | α-zingiberene | 1495 | 1493 | MS, RI | 1.61 ± 0.03 |
38 | α-bulnesene | 1506 | 1505 | MS, RI | 0.51 ± 0.02 |
39 | α-farnesene | 1508 | 1508 | MS, RI | 0.52 ± 0.03 |
40 | γ-cadinene | 1514 | 1513 | MS, RI | 0.64 ± 0.01 |
41 | δ-cadinene | 1524 | 1522 | MS, RI | 6.20 ± 0.08 |
42 | trans-cadina-1,4-diene | 1532 | 1533 | MS, RI | 0.27 ± 0.02 |
43 | α-cadinene | 1537 | 1537 | MS, RI | 0.27 ± 0.01 |
44 | α-calacorene | 1542 | 1544 | MS, RI | 0.27 ± 0.01 |
45 | (E)-nerolidol | 1563 | 1561 | MS, RI | 1.00 ± 0.03 |
46 | di-epi-1,10-cubenol | 1627 | 1623 | MS, RI | 0.13 ± 0.01 |
47 | τ-cadinol | 1640 | 1638 | MS, RI | 0.68 ± 0.01 |
48 | α-cadinol | 1653 | 1652 | MS, RI | 0.56 ± 0.01 |
Compounds identified | 48 | ||||
Total identified (%) | 95.74 | ||||
Monoterpene hydrocarbons | 56.97 | ||||
Oxygenated monoterpenes | 5.45 | ||||
Sesquiterpene hydrocarbons | 28.40 | ||||
Oxygenated sesquiterpenes | 2.36 | ||||
Others | 2.56 |
Sample | DPPH | ABTS | FRAP |
---|---|---|---|
μmol TE/g | μmol TE/g | μmol TE/g | |
LGFEO | 9.52 ± 0.35 | 11.36 ± 0.63 | 38.98 ± 1.57 |
BHT | 2123.68 ± 33.65 | 4673.64 ± 32.14 | 2566.40 ± 53.33 |
Sample | Concentration (μg/mL) | Acetylcholinesterase Inhibition (%) | Butyrylcholinesterase Inhibition (%) |
---|---|---|---|
LGFEO | 50 | 63.82 ± 1.15 | 69.72 ± 1.11 |
20 | 35.57 ± 2.44 | 24.15 ± 2.70 | |
2 | 10.13 ± 1.66 | NA |
Sample | Acetylcholinesterase (μg/mL) | Butyrylcholinesterase (μg/mL) |
---|---|---|
LGFEO | 46.48 | 34.85 |
Tacrine | 0.14 | / |
iso-OMPA | / | 0.60 |
No. | Compound | PubChem ID | Binding Affinities (kcal/mol) | |
---|---|---|---|---|
AChE | BuChE | |||
tacrine (positive control) | 1935 | −9.1 ± 0.0 | −8.3 ± 0.0 | |
1 | 3-carene | 26049 | −6.2 ± 0.0 | −6.0 ± 0.0 |
2 | limonene | 22311 | −6.7 ± 0.0 | −6.1 ± 0.0 |
3 | eucalyptol | 2758 | −5.9 ± 0.2 | −5.9 ± 0.1 |
4 | (E)-β-ocimene | 5281553 | −6.3 ± 0.1 | −5.6 ± 0.1 |
5 | geranyl acetate | 1549026 | −7.1 ± 0.1 | −6.3 ± 0.1 |
6 | β-caryophyllene | 5281515 | −6.8 ± 0.0 | −6.2 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Su, X.; Lin, Y.; Long, C.; Zhang, Y.; Zhao, T. Chemical Composition, and Antioxidant and Cholinesterase Inhibitory Activities of Lindera glauca Fruit Essential Oil and Molecular Docking Studies of Six Selected Compounds. Horticulturae 2023, 9, 289. https://doi.org/10.3390/horticulturae9020289
Sun Z, Su X, Lin Y, Long C, Zhang Y, Zhao T. Chemical Composition, and Antioxidant and Cholinesterase Inhibitory Activities of Lindera glauca Fruit Essential Oil and Molecular Docking Studies of Six Selected Compounds. Horticulturae. 2023; 9(2):289. https://doi.org/10.3390/horticulturae9020289
Chicago/Turabian StyleSun, Zhenchun, Xiankun Su, Yechun Lin, Chongyan Long, Yazhou Zhang, and Tianming Zhao. 2023. "Chemical Composition, and Antioxidant and Cholinesterase Inhibitory Activities of Lindera glauca Fruit Essential Oil and Molecular Docking Studies of Six Selected Compounds" Horticulturae 9, no. 2: 289. https://doi.org/10.3390/horticulturae9020289
APA StyleSun, Z., Su, X., Lin, Y., Long, C., Zhang, Y., & Zhao, T. (2023). Chemical Composition, and Antioxidant and Cholinesterase Inhibitory Activities of Lindera glauca Fruit Essential Oil and Molecular Docking Studies of Six Selected Compounds. Horticulturae, 9(2), 289. https://doi.org/10.3390/horticulturae9020289