Overview of Melatonin’s Impact on Postharvest Physiology and Quality of Fruits
Abstract
:1. Introduction
2. Melatonin Biosynthesis in Plants
3. Factors That Affect the Melatonin Content in Fruits
3.1. Genetic Makeup
3.2. Environment
3.3. Fruit Ripening Stages of Development
4. Melatonin Mechanism in Fruit Ripening
5. The Effects of Melatonin on Postharvest Damages
6. Melatonin Effects on Fruits
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayarajan, S.; Sharma, R.R. Melatonin: A blooming biomolecule for postharvest management of perishable fruits and vegetables. Trends Food Sci. Technol. 2021, 116, 318–328. [Google Scholar] [CrossRef]
- Stehle, J.H.; Saade, A.; Rawashdeh, O.; Ackermann, K.; Jilg, A.; Sebesterny, T.; Maronde, E. A survey of molecular details in the human pineal gland in light of phylogeny, structure, function and chronobiological diseases. J. Pineal Res. 2011, 51, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Hattori, A.; Migitaka, H.; Iigo, M.; Toh, M.I.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar] [PubMed]
- Sharma, A.; Zheng, B. Melatonin mediated regulation ff drought stress: Physiological and molecular aspects. Plants 2019, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Madebo, M.P.; Zheng, Y.; Jin, P. Melatonin-mediated postharvest quality and antioxidant properties of fresh fruits: A comprehensive meta-analysis. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3205–3226. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, W. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends Food Sci. Technol. 2019, 92, 71–80. [Google Scholar] [CrossRef]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Mubarok, S.; Okabe, Y.; Fukuda, N.; Ariizumi, T.; Ezura, H. Favorable effects of the weak ethylene receptor mutation Sletr1-2 on postharvest fruit quality changes in tomatoes. Postharvest Biol. Technol. 2016, 120, 1–9. [Google Scholar] [CrossRef]
- Mubarok, S.; Okabe, Y.; Fukuda, N.; Ariizumi, T.; Ezura, H. Potential use of a weak ethylene receptor mutant, Sletr1-2, as breeding material to extend fruit shelf life of tomato. J. Agric. Food Chem. 2015, 63, 7995–8007. [Google Scholar] [CrossRef]
- Mubarok, S.; Qonit, M.A.H.; Rahmat, B.P.N.; Budiarto, R.; Suminar, E.; Nuraini, A. An overview of ethylene insensitive tomato mutants: Advantages and disadvantages for postharvest fruit shelf-life and future perspective. Front. Plant Sci. 2023, 14, 1079052. [Google Scholar] [CrossRef] [PubMed]
- Mubarok, S.; Maulida Rahman, I.; Nuraniya Kamaluddin, N.; Solihin, E. Impact of 1-Methylcyclopropene combined with chitosan on postharvest quality of tropical banana ‘Lady Finger’. Int. J. Food Prop. 2022, 25, 1171–1185. [Google Scholar] [CrossRef]
- Mubarok, S.; Fauzi, A.A.; Nuraini, A.; Rufaidah, F.; Qonit, M.A.H. Effect of benzyl amino purine and 1-methylcyclopropene in maintaining rooting quality of chrysanthemum (Chrysanthemum morifolium Ramat cv.‘White Fiji’) cuttings. Res. Crops 2020, 21, 141–150. [Google Scholar]
- Mubarok, S.; Suminar, E.; Kamaluddin, N.N. Ethylene inhibition using 1-methylcyclopropene and future perspective for tropical ornamental plants. Asian J. Plant Sci. 2019, 18, 1–8. [Google Scholar] [CrossRef]
- Mubarok, S.; Maunah, M.; Rufaidah, F.; Suminar, E.; Rismayanti, A.Y. Dataset on the combination effects of 1-methylcyclopropene and salicylic acid on postharvest quality of cut roses ‘Peach Avalanche’and ‘Sexy Red’. Data Brief 2020, 33, 106600. [Google Scholar] [CrossRef]
- Mubarok, S.; Hoshikawa, K.; Okabe, Y.; Yano, R.; Tri, M.D.; Ariizumi, T.; Ezura, H. Evidence of the functional role of the ethylene receptor genes SlETR4 and SlETR5 in ethylene signal transduction in tomato. Mol. Genet. Genom. 2019, 294, 301–313. [Google Scholar] [CrossRef]
- Mubarok, S.; Ezura, H.; Qonit, M.A.H.; Prayudha, E.; Suwali, N.; Kurnia, D. Alteration of nutritional and antioxidant level of ethylene receptor tomato mutants, Sletr1-1 and Sletr1-2. Sci. Hortic. 2019, 256, 108546. [Google Scholar] [CrossRef]
- Anas, A.; Wiguna, G.; Damayanti, F.; Mubarok, S.; Setyorini, D.; Ezura, H. Effect of Ethylene Sletr1-2 Receptor Allele on Flowering, Fruit Phenotype, Yield, and Shelf-Life of Four F1 Generations of Tropical Tomatoes (Solanum lycopersicum L.). Horticulturae 2022, 8, 1098. [Google Scholar] [CrossRef]
- Wiguna, G.; Damayanti, F.; Mubarok, S.; Ezura, H.; Anas, A.N.A.S. Genetic control of fruit shelf life and yield in crossbreeding of Sletr1-2 mutant with Indonesian tropical tomatoes: Combining Ability of Sletr1-2 mutant. Biodiversitas J. Biol. Divers. 2021, 22, 4671–4675. [Google Scholar] [CrossRef]
- Rastegar, S.; Khankahdani, H.H.; Rahimzadeh, M. Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Sci. Hortic. 2020, 259, 108835. [Google Scholar] [CrossRef]
- Yin, L.; Wang, P.; Li, M.; Ke, X.; Li, C.; Liang, D.; Wu, S.; Ma, X.; Li, C.; Zou, Y. Exogenous melatonin improves M alus resistance to M arssonina apple blotch. J. Pineal Res. 2013, 54, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zheng, X.; Reiter, R.J.; Feng, S.; Wang, Y.; Liu, S.; Jin, L.; Li, Z.; Datla, R.; Ren, M. Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front. Plant Sci. 2017, 8, 1993. [Google Scholar] [CrossRef]
- Mandal, M.K.; Suren, H.; Ward, B.; Boroujerdi, A.; Kousik, C. Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. J. Pineal Res. 2018, 65, e125054. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.A.; Jiao, Y.; Chen, C.; Shireen, F.; Zheng, Z.; Imtiaz, M.; Bie, Z.; Huang, Y. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J. Plant Physiol. 2018, 220, 115–127. [Google Scholar] [CrossRef]
- Xu, T.; Chen, Y.; Kang, H. Melatonin is a potential target for improving post-harvest preservation of fruits and vegetables. Front. Plant Sci. 2019, 10, 1388. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yue, Q.; Xiang, G.; Bian, F.E.; Yao, Y. Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Hortic. Res. 2018, 5, 41. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, N.; Wang, J.; Zhang, H.; Li, D.; Shi, J.; Li, R.; Weeda, S.; Zhao, B.; Ren, S.; et al. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J. Exp. Bot. 2015, 66, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Z.K.; Chai, H.K.; Cheng, N.; Yang, Y.; Wang, D.N.; Yang, T.; Cao, W. Melatonin Treatment Delays Postharvest Senescence and Regulates Reactive Oxygen Species Metabolism in Peach Fruit. Postharvest Biol. Technol. 2016, 118, 103–110. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Luo, Z.; Li, L.; Jannatizadeh, A.; Fard, J.R.; Pirzad, F. Melatonin treatment maintains nutraceutical properties of pomegranate fruits during cold storage. Food Chem. 2020, 303, 125385. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.; Pernici, C.; Serio, G.; Gentile, C.; Bertea, C.M. Melatonin and phytomelatonin: Chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals—An overview. Int. J. Mol. Sci. 2021, 22, 9996. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Manchester, L.C.; Liu, X.; Rosales-Corral, S.A.; Acuna-Castroviejo, D.; Reiter, R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 2013, 54, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Posmyk, M.M.; Janas, K.M. Melatonin in plants. Acta Physiol. Plant. 2009, 31, 1–11. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Zhou, Z.; Cruz, M.H.C.; Fuentes-Broto, L.; Galano, A. Phytomelatonin: Assisting plants to survive and thrive. Molecules 2015, 20, 7396–7437. [Google Scholar] [CrossRef]
- Johns, N.P.; Johns, J.; Porasuphatana, S.; Plaimee, P.; Sae-Teaw, M. Dietary intake of melatonin from tropical fruit altered urinary excretion of 6- sulfatoxy- melatonin in healthy volunteers. J. Agric. Food Chem. 2013, 61, 913–919. [Google Scholar] [CrossRef]
- Verde, A.; Miguez, J.M.; Gallardo, M. Melatonin and related bioactive compounds in commercialized date palm fruits (Phoenix dactylifera L.): Correlation with some antioxidant parameters. Eur. Food Res. Technol. 2019, 245, 51–59. [Google Scholar] [CrossRef]
- Badria, F.A. Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J. Med. Food 2002, 5, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernandez-Ruiz, J. Growth conditions deter- mine different melatonin levels in Lupinus albus L. J. Pineal Res. 2013, 55, 149–155. [Google Scholar] [CrossRef]
- Paroni, R.; Dei Cas, M.; Rizzo, J.; Ghidoni, J.; Montagna, M.T.; Rubino, F.M.; Iriti, M. Bioactive phytochemicals of tree nuts. Determination of the melatonin and sphingolipid content in almonds and pistachios. J. Food Compos. Anal. 2019, 82, 103227. [Google Scholar] [CrossRef]
- Caniato, R.; Filippini, R.; Piovan, A.; Puricelli, L.; Borsarini, A.; Cappelletti, E.M. Melatonin in plants. Dev. Tryptophan Serotonin Metab. 2003, 527, 593–597. [Google Scholar]
- Reiter, R.J.; Manchester, L.C.; Tan, D.X. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef]
- Burkhardt, S.; Tan, D.X.; Manchester, L.C.; Hardeland, R.; Reiter, R.J. Detection and quantification of the antioxidant melatonin in montmorency and balaton tart cherries (Prunus cerasus). J. Agric. Food Chem. 2001, 49, 4898–4902. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, D.; Lozano, M.; Fernández-León, M.F.; Ayuso, M.C.; Bernalte, M.J.; Rodríguez, A.B. Detection and Quantification Of Melatonin And Serotonin In Eight Sweet Cherry Cultivars (Prunus avium L.). Eur. Food Res. Technol. 2009, 229, 223–229. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Seymour, E.M.; Urcuyo Llanes, D.E.; Kaufman, P.B.; Bolling, S.F. Chemical profile and antioxidant capacities of tart cherry products. Food Chem. 2009, 115, 20–25. [Google Scholar] [CrossRef]
- Stürtz, M.; Cerezo, A.B.; Cantos-Villar, E.; Garcia-Parrilla, M.C. Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chem. 2011, 127, 1329–1334. [Google Scholar] [CrossRef]
- Riga, P.; Medina, S.; Garcia-Flores, L.A.; Gil-Izquierdo, A. Melatonin content of pepper and tomato fruits: Effects of cultivar and solar radiation. Food Chem. 2014, 156, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, M.; Ezura, H. Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar Micro-Tom. J. Pineal Res. 2009, 46, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Rossoni, M.; Faoro, F. Melatonin content in grape: Myth or panacea? J. Sci. Food Agric. 2006, 86, 1432–1438. [Google Scholar] [CrossRef]
- Mercolini, L.; Mandrioli, R.; Raggi, M.A. Content of melatonin and other antioxidants in grape-related foodstuffs: Measurement using a MEPS-HPLC-F method. J. Pineal Res. 2012, 53, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin and reactive oxygen and nitrogen species: A model for the plant redox network. Melatonin Res. 2019, 2, 152–168. [Google Scholar] [CrossRef]
- Afreen, F.; Zobayed, S.M.A.; Kozai, T. Melatonin in Glyc- yrrhiza uralensis: Response of plant roots to spectral quality of light and UV-B radiation. J. Pineal Res. 2006, 41, 108–115. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernandez-Ruiz, J. Chemical stress by differ- ent agents affects the melatonin content of barley roots. J. Pineal Res. 2009, 46, 295–299. [Google Scholar] [CrossRef]
- Kostopoulou, Z.; Therios, I.; Roumeliotis, E.; Kanellis, A.K.; Molassiotis, A. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol. Biochem. 2015, 86, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Murch, S.J.; Hall, B.A.; Le, C.H.; Saxena, P.K. Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. J. Pineal Res. 2010, 49, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Gardana, C.; Zanzotto, A.; Simonetti, P.; Faoro, F.; Fico, G.; Iriti, M. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J. Pineal Res. 2011, 51, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Mubarok, S.; Ezura, H.; Rostini, N.; Suminar, E.; Wiguna, G. Impacts of Sletr1-1 and Sletr1-2 mutations on the hybrid seed quality of tomatoes. J. Integr. Agric. 2019, 18, 1170–1176. [Google Scholar] [CrossRef]
- Mubarok, S.; Dahlania, S.; Suwali, N. Dataset on the change of postharvest quality of Physalis peruviana L. as an effect of ethylene inhibitor. Data Brief 2019, 24, 103849. [Google Scholar] [CrossRef]
- Zhai, R.; Liu, J.; Liu, F.; Zhao, Y.; Liu, L.; Fang, C.; Xu, L. Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biol. Technol. 2018, 139, 38–46. [Google Scholar] [CrossRef]
- Li, T.; Wu, Q.; Zhu, H.; Zhou, Y.; Jiang, Y.; Gao, H.; Yun, Z. Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel. BMC Plant Biol. 2019, 19, 1–15. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, N.; Wang, J.; Cao, Y.; Li, X.; Zhang, H.; Zhang, L.; Tan, D.X.; Guo, Y.D. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J. Pineal Res. 2016, 61, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, H.; Sheng, K.; Liu, W.; Zheng, L. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biol. Technol. 2018, 139, 47–55. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, L.; Su, T.; Jiang, Y.; Hu, L.; Ma, F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC 3000 infection in Arabidopsis thaliana. J. Pineal Res. 2015, 59, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Lee, K.; Back, K. Knockout of Arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering. Biomolecules 2019, 9, 712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, J.; Fan, X.; Jiang, W. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci. Technol. 2020, 99, 531–541. [Google Scholar] [CrossRef]
- Ge, Y.; Deng, H.; Bi, Y.; Li, C.; Liu, Y.; Dong, B. Postharvest ASM dipping and DPI pre-treatment regulated reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 2015, 99, 160–167. [Google Scholar] [CrossRef]
- Fan, Y.; Canying, L.; Yihan, L.; Rui, H.; Mi, G.; Jiaxin, L.; Tong, S.; Yonghong, G. Postharvest melatonin dipping maintains quality of apples by mediating sucrose metabolism. Plant Physiol. Biochem. 2022, 174, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana, R.; Pazmiño, L.; Valencia-Chamorro, S. Control of anthracnose, caused by Colletotrichum musae, on postharvest organic banana by thyme oil. Postharvest Biol. Technol. 2018, 138, 56–63. [Google Scholar] [CrossRef]
- Hussain, M.; Hamid, M.I.; Ghazanfar, M.U. Salicylic acid induced resistance in fruits to combat against postharvest pathogens: A review. Arch. Phytopathol. Plant Prot. 2015, 48, 34–42. [Google Scholar] [CrossRef]
- Asai, S.; Yoshioka, H. Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol. Plant-Microbe Interact. 2009, 22, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Shen, L.; Liu, K.; Zhao, D.; Yu, M.; Sheng, J. Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans. J. Sci. Food Agric. 2008, 88, 1238–1244. [Google Scholar] [CrossRef]
- Shi, H.; Qian, Y.; Tan, D.X.; Reiter, R.J.; He, C. Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J. Pineal Res. 2015, 59, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, L.; Zeng, K. Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biol. Control 2016, 96, 39–47. [Google Scholar] [CrossRef]
- Pérez-Llorca, M.; Muñoz, P.; Müller, M.; Munné-Bosch, S. Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Front. Plant Sci. 2019, 10, 136. [Google Scholar] [CrossRef]
- Cao, S.; Song, C.; Shao, J.; Bian, K.; Chen, W.; Yang, Z. Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. J. Agric. Food Chem. 2016, 64, 5215–5222. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Wu, Y.; Pan, Y.; Ban, Z.; Li, L.; Li, X. Insights into exogenous melatonin associated with phenylalanine metabolism in postharvest strawberry. Postharvest Biol. Technol. 2020, 168, 111244. [Google Scholar] [CrossRef]
- Wang, T.; Hu, M.; Yuan, D.; Yun, Z.; Gao, Z.; Su, Z.; Zhang, Z. Melatonin alleviates pericarp browning in litchi fruit by regulating membrane lipid and energy metabolisms. Postharvest Biol. Technol. 2020, 160, 111066. [Google Scholar] [CrossRef]
- Xia, H.; Shen, Y.; Shen, T.; Wang, X.; Zhang, X.; Hu, P.; Liang, D.; Lin, L.; Deng, H.; Wang, J.; et al. Melatonin accumulation in sweet cherry and its influence on fruit quality and antioxidant properties. Molecules 2020, 25, 753. [Google Scholar] [CrossRef] [PubMed]
- Bal, E. Physicochemical changes in ‘Santa Rosa’ plum fruit treated with melatonin during cold storage. J. Food Meas. Charact. 2019, 13, 1713–1720. [Google Scholar] [CrossRef]
- Fan, S.; Xiong, T.; Lei, Q.; Tan, Q.; Cai, J.; Song, Z.; Yang, M.; Chen, W.; Li, X.; Zhu, X. Melatonin treatment improves postharvest preservation and resistance of guava fruit (Psidium guajava L.). Foods 2022, 11, 262. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ren, J.; Huang, X.; Zheng, X.; Tian, Y.; Shi, L.; Dong, P.; Li, Z. Melatonin: Biosynthesis, content, and function in horticultural plants and potential application. Sci. Hortic. 2021, 288, 110392. [Google Scholar] [CrossRef]
- Ze, Y.; Gao, H.; Li, T.; Yang, B.; Jiang, Y. Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends Food Sci. Technol. 2021, 109, 569–578. [Google Scholar] [CrossRef]
- Choudhary, M.L.; Dikshit, S.N.; Shukla, N.; Saxena, R.R. Evaluation of guava (Psidium guajava L.) varieties and standardization of recipe for nectar preparation. J. Hortic. Sci. 2016, 3, 161–163. [Google Scholar]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin as a natural ally against oxidative stress: A physicochemical examination. J. Pineal Res. 2011, 51, 1–16. [Google Scholar] [CrossRef]
- Wang, X.; Liang, D.; Xie, Y.; Lv, X.L.; Wang, J.; Xia, H. Melatonin application increases accumulation of phenol substances in kiwifruit during storage. Emir. J. Food Agric. 2019, 31, 361–367. [Google Scholar]
- Bhardwaj, R.; Pareek, S.; Mani, S.; Domínguez-Avila, J.A.; González-Aguilar, G.A. A melatonin treatment delays postharvest senescence, maintains quality, reduces chilling injury, and regulates antioxidant metabolism in mango fruit. J. Food Qual. 2022, 2022, 2379556. [Google Scholar] [CrossRef]
- Fan, S.; Li, Q.; Feng, S.; Lei, Q.; Abbas, F.; Yao, Y.; Chen, W.; Li, X.; Zhu, X. Melatonin maintains fruit quality and reduces anthracnose in postharvest papaya via enhancement of antioxidants and inhibition of pathogen development. Antioxidants 2022, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, L.; Hou, Y.; Zheng, Y.; Jin, P. A combination of melatonin and ethanol treatment improves postharvest quality in bitter melon fruit. Foods 2020, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.; Liu, R.; Wu, W.; Han, Y.; Fang, X.; Chen, H.; Gao, H. Effects of melatonin on the components, quality and antioxidant activities of blueberry fruits. LWT 2021, 147, 111582. [Google Scholar] [CrossRef]
- Hu, W.; Yang, H.; Tie, W.W.; Yan, Y.; Ding, Z.H.; Liu, Y.; Wu, C.; Wang, J.; Reiter, R.J.; Tan, D.X.; et al. Natural variation in banana varieties highlights the role of melatonin in post-harvest ripening and quality. J. Agric. Food Chem. 2017, 65, 9987–9994. [Google Scholar] [CrossRef] [PubMed]
- Onik, J.C.; Wai, S.C.; Li, A.; Lin, Q.; Sun, Q.; Wang, Z.; Duan, Y. Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chem. 2021, 337, 127753. [Google Scholar] [CrossRef]
- Cao, J.J.; Yu, Z.C.; Zhang, Y.; Li, B.H.; Liang, W.X.; Wang, C.X. Control efficiency of exogenous melatonin against post-harvest apple grey mold and its influence on the activity of defensive enzymes. Plant Physiol. J. 2017, 53, 1760. [Google Scholar]
- Bal, E. Effect of melatonin treatments on biochemical quality and postharvest life of nectarines. J. Food Meas. Charact. 2021, 15, 288–295. [Google Scholar] [CrossRef]
- Du, H.; Liu, G.; Hua, C.; Liu, D.; He, Y.; Liu, H.; Kurtenbach, R.; Ren, D. Exogenous melatonin alleviated chilling injury in harvested plum fruit via affecting the levels of polyamines conjugated to plasma membrane. Postharvest Biol. Technol. 2021, 179, 111585. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Fard, J.R. Melatonin treatment attenuates post-harvest decay and maintains nutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem. 2017, 221, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, Y.; Jannatizadeh, A.; Fard, J.R.; Aghdam, M.S. Melatonin treatment delays senescence and improves antioxidant potential of sweet cherry fruits during cold storage. Sci. Hortic. 2021, 288, 110304. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Q.; Chen, W.; Guo, Q.; Xia, Y.; Wu, D.; Jing, D.; Liang, G. Melatonin treatment maintains quality and delays lignification in loquat fruit during cold storage. Sci. Hortic. 2021, 284, 110126. [Google Scholar] [CrossRef]
- Ma, Q.; Lin, X.; Wei, Q.; Yang, X.; Zhang, Y.; Chen, J. Melatonin treatment delays postharvest senescence and maintains the organoleptic quality of ‘Newhall’ navel orange (Citrus sinensis (L.) Osbeck) by inhibiting respiration and enhancing antioxidant capacity. Sci. Hortic. 2021, 286, 110236. [Google Scholar] [CrossRef]
- Deng, B.; Xia, C.; Tian, S.; Shi, H. Melatonin reduces pesticide residue, delays senescence, and improves antioxidant nutrient accumulation in postharvest jujube fruit. Postharvest Biol. Technol. 2021, 173, 111419. [Google Scholar] [CrossRef]
- Zhang, Y.; Huber, D.J.; Hu, M.; Jiang, G.; Gao, Z.; Xu, X.; Jiang, Y.; Zhang, Z. Melatonin delays postharvest browning in litchi fruit by enhancing anti- oxidative processes and oxidation repair. J. Agric. Food Chem. 2018, 66, 7475–7484. [Google Scholar] [CrossRef] [PubMed]
- Li, S.G.; Xu, Y.H.; Bi, Y.; Zhang, B.; Shen, S.L.; Jiang, T.J.; Zheng, X.L. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharvest Biol. Technol. 2019, 157, 110962. [Google Scholar] [CrossRef]
Family | Species | Concentration (ng/g) | References |
---|---|---|---|
Actinidiaceae | Actinidia chinensis | 0.02 | [3] |
Anacardiaceae | Mangifera indica | 0.70 | [33] |
Phoenix dactylifera | 0.17 | [34] | |
Arecaceae | Phoenix dactylifera | 0.17 | [34] |
Bromeliaceae | Ananas comosus (L.) Meri. | 0.04 | [3] |
Ananas comosus (L.) Meri. | 0.28 | [35] | |
Ananas comosus (L.) Meri. | 0.30 | [36] | |
Ananas comosus (L.) Meri. | 0.26 | [37] | |
Ananas comusus | 0.04 | [38] | |
Caricaceae | Carica papaya | 0.24 | [33] |
Cucurbitaceae | Cucumis sativus L. | 0.03 | [3] |
Cucumis sativus L. | 0.59 | [35] | |
Cucumis sativa | 0.03 | [38] | |
Juglandaceae | Juglans regia L. | 3.5 | [39] |
Lythraceae | Punica granatum L. | 0.17 | [35] |
Musaceae | Musa paradisiaca L. | 0.47 | [40] |
Musa sapientum L. | 0.01 | [36] | |
Musa ensete | 0.66 | [35] | |
Rosaceae | Malus domestica (Borkh) | 0.05 | [3] |
Malus domestica (Borkh) | 0.16 | [35] | |
Malus domestica | 0.05 | [38] | |
Prunus cerasus L. | 18.00 | [41] | |
Prunus avium L. | 0.01–0.22 | [42] | |
Prunus avium L. | 0.01–124.7 | [35] | |
Prunus cerasus | 15.00 | [41] | |
Prunus cerasus | 12.3–22.9 | [43] | |
Fragaria ananassa Duch. | 0.14 | [35] | |
Fragaria ananassa Duch. | 0.01 | [3] | |
Fragaria ananassa Duch. | 5.50–11.26 | [44] | |
Fragaria magna | 0.01 | [38] | |
Rutaceae | Citrus sinensis Osbeck. | 0.15 | [33] |
Solanaceae | Solanum lycopersicum | 0.5 | [40] |
Solanum lycopersicum | 0.3 | [35] | |
Solanum lycopersicum | 7.5–250 | [45] | |
Solanum lycopersicum | 0.03 | [38] | |
Solanum lycopersicum | 1.2–3.4 | [46] | |
Solanum lycopersicum | 4.1–114.5 | [44] | |
Vitaceae | Vitis vinifera L. | 0.97 | [47] |
Vitis vinifera L. | 1.2–1.50 | [48] |
Family | Species | Optimum Concentration (μM) | Effects | Application | References |
---|---|---|---|---|---|
Actinidiaceae | Actinidia deliciosa | 100 | Delayed the decline of fruit hardness, reduced the loss of soluble protein, and lowered the accumulation of malondialdehyde; improved total phenolic, total flavonoid and flavanol content, and the antioxidant capacity; and delayed fruit softening. | Soaked for 30 min | [83] |
Anacardiaceae | Mangifera indica L. | 1000 | Maintained firmness, improved ascorbic acid and phenolic compound content, and antioxidant capacity; controlled the activity of polyphenol oxidase; and increased the activity of the catalase (CAT) and peroxidase enzymes during storage. | iImmersed for 10 min | [19] |
Mangifera indica L. | 100 | Reduced respiration rate and ethylene production; increased firmness, titratable acidity, and ascorbic acid content; lowered weight loss, total soluble solids, pH, total soluble solid and acidity ratio; maintained a higher concentration of total phenolics and total flavonoids; increased the activities of antioxidant enzymes superoxide dismutase and CAT; and improved membrane stability. | Dipped for 120 min | [84] | |
Mangifera indica | 1000 | Improved postharvest quality; maintained firmness; improved bioactive compounds; increased phenolic content; and increased the activity of CAT and peroxidase (POD). | Immersed for 10 min | [19] | |
Caricaceae | Carica papaya | 400 | Delayed fruit softening; reduced anthracnose incidence; enhanced antioxidant activity; and decreased fruit oxidative injury; induced total phenol, total flavonoid, and ascorbic acid accumulation; increased CAT, ascorbate peroxidase, NADH oxidase, glutathione reductase, polyphenol oxidase, superoxide dismutase, and peroxidase activity; enhanced the activity of defense-related enzymes, such as chitinase, 4-coumaric acid-CoA-ligase, and phenylalanine ammonia lyase; repressed lipid metabolism. | Immersed for 2 h | [85] |
Cucurbitaceae | Momordica charantia L. | 120 | Increased chlorophyll, total soluble solids (TSS), soluble sugar, soluble protein, and ascorbic acid (AsA); promoted the synthesis of total phenols and flavonoids. | Immersed for 10 min | [86] |
Ericaceae | Vaccinium spp. | 50 | Maintained the contents of AsA, anthocyanin, and total phenol; reduced the accumulation of reactive oxygen species and membrane lipid peroxidation; and promoted the activities of ascorbate peroxidase (APX), glutathione S-transferase, and phenylalanine ammonia lyase (PAL). | Sprayed | [87] |
Musaceae | Musa paradisiaca L. | 200–500 | Inhibited the ripening process. | Soaked for 2 h | [88] |
Myrtaceae | Psidium guajava L. | 600 | Maintained postharvest quality, delayed fruit softening, and reduced the incidence of anthracnose; enhanced the antioxidant capacity and reduced the oxidative damage; enhanced the activities of CAT, superoxide dismutase, ascorbate peroxidase, and glutathione reductase; and maintained total flavonoids and AsA. | Soaked for 2 h | [78] |
Rosaceae | Malus domestica Borkh | 1000 | Reduced ethylene production and weight loss; maintained skin structure; increased the activity of three enzymes, including POD, superoxide dismutase (SOD), and CAT. | Sprayed | [89] |
Malus domestica Borkh | 200 | Inhibited gray mold diseases. | Immersed | [90] | |
Prunus persica | 100 | Reduced weight loss, decay incidence, and respiration rate; maintained firmness, TSS, and AsA contents; enhanced the activities of superoxide dismutase, CAT, peroxidase, and ascorbate peroxidase; decreased the activity of lipoxygenase, levels of superoxide anion and hydrogen peroxide, and malondialdehyde content. | Dipped for 10 min | [27] | |
Prunus persica | 100 | Reduced chilling injury; increased extractable juice rate and TSS; enhanced expression of PpADC, PpODC, and PpGAD; increased polyamines and γ-aminobutyric acid (GABA) contents. | Immersed for 2 h | [73] | |
Prunus persica | 1000 | Melatonin-treated nectarines exhibited higher total antioxidant activ- ity than controls, which was correlated primarily to the increase in the levels of total phenolics and to a decrease in the loss to AsA and flavonoids contents. These results demonstrated that melatonin treatment could be a good practice for extending postharvest life of nectarine fruits, maintaining the appearance and nutrient value, and reducing the loss of health-promoting compounds. | Immersed for 30 min | [91] | |
Prunus salicina | 1000 | Reduced weight loss and maintaining greater firmness; increased AsA content, total phenolic content, and antioxidant; reduced decay rate. | Immersed | [77] | |
Prunus salicina | 100 | Enhanced S-adenosylmethionine decarboxylase and TGase activities. | Immersed for 100 min | [92] | |
Fragaria × ananassa, Duch. | 100 or 1000 | Reduced decay and weight loss of fruit; delayed senescence; reduced the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA); increased the total phenolics and flavonoid contents resulting in the higher antioxidant capacity, extending the postharvest life, and improving the fruit quality; enhanced the expression of melatonin biosynthetic genes including FaTDC, FaT5H, FaSNAT, and FaASMT; and increased the content of endogenous melatonin. | Immersed for 5 min | [60] | |
Fragaria × ananassa, Duch | 100 | Increased the acumulation of H2O2; increased the activity of SOD; reduced the activity of CAT and APX; and decreased the fruit decay. | Immersed for 2 h | [93] | |
Prunus avium L. | 100 | Reduced flesh browning and decay incidence; increased phenols, flavonoids, anthocyanins accumulation, and antioxidant potential; maintained the membrane integrity. | Dipped for 5 min | [94] | |
Eriobotrya japonica Lindl. | 50 | Inhibited weight loss and firmness; increased sugar, acid, and phytochemical content; decreased MDA content; improved antioxidant capacity; and reduced lignin content. | Immersed for 30 min | [95] | |
Pyrus communis L. | 100 | Delayed the ethylene production; increased fruit firmness; increased antioxidant; and delayed the senescene process. | Immersed for 12 h | [57] | |
Rutaceae | Citrus sinensis (L.) Osbeck | 200 | Decreased respiration and weight loss rates; increase fruit firmness, TSS, soluble sugar content, titratable acidity, and citrus color index; impeded the accumulation of hydrogen peroxide and malondialdehyde; inhibited reactive oxygen species (ROS) burst and oxidative damage; increased the activity and expressions of CAT, superoxide dismutase, ascorbate peroxidase, and glutathione reductase; and delayed postharvest senescence. | Dipped for 5 min | [96] |
Rhamnaceae | Ziziphus jujuba Mill. | 100 | Enhanced degradation of pesticides, such as chlorothalonil, malathion, and glyphosate; delayed fruit senescence by reduced weight loss, decay incidence, and firmness. | Sprayed | [97] |
Sapindaceae | Litchi chinensis Sonn. | 400 | Delayed the development of pericarp browning, inhibited lipid degradation, and maintained membrane integrity and energy status. | Immersed for 5 min | [75] |
Litchi chinensis Sonn. | 400 | Inhibited pericarp browning; reduced discoloration during storage; decreased membrane relative leakage rate. | Immersed for 5 min | [98] | |
Solanaceae | Solanum lycopersicum | 100 | Increased the content of total flavonoids, total phenolics, and lignin; inhibited gray mold development, induced a ROS burst, increased endogenous melatonin and salicylic acid (SA); enhanced activities of chitinase (CHI) and β-1,3-glucanase (GLU); increased the activities of PAL, 4-coumarate-coenzyme A ligase (4CL), and POD; and increased total phenols, flavonoids, and lignin in tomato. | Dipped 60 min | [99] |
Solanum lycopersicum | 50 | Increased lycopene and water loss; enhanced fruit softening; increased water-soluble pectin and decreased protopectin; increased ethylene production, accelerated the climacteric phase, enhanced fruit ripening, and improved quality of tomatoes. | Immersed for 2 h | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubarok, S.; Suminar, E.; Abidat, A.H.; Setyawati, C.A.; Setiawan, E.; Buswar, A.S. Overview of Melatonin’s Impact on Postharvest Physiology and Quality of Fruits. Horticulturae 2023, 9, 586. https://doi.org/10.3390/horticulturae9050586
Mubarok S, Suminar E, Abidat AH, Setyawati CA, Setiawan E, Buswar AS. Overview of Melatonin’s Impact on Postharvest Physiology and Quality of Fruits. Horticulturae. 2023; 9(5):586. https://doi.org/10.3390/horticulturae9050586
Chicago/Turabian StyleMubarok, Syariful, Erni Suminar, Adzkia Husnul Abidat, Citra Ayu Setyawati, Erik Setiawan, and Adine Syabina Buswar. 2023. "Overview of Melatonin’s Impact on Postharvest Physiology and Quality of Fruits" Horticulturae 9, no. 5: 586. https://doi.org/10.3390/horticulturae9050586
APA StyleMubarok, S., Suminar, E., Abidat, A. H., Setyawati, C. A., Setiawan, E., & Buswar, A. S. (2023). Overview of Melatonin’s Impact on Postharvest Physiology and Quality of Fruits. Horticulturae, 9(5), 586. https://doi.org/10.3390/horticulturae9050586