Molecular Diagnostics in Tomato: Chip Digital PCR Assays Targeted to Identify and Quantify Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum in planta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Samples
2.2. Plant Samples
2.3. Naturally Infected Plant Samples
2.4. Design of Primers and Probes
2.5. Real-Time qPCR
2.6. Chip Digital PCR
3. Results
3.1. Primers/Probe Sets
3.2. Assays Efficiency, Specificity and Repeatability Evaluation in Real-Time PCR
3.3. Chip Digital PCR for Cmm and Rs Diagnostics
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tripathi, R.; Vishunavat, K.; Tewari, R.; Kumar, S.; Minkina, T.; De Corato, U.; Keswani, C. Defense Inducers Mediated Mitigation of Bacterial Canker in Tomato through Alteration in Oxidative Stress Markers. Microorganisms 2022, 10, 2160. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhong, L.; Huang, Z.; Li, C.; Lian, J.; Zheng, X.; Liang, Y. Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. Plant Methods 2022, 18, 7. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://data.un.org/Data.aspx?d=FAO&f=itemCode%3A388 (accessed on 14 March 2023).
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Yadeta, K.A.; Thomma, B.P. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef]
- Huet, G. Breeding for resistances to Ralstonia solanacearum. Front. Plant Sci. 2014, 5, 715. [Google Scholar] [CrossRef]
- EPPO (European and Mediterranean Plant Protection Organization). Available online: https://www.eppo.int/ (accessed on 10 March 2023).
- Tancos, M.A.; Chalupowicz, L.; Barash, I.; Manulis-Sasson, S.; Smart, C.D. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. Michiganensis through external and internal routes. Appl. Environ. Microbiol. 2013, 79, 6948–6957. [Google Scholar] [CrossRef] [PubMed]
- Nandi, M.; Macdonald, J.; Liu, P.; Weselowski, B.; Yuan, Z.-C. Clavibacter michiganensis ssp. Michiganensis: Bacterial canker of tomato, molecular interactions and disease management. Mol. Plant Pathol. 2018, 19, 2036–2050. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef]
- Álvarez, B.; Biosca, E.G.; López, M.M. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2010; pp. 267–279. [Google Scholar]
- Peňázová, E.; Dvořák, M.; Ragasová, L.; Kiss, T.; Pečenka, J.; Čechová, J.; Eichmeier, A. Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. Michiganensis, Pseudomonas syringae pv. Tomato and pathogenic Xanthomonas species on tomato plants. PLoS ONE 2020, 15, e0227559. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, E.; Liu, H.; Jin, X.; Niu, C.; Gao, Y.; Su, X. A droplet digital PCR assay for detection and quantification of Verticillium nonalfalfae and V. albo-atrum. Front. Cell. Infect. Microbiol. 2023, 12, 1110684. [Google Scholar] [CrossRef]
- Morcia, C.; Ghizzoni, R.; Delogu, C.; Andreani, L.; Carnevali, P.; Terzi, V. Digital PCR: What Relevance to Plant Studies? Biology 2020, 9, 433. [Google Scholar] [CrossRef]
- PM 7/21 (3) Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bull. 2022, 52, 225–261. [CrossRef]
- PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis. Eppo Bull. 2016, 46, 202–225. [CrossRef]
- PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. EPPO Bull. 2013, 43, 7–20. [CrossRef]
- ISTA 7-021 (2022), International Rules for Seed Testing. 7-021: Ver 3.2 Detection of Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. phaseoli var. fuscans on Phaseolus vulgaris. In Annexe to Chapter 7: Seed Health Testing Methods; International Seed Testing Association: Bassersdorf, Switzerland, 2022.
- Mohan, S.K.; Schaad, N.W. An improved agar plating assay for detecting Pseudomonas syringae pv. syringae and P. s. pv. phaseolicola in contaminated bean seed. Phytopathology 1987, 77, 1390–1395. [Google Scholar] [CrossRef]
- Weller, S.A.; Elphinstone, J.G.; Smith, N.C.; Boonham, N.; Stead, D.E. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl. Environ. Microbiol. 2000, 66, 2853–2858. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.; Dasgupta, K.; Xing, Y.P.; Hernandez, B.T.; Shao, M.; Rohozinski, D.; Kovak, E.; Lin, J.; de Oliveira, M.L.P.; Stover, E.; et al. Accurate measurement of transgene copy number in crop plants using droplet digital PCR. Plant J. 2017, 90, 1014–1025. [Google Scholar] [CrossRef]
- Dreo, T.; Pirc, M.; Ramšak, Ž.; Pavšič, J.; Milavec, M.; Zel, J.; Gruden, K. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: A case study of fire blight and potato brown rot. Anal. Bioanal. Chem. 2014, 406, 6513–6528. [Google Scholar] [CrossRef]
- Hougs, L.; Gatto, F.; Goerlich, O.; Grohmann, L.; Lieske, K.; Mazzara, M.; Narendja, F.; Ovesna, J.; Papazova, N.; Scholtens, I.; et al. Verification of analytical methods for GMO testing when implementing interlaboratory validated methods. In Testing and Analysis of GMO-Containing Foods and Feed; EUR 29015 EN; Publication Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-77310-5. [Google Scholar] [CrossRef]
- Longchar, B.; Phukan, T.; Yadav, S.; Senthil-Kumar, M. An efficient low-cost xylem sap isolation method for bacterial wilt assays in tomato. Appl. Plant Sci. 2020, 8, e11335. [Google Scholar] [CrossRef]
- Lowe-Power, T.M.; Hendrich, C.G.; von Roepenack-Lahaye, E.; Li, B.; Wu, D.; Mitra, R.; Dalsing, B.L.; Ricca, P.; Naidoo, J.; Cook, D.; et al. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ. Microbiol. 2018, 20, 1330–1349. [Google Scholar] [CrossRef]
- NPPO. Available online: https://www.fao.org/documents/card/en/c/CA6375EN (accessed on 14 March 2023).
- Chalam, V.C.; Gupta, K.; Sharma, R.; Sharma, V.D.; Maurya, A.K. Pest Risk Analysis and Plant Quarantine Regulations. In Emerging Trends in Plant Pathology; Singh, K.P., Jahagirdar, S., Sarma, B.K., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Gautam, A.K.; Shashank, K. Techniques for the detection, identification, and diagnosis of agricultural pathogens and diseases. In Natural Remedies for Pest, Disease and Weed Control; Academic Press: Cambridge, MA, USA, 2020; pp. 135–142. [Google Scholar]
- Fang, Y.; Ramasamy, R. Current and prospective methods for plant disease detection. Biosensors 2015, 5, 537–561. [Google Scholar] [CrossRef]
- Khater, M.; de la Escosura-Muñiz, A.; Merkoçi, A. Biosensors for plant pathogen detection. Biosens. Bioelectron. 2017, 93, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Mitra, B.; Vinchurkar, M.; Adami, A.; Patkar, R.; Giacomozzi, F.; Lorenzelli, L.; Baghini, M.S. A review of recent advances in plant-pathogen detection systems. Heliyon 2022, 8, e11855. [Google Scholar] [CrossRef]
- Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome (accessed on 18 April 2023).
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 18 April 2023).
- Morcia, C.; Tumino, G.; Gasparo, G.; Ceresoli, C.; Fattorini, C.; Ghizzoni, R.; Carnevali, P.; Terzi, V. Moving from qPCR to Chip Digital PCR Assays for Tracking of some Fusarium Species Causing Fusarium Head Blight in Cereals. Microorganisms 2020, 8, 1307. [Google Scholar] [CrossRef]
- Demeke, T.; Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 2018, 410, 4039–4050. [Google Scholar] [CrossRef] [PubMed]
- Mehle, N.; Gregur, L.; Bogožalec Košir, A.; Dobnik, D. One-step reverse-transcription digital PCR for reliable quantification of different Pepino mosaic virus genotypes. Plants 2020, 9, 326. [Google Scholar] [CrossRef]
- Dong, X.; Gao, D.; Dong, J.; Chen, W.; Li, Z.; Wang, J.; Liu, J. Mass ratio quantitative detection for kidney bean in lotus seed paste using duplex droplet digital PCR and chip digital PCR. Anal. Bioanal. Chem. 2020, 412, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Pavšič, J.; Žel, J.; Milavec, M. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Anal. Bioanal. Chem. 2016, 408, 107–121. [Google Scholar] [CrossRef]
- Debski, P.; Gewartowski, K.; Bajer, S.; Garsteki, P. Calibration-free assays on standard real-time PCR devices. Sci. Rep. 2017, 7, 44854. [Google Scholar] [CrossRef]
Strain | Source | Isolation Procedure | Morphology | Ref. | |
---|---|---|---|---|---|
Isolation Media | Incubation Temperature/Time | ||||
Cmm UCSCC | Symptomatic tomato stem | Isolation on semi-selective SCM agar; purification on YDC medium | 28 °C/7–10 days | On SCM: translucent grey, mucoid, often irregularly shaped with a variable grey to almost black center. On YDC: yellow, mucoid, confluent and convex, becoming deeper yellow with longer incubation. | [16] |
Rs UCSCR | Symptomatic tomato stem | Isolation on semi-selective SMSA agar; purification on semi-selective SMSA agar | 28 °C/2–6 days | On SMSA: fluidal, confluent, irregular and creamy-white with pinkish center. | [15] |
Xv UCSCV | Symptomatic tomato berries | Isolation on mTMB agar; purification on YDC agar | 28 °C/3–6 days | On mTMB: yellow, slightly mucoid, raised and circular. On YDC: pale or bright yellow, circular, mucoid and slightly raised. | [17] |
Xap UCSCX | Bean seeds | Isolation on MT agar medium; purification on YDC agar | 28 °C/3–5 days | On MT: yellow, with two zones of hydrolysis, i.e., a large clear zone of casein hydrolysis and a smaller milky zone of Tween TM 80 lysis. On YDC: yellow and mucoid. | [18] |
Pst UCSCP | Symptomatic tomato leaves | Isolation on KB agar medium; purification on KB agar medium | 25 °C/2–4 days | On KB: production of a pale-blue pigment fluorescent under UV light. Flat, clear and cream-colored colonies. | [19] |
Assay Code | Probe and Primers ID | Probe and Primers Sequences | Biological Target | Target Gene | Amplicon Size | Reference |
---|---|---|---|---|---|---|
Cmm-dig | Cmm-digF | tctgggtgtgtctggtttcttg | Clavibacter michiganensis subsp michiganensis | 16S-23S GenBank: HM18741.1 | 61 bp | This Work |
Cmm-digR2 | ccccaccaccatccacaa | |||||
Cmm-Pr | FAM-cggaccctttccgtcgt-MGB | |||||
Rs-dig | RS-I-F | gcatgccttacacatgcaagtc | Ralstonia solanacearum | 16S GenBank: OP269681.1 | 93 bp | [20] |
RS-II-R | ggcacgttccgatgtattactca | |||||
RS-Pr | FAM-agcttgctacctgccggcgagtg-MGB | |||||
Tom-dig | Tom-F | gcaatatcaagagccccgtc | Solanum lycopersicum | Prosystemin GenBank: M84800.1.1 | 91 bp | [21] |
Tom-R | ggagcgcttagcacacat | |||||
Tom-Pr | VIC-tgcaacatccttctttcttctcgtg-MGB |
Bacteria DNA Amount | Mean Ct Cmm-dig Assay ± dev.stnd | Mean Ct Rs-dig Assay ± dev.stnd |
---|---|---|
10 ng | 12.96 ± 0.21 | 13.26 ± 0.08 |
1 ng | 16.05 ± 0.014 | 16.68 ± 0.12 |
0.1 ng | 19.4 ± 0.14 | 20.01 ± 0.18 |
0.01 ng | 22.82 ± 0.23 | 23.19 ± 0.052 |
0.001 ng | 25.76 ± 0.035 | 27.34 ± 0.011 |
0.0001 ng | 29.36 ± 0.26 | 30.09 ± 0.19 |
Slope | −3.27 | −3.4 |
Y-intercept | 17.13 | 18.25 |
Efficiency | 102% | 96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morcia, C.; Piazza, I.; Ghizzoni, R.; Terzi, V.; Carrara, I.; Bolli, G.; Chiusa, G. Molecular Diagnostics in Tomato: Chip Digital PCR Assays Targeted to Identify and Quantify Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum in planta. Horticulturae 2023, 9, 553. https://doi.org/10.3390/horticulturae9050553
Morcia C, Piazza I, Ghizzoni R, Terzi V, Carrara I, Bolli G, Chiusa G. Molecular Diagnostics in Tomato: Chip Digital PCR Assays Targeted to Identify and Quantify Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum in planta. Horticulturae. 2023; 9(5):553. https://doi.org/10.3390/horticulturae9050553
Chicago/Turabian StyleMorcia, Caterina, Isabella Piazza, Roberta Ghizzoni, Valeria Terzi, Ilaria Carrara, Giovanni Bolli, and Giorgio Chiusa. 2023. "Molecular Diagnostics in Tomato: Chip Digital PCR Assays Targeted to Identify and Quantify Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum in planta" Horticulturae 9, no. 5: 553. https://doi.org/10.3390/horticulturae9050553
APA StyleMorcia, C., Piazza, I., Ghizzoni, R., Terzi, V., Carrara, I., Bolli, G., & Chiusa, G. (2023). Molecular Diagnostics in Tomato: Chip Digital PCR Assays Targeted to Identify and Quantify Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum in planta. Horticulturae, 9(5), 553. https://doi.org/10.3390/horticulturae9050553