Adaptability and Stability Analyses of Improved Strawberry Genotypes for Tropical Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Experimental Genotypes
2.3. Genotype Transplantation
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeist, A.R.; de Resende, J.T.V. Strawberry breeding in Brazil: Current momentum and perspectives. Hortic. Bras. 2019, 37, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Moreira, A.F.P.; de Resende, J.T.V.; Shimizu, G.D.; Hata, F.T.; do Nascimento, D.; Oliveira, L.V.B.; Mariguele, K.H. Characterization of strawberry genotypes with low chilling requirement for cultivation in tropical regions. Sci. Hortic. 2022, 292, 110629. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, S.K.; Lee, H.J.; Lee, H.S.; Lee, J.H. Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper. Ecol. Evol. 2018, 8, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, V.; Kumar, P.; Long, S.P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob. Change Biol. 2017, 23, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Campoy, J.A.; Darbyshire, R.; Dirlewanger, E.; Quero-García, J.; Wenden, B. Yield potential definition of the chilling requirement reveals likely underestimation of the risk of climate change on winter chill accumulation. Int. J. Biometeorol. 2019, 63, 183–192. [Google Scholar] [CrossRef]
- Chavan, S.G.; Duursma, R.A.; Tausz, M.; Ghannoum, O. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 2019, 70, 6447–6459. [Google Scholar] [CrossRef]
- Mezzetti, B.; Giampieri, F.; Zhang, Y.T.; Zhong, C.F. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. J. Berry Res. 2018, 8, 205–221. [Google Scholar] [CrossRef]
- Barth, E.; Resende, J.T.V.D.; Moreira, A.F.P.; Mariguele, K.H.; Zeist, A.R.; Silva, M.B.; Youssef, K. Selection of experimental hybrids of strawberry using multivariate analysis. Agronomy 2020, 10, 598. [Google Scholar] [CrossRef] [Green Version]
- Barth, E.; Resende, J.T.V.; Zeist, A.R.; Mariguele, K.H.; Zeist, R.A.; Gabriel, A.; Piran, F. Yield and quality of strawberry hybrids under subtropical conditions. Genet. Mol. Res. 2019, 18, GMR18156. [Google Scholar] [CrossRef]
- Corrêa, J.V.W.; Weber, G.G.; Zeist, A.R.; de Resende, J.T.V.; Da-Silva, P.R. ISSR analysis reveals high genetic variation in strawberry three-way hybrids developed for tropical regions. Plant Mol. Biol. Rep. 2021, 39, 566–576. [Google Scholar] [CrossRef]
- Resende, J.T.V.; Gabriel, A.; Moreira, A.F.P.; Gonçalves, L.S.A.; Resende, N.; de Goes, C.D.M.; Zanin, D.S. Application of mixed models in the study of the adaptability and stability of short-day and neutral-day strawberry cultivars. Res. Soc. Dev. 2020, 9, e110953104. [Google Scholar] [CrossRef]
- Ghoochani, R.; Vosough, A.; Karami, F. Heritability, genetic variability and relationship among morphological and chemical parameters of strawberry cultivars. Biol. Forum Res. Trend 2015, 7, 218. [Google Scholar]
- Malosetti, M.; Ribaut, J.M.; van Eeuwijk, F.A. The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Front. Physiol. 2013, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Kachwaya, D.S.; Kumar, R.; Vikas, G.; Singh, L. Genetic variability and association analysis in strawberry (Fragaria × ananassa Duch). Electron. J. Plant Breed. 2018, 9, 169–182. [Google Scholar] [CrossRef]
- Ramalho, M.A.P.; Dias, L.A.D.S.; Carvalho, B.L. Contributions of plant breeding in Brazil: Progress and perspectives. Crop Breed. Appl. Biotechnol. 2012, 12, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Cruz, C.D.; Souza Carneiro, P.C. Modelos Biométricos Aplicados ao Melhoramento Genético (No. 575.1015195); Universidade Federal de Viçosa: Viçosa, Brazil, 2006. [Google Scholar]
- Henderson, C.R. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.J.; Xue, L.; Guo, R.X.; Dai, H.P. The Fragaria species native to China and their geographical distribution. Acta Hortic. 2017, 1156, 37–46. [Google Scholar] [CrossRef]
- Dimeglio, L.M.; Staudt, G.; Yu, H.; Davis, T.M. A phylogenetic analysis of the genus Fragaria (strawberry) using intron-containing sequence from the ADH-1 gene. PLoS ONE 2014, 9, e102237. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, L.L.; Sargent, D.J.; Abebe-akele, F.; Wood, D.J.; Ward, J.A.; Bassil, N.V.; Hancock, J.F.; Folta, K.M.; Davis, T.M. A high-density linkage map of the ancestral diploid strawberry, Fragaria iinumae, constructed with single nucleotide polymorphism markers from the IStraw90 array and genotyping by sequencing. Plant Genome 2016, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Edger, P.P.; Poorten, J.T.; VanBuren, R.; Hardigan, M.A.; Cole, M.; McKain, M.R.; Smith, R.D.; Teresi, S.J.; Nelson, A.D.L.; Wai, C.M.; et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 2019, 51, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Du, I.; Wang, J.; Wang, T.; Liu, L.; Iqbal, S.; Qiao, Y. Identification and chromosome doubling of Fragaria mandshurica and F. nilgerrensis. Sci. Hortic. 2021, 289, e110507. [Google Scholar] [CrossRef]
- Otto, S.P. The Evolutionary Consequences of Polyploidy. Cell 2007, 131, 452–462. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.P.D.; Farias, F.J.C.; Morello, C.D.L.; Teodoro, P.E. Use of REML/BLUP methodology for selecting cotton genotypes with higher adaptability and productive stability. Bragantia 2016, 75, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Resende, M.D.V.d.; Duarte, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Embrapa Florestas. Pesq. Agr. Trop. 2007, 37, 182–194. [Google Scholar]
- Squilassi, M.G. Interação de Genótipos com Ambientes. Embrapa Tabuleiros Costeiros-Livro Técnico (INFOTECA-E), 2003. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/897925/interacao-de-genotipos-com-ambientes (accessed on 18 April 2023).
- Santos, H.G.d.; Jacomine, P.K.T.; Dos Anjos, L.H.C.; De Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- IDR. Instituto de Desenvolvimento Rural do Paraná, IAPAR-EMATER. Agrometeorologia. Available online: http://www.iapar.br/modules/conteudo/conteudo.php?Conteúdo=597/ (accessed on 14 December 2019).
- Resende, M.D.V.d. Software Selegen-REML/BLUP: A useful tool for plant breeding. Crop Breed. Appl. Biotechnol. 2016, 16, 330–339. [Google Scholar] [CrossRef]
- Resende, J.T.V.d.; Matos, R.; Zeffa, D.M.; Constantino, L.V.; Alves, S.M.; Ventura, M.U.; Youssef, K. Relationship between salicylic acid and resistance to mite in strawberry. Folia Hortic. 2021, 33, 107–119. [Google Scholar] [CrossRef]
- Allard, R.W.; Bradshaw, A.D. Implications of genotype-environmental interactions in applied plant breeding 1. Crop Sci. 1964, 4, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Pereira, W.R.; de Souza, R.J.; Yuri, J.E.; Ferreira, S. Yield of strawberry cultivars submitted to different planting dates. Hortic. Bras. 2013, 31, 500–503. [Google Scholar] [CrossRef] [Green Version]
- Rosa, H.T.; Streck, N.A.; Walter, L.C.; Andriolo, J.L.; Silva, M.R.D. Crescimento vegetativo e produtivo de duas cultivares de morango sob épocas de plantio em ambiente subtropical. Rev. Cienc. Agron. 2013, 44, 604–613. [Google Scholar] [CrossRef]
- Costa, A.F.; Teodoro, P.E.; Bhering, L.L.; Leal, N.R.; Tardin, F.D.; Daher, R.F. Biplot analysis of strawberry genotypes recommended for the State of Espírito Santo. Genet. Mol. Res. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Gabriel, A.; Resende, J.T.V.; Zeist, A.R.; Resende, L.V.; Resende, N.C.V.; Galvão, A.G.; Camargo, C.K. Phenotypic stability of strawberry cultivars assessed in three environments. Genet. Mol. Res. 2018, 17, e18041. [Google Scholar] [CrossRef]
- Gabriel, A.; de Resende, J.T.; Zeist, A.R.; Resende, L.V.; Resende, N.C.; Zeist, R.A. Phenotypic stability of strawberry cultivars based on physicochemical traits of fruits. Hortic. Bras. 2019, 37, 75–81. [Google Scholar] [CrossRef]
- Gawroński, J. Evaluation of the genetic control, heritability and correlations of some quantitative characters in strawberry (Fragaria × ananassa Duch). Acta Sci. Pol. Hortorum Cultus 2011, 10, 71–76. [Google Scholar]
- Costa, A.F.; Leal, N.R.; Ventura, J.A.; Gonçalves, L.S.A.; Amaral Júnior, A.T.D.; Costa, H. Adaptability and stability of strawberry cultivars using a mixed model. Acta Sci. Agron. 2015, 37, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Ariza, M.T.; Miranda, L.; Martinez-Ferri, E.; Medina, J.J.; Gómez-Mora, J.A.; Cervantes, L.; Soria, C. Consistency of organoleptic and yield related traits of strawberry cultivars over time. J. Berry Res. 2020, 10, 623–636. [Google Scholar] [CrossRef]
Male Genitor Cultivars | Female Genitor Cultivar | Genotypes |
---|---|---|
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-24 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-36 |
RVFS 06 (Festival × Aromas) | Albion | RVFS06AL-132 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-34 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-179 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-04 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-21 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-02 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-32 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-38 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-05 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-33 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-10 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-13 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-154 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-47 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-31 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-16 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-25 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-113 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-32 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-30 |
RVCA 16 (Camarosa × Aromas) | Monterey | RVCA16M-01 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-28 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-151 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-10 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-124 |
RVFS 06 (Festival × Aromas) | Monterey | RVFS06M-29 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-29 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-42 |
RVFS 07 (Festival × Aromas) | Albion | RVFS07AL-28 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-48 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-88 |
RVFS 07 (Festival × Aromas) | Monterey | RVFS07M-80 |
RVDA 11 (Dover × Aromas) | Monterey | RVDA11M-03 |
RVFS 06 (Festival × Aromas) | Albion | RVFS06AL-36 |
Variation Source | Deviance | LRT (X2) |
---|---|---|
Genotypes | 8512.40 | 63.73 ** |
Genotypes × Months | 9019.45 | 570.78 ** |
Permanent effect G × E | 8492.63 | 43.96 ** |
Complete model | 8448.67 | - |
Individual REML | Value |
---|---|
Genotypic variance (g2) | 3483.54 |
Genotype month variance (gm2) | 5334.64 |
Permanent effects variance (perm2) | 337.04 |
Temporary residual variance (e2) | 1422.48 |
Phenotypic variance (f2) | 10,577.70 |
Heritability in the broad sense in the plot (hp2) | 0.33 |
Repeatability (r) | 0.36 |
Mean heritability of genotypes (ahg2) | 0.79 |
Accuracy (A) | 0.89 |
General mean | 123.33 |
Genotype | u + g 1 | CI 2 |
---|---|---|
RVFS07M-34 | 278.02 | [222.45; 333.59] |
RVFS07M-24 | 244.71 | [189.14; 300.28] |
RVDA11M-04 | 239.54 | [183.97; 295.12] |
RVFS07M-36 | 191.39 | [135.83; 246.97] |
RVFS07M-33 | 183.14 | [127.57; 238.71] |
RVFS07M-05 | 182.46 | [126.89; 238.03] |
RVFS07M-154 | 180.29 | [124.72; 235.86] |
RVFS07M-31 | 167.46 | [111.89; 223.03] |
RVFS07M-80 | 155.91 | [100.34; 211.48] |
RVFS06AL-132 | 153.04 | [97.47; 208.61] |
RVDA11M-13 | 151.92 | [96.35; 207.50] |
RVDA11M-21 | 151.47 | [95.90; 207.04] |
RVCA16M-01 | 151.30 | [95.73; 206.87] |
RVFS07M-32 | 148.63 | [93.06; 204.20] |
RVFS07M-10 | 147.01 | [91.44; 202.58] |
RVDA11M-03 | 139.66 | [84.09; 195.23] |
RVDA11M-25 | 128.16 | [72.59; 183.73] |
RVFS07M-124 | 122.98 | [67.41; 178.55] |
RVDA11M-32 | 119.52 | [63.95; 175.09] |
RVFS07M-16 | 116.20 | [60.63; 171.77] |
RVCA16 | 115.89 | [60.32; 171.46] |
RVDA11M-10 | 115.69 | [60.12;171.26] |
RVFS07M-179 | 112.89 | [57.32; 168.46] |
RVFS07M-113 | 102.96 | [47.38; 158.53] |
RVCA44 | 101.42 | [45.85; 156.99] |
RVFS07M-38 | 98.73 | [43.16; 154.3] |
RVFS07 | 97.12 | [41.55; 152.69] |
RVFS06 | 94.68 | [39.12; 150.26] |
RVFS07M-47 | 94.41 | [38.84; 149.98] |
Monterey | 93.23 | [37.66; 148.80] |
RVDA11M-29 | 91.97 | [36.39; 147.54] |
RVFS07M-02 | 91.76 | [36.19; 147.33] |
RVFS07M-88 | 91.36 | [35.79; 146.93] |
RVDA11M-28 | 90.90 | [35.33; 146.47] |
Albion | 90.58 | [35.01; 146.15] |
RVFS06AL-36 | 89.62 | [34.05; 146.19] |
RVDA11 | 87.49 | [31.92; 143.06] |
RVFS07M-30 | 85.03 | [29.46; 140.60] |
RVFS07AL-28 | 69.84 | [14.27; 125.41] |
Dover | 62.30 | [6.73; 117.87] |
RVFS07M-151 | 60.44 | [4.87; 116.01] |
RVFS06M-29 | 52.15 | [−3.43; 107.72] |
RVVFS07M-48 | 44.64 | [−10.93; 100.21] |
RVFS07M-42 | 38.72 | [−16.85; 94.29] |
General | Harvest 1 1 | Harvest 2 | Harvest 3 | ||||
---|---|---|---|---|---|---|---|
Genotype | u + g + gem 2 | Genotype | u + g + ge 3 | Genotype | u + g + ge | Genotype | u + g + ge |
RVFS07M-34 | 311.86 | RVFS07M-47 | 53.38 | RVFS07M-80 | 119.64 | RVFS07M-34 | 698.39 |
RVFS07M-24 | 271.27 | RVFS07M-34 | 38.59 | RVFS07M-24 | 89.84 | RVFS07M-05 | 414.05 |
RVDA11M-04 | 264.97 | RVDA11M-04 | 31.38 | RVFS07M-36 | 88.04 | RVFS07M-36 | 379.57 |
RVFS07M-36 | 206.28 | RVFS07M-24 | 29.96 | RVFS07M-34 | 85.09 | RVFS07M-124 | 350.38 |
RVFS07M-33 | 196.22 | RVCA44 | 29.35 | RVFS07M-154 | 84.26 | RVFS07M-179 | 334.93 |
RVFS07M-05 | 195.40 | RVFS07M-154 | 28.26 | RVCA16M-01 | 75.27 | RVFS07M-154 | 302.40 |
RVFS07M-154 | 192.75 | RVFS07M-80 | 27.30 | RVDA11M-28 | 65.80 | RVDA11M-04 | 293.37 |
RVFS07M-31 | 177.11 | RVFS06AL-132 | 25.62 | RVDA11M-03 | 60.20 | RVFS07M-10 | 263.49 |
RVFS07M-10 | 163.04 | RVFS07M-36 | 24.46 | RVFS07M-32 | 58.46 | RVDA11N-03 | 250.05 |
RVFS06AL-132 | 159.54 | RVFS07M-33 | 24.00 | RVDA11M-21 | 54.19 | RVFS07M-31 | 250.04 |
RVDA11M-13 | 158.18 | RVFS07M-113 | 21.23 | RVCA44 | 50.91 | RVFS07M-24 | 247.47 |
Harvest 4 | Harvest 5 | Harvest 6 | Harvest 7 | ||||
Genotype | u + g + ge | Genotype | u + g + ge | Genotype | u + g + ge | Genotype | u + g + ge |
RVFS07M-34 | 413.91 | RVFS07M-34 | 563.86 | RVDA11M-04 | 462.95 | RVFS07M-24 | 400.41 |
RVFS07M-31 | 405.00 | RVFS07M-05 | 484.49 | RVFS07M-24 | 340.98 | RVFS07M-32 | 334.98 |
RVDA11M-04 | 400.64 | RVFS06AL-132 | 442.21 | RVFS07M-33 | 264.74 | RVDA11M-04 | 218.63 |
RVFS07M-05 | 393.19 | RVFS07M-24 | 416.42 | RVDA11M-13 | 237.73 | RVFS07M-80 | 200.98 |
RVFS07M-24 | 373.76 | RVDA11M-04 | 403.48 | RVDA11M-21 | 218.94 | RVFS07M-33 | 185.94 |
RVFS07M-33 | 356.12 | RVFS07M-31 | 397.62 | RVFS07M-36 | 216.65 | RVFS07M-34 | 172.44 |
RVFS07M-36 | 332.83 | RVCA16M-01 | 373.02 | RVFS07M-34 | 210.74 | RVFS07M-16 | 154.77 |
RVFS07M-80 | 321.29 | RVFS07M-36 | 349.95 | RVCA16M-01 | 202.61 | RVFS07M-154 | 153.83 |
RVFS07M-154 | 312.29 | RVFS07M-154 | 341.10 | RVDA11M-25 | 186.88 | Monterey | 152.35 |
RVDA11M-13 | 294.86 | RVFS07M-33 | 331.10 | RVDA11M-10 | 152.20 | RVDA11M-21 | 128.65 |
RVDA11M-21 | 289.38 | RVFS07 | 317.73 | RVDA11M-03 | 151.93 | RVDA11M-25 | 125.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, D.A.; Gomes, G.C.; de Oliveira, L.V.B.; de Paula Gomes, G.F.; Ivamoto-Suzuki, S.T.; Ziest, A.R.; Mariguele, K.H.; Roberto, S.R.; de Resende, J.T.V. Adaptability and Stability Analyses of Improved Strawberry Genotypes for Tropical Climate. Horticulturae 2023, 9, 643. https://doi.org/10.3390/horticulturae9060643
Nascimento DA, Gomes GC, de Oliveira LVB, de Paula Gomes GF, Ivamoto-Suzuki ST, Ziest AR, Mariguele KH, Roberto SR, de Resende JTV. Adaptability and Stability Analyses of Improved Strawberry Genotypes for Tropical Climate. Horticulturae. 2023; 9(6):643. https://doi.org/10.3390/horticulturae9060643
Chicago/Turabian StyleNascimento, Daniele Aparecida, Gabriella Correia Gomes, Luiz Vitor Barbosa de Oliveira, Gabriel Francisco de Paula Gomes, Suzana Tiemi Ivamoto-Suzuki, André Ricardo Ziest, Keny Henrique Mariguele, Sergio Ruffo Roberto, and Juliano Tadeu Vilela de Resende. 2023. "Adaptability and Stability Analyses of Improved Strawberry Genotypes for Tropical Climate" Horticulturae 9, no. 6: 643. https://doi.org/10.3390/horticulturae9060643
APA StyleNascimento, D. A., Gomes, G. C., de Oliveira, L. V. B., de Paula Gomes, G. F., Ivamoto-Suzuki, S. T., Ziest, A. R., Mariguele, K. H., Roberto, S. R., & de Resende, J. T. V. (2023). Adaptability and Stability Analyses of Improved Strawberry Genotypes for Tropical Climate. Horticulturae, 9(6), 643. https://doi.org/10.3390/horticulturae9060643