Effects of LED Red and Blue Spectra Irradiance Levels and Nutrient Solution EC on the Growth, Yield, and Phenolic Content of Lemon Basil (Ocimum citriodurum Vis.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Plant Growth Measurement
2.3. Yield Parameters
2.4. Phytochemical Contents
2.4.1. Ascorbic Acid
2.4.2. Sample Extraction for Total Phenolic Content and Total Flavonoid Content
2.4.3. Total Phenolic Content
2.4.4. Total Flavonoid Content
2.5. Individual Phenolic Compounds
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Growth Parameters
3.1.1. Plant Height
3.1.2. Canopy Diameter
3.1.3. Number of Leaves
3.2. Yield Parameters
3.2.1. Fresh Weight
3.2.2. Dry Weight
3.2.3. Leaf Area
3.3. Phytochemical Contents
3.3.1. Ascorbic Acid
3.3.2. Total Phenolic Content
3.3.3. Total Flavonoid Content
3.4. Individual Phenolic Compound
4. Discussion
4.1. Plant Growth Performance
4.2. Yield Production
4.3. Phytochemical Contents
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makri, O.; Kintzios, S. Ocimum sp. (basil) botany, cultivation, pharmaceutical properties and biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Kwee, E.M.; Niemeyer, E.D. Variations in phenolic compositions and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. J. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric acid found in basil (Ocimum basilicum L.) leaves. J. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, H.P.; Vivanco, J.M. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Department of Agriculture, Forestry and Fisheries of Republic of South Africa. Basil Production; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2012.
- Fischer, R.; Nitzan, N.; Chaimovitsh, D.; Rubin, B.; Dudai, N. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age. J. Agric. Food Chem. 2011, 59, 4913–4922. [Google Scholar] [CrossRef] [PubMed]
- Hassanpouraghdam, M.B.; Gohari, G.R.; Tabatabaei, S.J.; Dadpour, M.R. Inflorescence and leaves essential oil composition of hydraponically grown Ocimum basilicum L. J. Serbian Chem. Soc. 2010, 75, 1361–1368. [Google Scholar] [CrossRef]
- Pushpangadam, P.; George, V. Basil. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Elsevier: Atlanta, GA, USA, 2012; pp. 55–72. [Google Scholar]
- Despommier, D. Farming up the city: The rise of urban vertical farms. Trends Biothechnol. 2013, 31, 388–389. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- Chang, X.; Alderson, P.G.; Wright, C.J. Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. Environ. Expt. Bot. 2008, 63, 216–223. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae 2017, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary production in plants: Volatile components and essential oils. J. Flav. Frag. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Shaffie-Hajiabad, M.; Novak, J.; Honermeier, B. Content and composition of essential oil of four Origanum vulgare L. accessions under reduced and normal light intensity conditions. J. Appl. Bot. Food Qual. 2016, 89, 126–134. [Google Scholar]
- Olle, M.; Virsille, A. The effect of light emitting diode lighting on greenhouse plant growth and quality. J. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Darko, E.; Heydarizadeh, P.; Shoefs, B.; Sabzalian, M.R. Photosynthesis under artificial light: The shift in primary and secondary metabolism. J. Philos. Trans. R. Soc. Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiga, T.; Shoji, K.; Shimada, H.; Hashida, S.N.; Goto, F.; Yoshihara, T. Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. J. Plant Biotechnol. 2009, 26, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.L.; Alferez, F.; Burns, J.K. Assessment of blue light treatments on citrus postharvest diseases. J. Postharvest Biol. Technol. 2013, 81, 81–88. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. J. Hortic. Sci. 2010, 45, 1809–1814. [Google Scholar] [CrossRef] [Green Version]
- Kook, H.S.; Park, S.H.; Jang, Y.J.; Lee, G.W.; Kim, J.S.; Kim, H.M.; Oh, B.T.; Chae, J.C.; Lee, K.J. Blue LED (light-emitting diodes)-mediated growth promotion and control of Botrytis disease in lettuce. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2013, 63, 271–277. [Google Scholar]
- Samuoliene, G.; Brazaityte, A.; Jankauskiene, J.; Virsile, A.; Sirtautas, R.; Novickovas, A.; Sakalauskiene, S.; Sakalauskaite, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. J. Century Eur. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. J. Hortic. Sci. 2016, 198, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Bekhradi, F.; Delshad, M.; Marin, A.; Luna, M.C.; Garrido, Y.; Kashi, A.; Babalar, M.; Gil, M.I. Effects of salt stress on physiological and postharvest quality characteristics of different Iranian genotypes of basil. Hortic. Environ. Biotechnol. 2015, 56, 777–785. [Google Scholar] [CrossRef]
- De Pascale, S.; Maggio, A.; Orsini, F.; Barbieri, G. Nutrient influence on ready to eat sweet basil quality. Acta Hortic. 2006, 718, 523–530. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala raft culture. J. Food Sci. Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Vendrame, W.; Moore, K.K.; Broschat, T.K. Interaction of light intensity and controlled release fertilization rate on growth and flowering of two New Guinea impatiens cultivars. HortTechnology 2004, 14, 491–495. [Google Scholar]
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients andwater: A quatitative review. J. Funct. Plant Biol. 2000, 27, 1191. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Bernardo, E.L.; Tippayadarapanich, C.; Takagaki, M.; Kagawa, N.; Yamori, W. Growth and accumulation of secondary metabolites in Perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front. Plant Sci. 2017, 8, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarakoon, U.C.; Weerasinghe, P.A.; Weerakkody, A.P. Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth, and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. J. Trop. Agric. Res. 2006, 18, 13–21. [Google Scholar]
- Jagota, S.K.; Dani, H.M. A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Anal. Biochem. 1982, 127, 178–182. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Niemeyer, E.D. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Agric. Food Chem. 2008, 56, 8685–8691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemzadeh, A.; Jaffar, H.Z.; Rahmat, A. Synthesis of phenolics and flavonoids in ginger (Zingiber officinale Roscoe) and their effects on photosynthesis rate. Int. J. Mol. Sci. 2010, 11, 4539–4555. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.I.; Chan, K.W.; Mariad, A.A.; Ismail, M. Phenolic content, and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. J. Food Chem. 2010, 119, 643–647. [Google Scholar] [CrossRef]
- Flanigan, P.M.; Niemeyer, E.D. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chem. 2014, 164, 518–526. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS User’s Guide: Statistics; SAS Institute: Cary, NC, USA, 1999. [Google Scholar]
- Morano, G.; Amalfitano, C.; Sellitto, M.; Cuciniello, A.; Maiello, R.; Caruso, G. Effects of nutritive solution electrical conductivity and plant density on growth, yield, and quality of sweet basil grown in gullies by subirrigation. J. Adv. Hortic. Sci. 2017, 31, 25–30. [Google Scholar]
- Ruta, S.; Lauzike, K.; Pukas, T.; Samuoliene, G. Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce. J. Plants 2022, 11, 1709. [Google Scholar]
- Nemali, K.S.; van Iersel, M.W. Light intensity and fertilizer concentration: I. Estimating optimal fertilizer concentration from water-use efficiency of wax begonia. HortScience 2004, 39, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Fraszczak, B.; Golcz, A.; Zawirska-Wojtasiak, R.; Janowska, B. Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules. Acta Sci. Pol. Hortorum Cultus 2014, 13, 3–13. [Google Scholar]
- Ohashi-Kaneko, K.; Takse, M.; Kon, N.; Fujiwara, K.; Kurata, K. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. J. Environ. Control Biol. 2007, 45, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Kader, A.A. Pre-harvest and postharvest factors influencing vitamin C content of horticultural crops. J. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. chinensis) in a hydroponic system. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef]
- Son, K.H.; Park, J.H.; Kim, D.; Oh, M.M. Leaf shape, growth and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J. Hortic. Sci. Technol. 2012, 30, 664–672. [Google Scholar] [CrossRef]
- Lee, Y.J.; Ha, J.Y.; Oh, J.E.; Cho, M.S. The effect of LED irradiation on the quality of cabbage stored at a low temperature. J. Food Sci. Biotechnol. 2014, 23, 1087–1093. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. J. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Galuszka, P.; Frebortova, J.; Luhova, L.; Bilyeu, K.D.; English, J.T.; Frebort, I. Tissue localization of cytokinin dehydrogenase in maize: Possible involvement of quinone species generated from plant phenolic by other enzymatic systems in the catalytic reaction. J. Plant Cell Physiol. 2005, 46, 716–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiferle, C.; Maggini, R.; Pardossi, A. Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum basilicum L.) grown in hydroponic culture. J. Aus. Crop Sci. 2013, 9, 3–12. [Google Scholar]
Electrical Conductivity (EC) | Nutrient Concentrations (mg L−1) |
---|---|
1.0 | N = 92.80, P = 26.80, K = 95.60, Ca = 40.00, Mg = 12.00, S = 32.00, Fe = 1.20, Mn = 0.248, B = 0.176, Cu = 0.008, Zn = 0.044, Mo = 0.019 |
1.8 | N = 232.00, P = 67.00, K = 239.00, Ca = 100.00, Mg = 30.00, S = 80.00, Fe = 3.00, Mn = 0.62, B = 0.44, Cu = 0.02, Zn = 0.11, Mo = 0.048 |
2.6 | N = 278.00, P = 80.40, K = 286.80, Ca = 120.00, Mg = 36.00, S = 96.00, Fe = 3.60, Mn = 0.744, B = 0.528, Cu = 0.024, Zn = 0.132, Mo = 0.058 |
3.4 | N = 324.80, P = 93.80, K = 334.60, Ca = 140.00, Mg = 42.00, S = 112.00, Fe = 4.20, Mn = 0.868, B = 0.616, Cu = 0.028, Zn = 0.154, Mo = 0.067 |
Factor | Leaves | Stem | Roots |
---|---|---|---|
Irradiance levels of LEDs (µmol m−2 s−1) | |||
80 | 15.90 b | 6.19 b | 4.82 b |
160 | 25.44 a | 12.45 a | 7.47 a |
EC of nutrient solution (mS cm−1) | |||
1.0 | 16.75 c | 7.04 c | 4.60 c |
1.8 | 21.14 b | 10.21 b | 5.862 b |
2.6 | 23.77 a | 11.84 a | 8.72 a |
3.4 | 21.02 b | 8.21 c | 5.40 b |
Irradiance levels of LEDs | *** | *** | *** |
EC of nutrient solution | *** | *** | *** |
Irradiance levels of LEDs × EC of nutrient solution | ns | *** | ns |
Factor | Leaves | Stem | Roots |
---|---|---|---|
Irradiance levels of LEDs (µmol m−2 s−1) | |||
80 | 0.85 b | 0.64 b | 0.32 b |
160 | 1.64 a | 1.29 a | 0.60 a |
EC of nutrient solution (mS cm−1) | |||
1.0 | 1.10 b | 0.69 d | 0.45 |
1.8 | 1.41 a | 1.89 c | 0.48 |
2.6 | 1.26 a,b | 1.22 a | 0.48 |
3.4 | 1.21 b | 1.05 b | 0.43 |
Irradiance levels of LEDs | *** | *** | *** |
EC of nutrient solution | *** | *** | ns |
Irradiance levels of LEDs × EC of nutrient solution | *** | *** | *** |
Factor | Leaf Area |
---|---|
Irradiance levels of LEDs (µmol m−2 s−1) | |
80 | 617.14 b |
160 | 1020.62 a |
EC of nutrient solution (mS cm−1) | |
1.0 | 772.84 b |
1.8 | 943.23 a |
2.6 | 831.26 b |
3.4 | 848.19 b |
Irradiance levels of LEDs | *** |
EC of nutrient solution | *** |
Irradiance levels of LEDs × EC of nutrient solution | ns |
Factor | Ascorbic Acid (mg 100 g−1 FW) | Total Phenolic Content (mg GAE 100 g−1 DW) | Total Flavonoid Content (mg QE 100 g−1 DW) |
---|---|---|---|
Irradiance levels of LEDs (µmol m−2 s−1) | |||
80 | 72.82 b | 620.30 b | 907.87 b |
160 | 77.59 a | 1346.28 a | 982.72 a |
EC of nutrient solution (mS cm−1) | |||
1.0 | 67.43 c | 866.27 b | 907.34 b,c |
1.8 | 68.54 c | 995.49 a | 966.63 a,b |
2.6 | 88.37 a | 1039.30 a | 1022.52 a |
3.4 | 76.48 b | 1032.10 a | 884.98 b,c |
Irradiance levels of LEDs | *** | *** | ** |
EC of nutrient solution | *** | *** | *** |
Irradiance levels of LEDs × EC of nutrient solution | ns | * | *** |
Factor | Caftaric Acid (mg 100 g−1 DW) | Rosmarinic Acid (mg 100 g−1 DW) | Chicoric Acid (mg 100 g−1 DW) | Gentisic Acid (mg 100 g−1 DW) |
---|---|---|---|---|
Irradiance levels of LEDs (µmol m−2 s−1) | ||||
80 | 2341.30 | 36.44 b | 23.27 | 2.96 |
160 | 2205.70 | 45.41 a | 23.31 | 3.14 |
EC of nutrient solution (mS cm−1) | ||||
1.0 | 2167.90 b | 32.03 b | 23.40 | 2.35 |
1.8 | 2157.70 b | 35.83 b | 23.30 | 2.60 |
2.6 | 2677.10 a | 45.28 a | 23.36 | 4.08 |
3.4 | 2091.20 b | 50.58 a | 23.09 | 3.17 |
Irradiance levels of LEDs | ns | ** | ns | ns |
EC of nutrient solution | ** | *** | ns | ns |
Irradiance levels of LEDs × EC of nutrient solution | *** | ** | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daud, Z.M.; Ismail, M.F.; Hakiman, M. Effects of LED Red and Blue Spectra Irradiance Levels and Nutrient Solution EC on the Growth, Yield, and Phenolic Content of Lemon Basil (Ocimum citriodurum Vis.). Horticulturae 2023, 9, 416. https://doi.org/10.3390/horticulturae9040416
Daud ZM, Ismail MF, Hakiman M. Effects of LED Red and Blue Spectra Irradiance Levels and Nutrient Solution EC on the Growth, Yield, and Phenolic Content of Lemon Basil (Ocimum citriodurum Vis.). Horticulturae. 2023; 9(4):416. https://doi.org/10.3390/horticulturae9040416
Chicago/Turabian StyleDaud, Zurafni Mat, Mohd Firdaus Ismail, and Mansor Hakiman. 2023. "Effects of LED Red and Blue Spectra Irradiance Levels and Nutrient Solution EC on the Growth, Yield, and Phenolic Content of Lemon Basil (Ocimum citriodurum Vis.)" Horticulturae 9, no. 4: 416. https://doi.org/10.3390/horticulturae9040416
APA StyleDaud, Z. M., Ismail, M. F., & Hakiman, M. (2023). Effects of LED Red and Blue Spectra Irradiance Levels and Nutrient Solution EC on the Growth, Yield, and Phenolic Content of Lemon Basil (Ocimum citriodurum Vis.). Horticulturae, 9(4), 416. https://doi.org/10.3390/horticulturae9040416