Screening of Cork Oak for Resistance to Phytophthora cinnamomi and Micropropagation of Tolerant Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening for Tolerance to P. cinnamomi
2.2. In Vitro Establishment Step
2.3. Proliferation Step
2.4. Rooting Step
2.5. Statistical Analysis
3. Results
3.1. Screening for P. cinnamomi
3.2. In Vitro Establishment
3.3. In Vitro Proliferation Step
3.4. In Vitro Rooting Step
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Houston Durrant, T.; de Rigo, D.; Caudullo, G. Quercus suber in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. e01ff11+. [Google Scholar]
- Sierra-Pérez, J.; Boschmonart-Rives, J.; Gabarrell, X. Production and trade analysis in the Iberian cork sector: Economic characterization of a forest industry. Resour. Conserv. Recycl. 2015, 98, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T.; Hartel, T.; Martín-López, B.; Beaufoy, G.; Bergmeier, E.; Kirby, K.; Montero, M.J.; Moreno, G.; Oteros-Rozas, E.; Van Uytvanck, J. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Conserv. 2015, 190, 70–79. [Google Scholar] [CrossRef]
- den Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Freijanes, J.J.S.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current extent and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Special Conservation Areas Defined in EU Directive 92/43. Available online: https://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm (accessed on 26 March 2023).
- Schwaiger, E.; Banko, G.; Brodsky, L.; van Doorn, A. Updated High Nature Value Farmland in Europe. In An Estimate of the Distribution Patterns on the Basis of CORINE Land Cover 2006 and Biodiversity Data; European Environment Agency, Universidad de Malagá: Málaga, Spain, 2012; p. 62. [Google Scholar]
- Gil, L. New cork-based materials and applications. Materials 2015, 8, 625–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite, C.; Pereira, H. Cork-containing barks—A review. Front. Mater. 2017, 3, 63. [Google Scholar] [CrossRef] [Green Version]
- APCOR. Available online: https://www.apcor.pt/en/montado/sustainability/social-and-economic-sustainability (accessed on 26 March 2023).
- Vacik, H.; Hale, M.; Spiecker, H.; Pettenella, D.; Tomé, M. Non-Wood Forest Products in Europe Ecology and Management of Mushrooms, Tree Products, Understory Plants and Animal Products. In Outcomes of the Cost Action FP1203 on European NWFPS, BoD, Norderstted; University of Padova: Padua, Italy, 2020; pp. 79–123. [Google Scholar]
- Bugalho, M.N.; Dias, F.S.; Briñas, B.; Cerdeira, J.O. Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agrofor. Syst. 2016, 90, 35–44. [Google Scholar] [CrossRef]
- Campos, P.; Álvarez, A.; Oviedo, J.L.; Ovando, P.; Mesa, B.; Caparrós, A. Refined systems of national accounts and experimental ecosystem accounting versus the simplified agroforestry accounting system: Testing in andalusian holm oak open woodlands. Forests 2020, 11, 393. [Google Scholar] [CrossRef] [Green Version]
- Spampinato, G.; Massimo, D.E.; Musarella, C.M.; De Paola, P.; Malerba, A.; Musolino, M. Carbon sequestration by cork oak forests and raw material to build up post carbon city. In New Metropolitan Perspectives; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer International Publishing: New York, NY, USA, 2019; pp. 663–671. [Google Scholar] [CrossRef]
- Guerra, C.A.; Pinto-Correia, T. Linking farm management and ecosystem service provision: Challenges and opportunities for soil erosion prevention in Mediterranean silvo-pastoral systems. Land Use Policy 2016, 51, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Bugalho, M.N.; Caldeira, M.C.; Pereira, J.S.; Aronson, J.; Pausas, J.G. Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front. Ecol. Environ. 2011, 9, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, I.H.; Torralba, M.; Quintas-Soriano, C.; Muñoz-Rojas, J.; Plieninger, T. Linking cork to cork oak landscapes: Mapping the value chain of cork production in Portugal. Front. Sustain. Food Syst. 2021, 5, 787045. [Google Scholar] [CrossRef]
- Camilo-Alves, C.S.P.; Vaz, M.; Da Clara, M.I.E.; Ribeiro, N.M.D.A. Chronic cork oak decline and water status: New insights. New Forests 2017, 48, 753–772. [Google Scholar] [CrossRef]
- Dorado, F.J.; Corcobado, T.; Brandano, A.; Abbas, Y.; Alcaide, F.; Janoušek, J.; Jung, T.; Scanu, B.; Solla, A. First report of dieback of Quercus suber trees associated with Phytophthora quercina in Morocco. Plant Dis. 2023, 107, 1246. [Google Scholar] [CrossRef]
- Godinho, S.; Guiomar, N.; Machado, R.; Santos, P.; Sá-Sousa, P.; Fernandes, J.P.; Neves, N.; Pinto-Correia, T. Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agrofor. Syst. 2016, 90, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Pérez-Sierra, A.; Durán, A.; Jung, M.H.; Balci, Y.; Scanu, B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia 2018, 40, 182–220. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.S.; Romero, M.Á.; Homet, P.; Gómez-Aparicio, L. Climate change impact on the population dynamics of exotic pathogens: The case of the worldwide pathogen Phytophthora cinnamomi. Agric. For. Meteorol. 2022, 322, 109002. [Google Scholar] [CrossRef]
- Moricca, S.; Linaldeddu, B.T.; Ginetti, B.; Scanu, B.; Franceschini, A.; Ragazzi, A. Endemic and emerging pathogens threatening cork oak trees: Management options for conserving a unique forest ecosystem. Plant Dis. 2016, 100, 2184–2193. [Google Scholar] [CrossRef] [Green Version]
- Brasier, C.M. Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann. Sci. For. 1996, 53, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Seddaiu, S.; Brandano, A.; Ruiu, P.A.; Sechi, C.; Scanu, B. An overview of Phytophthora species inhabiting declining Quercus suber stands in Sardinia (Italy). Forests 2020, 11, 971. [Google Scholar] [CrossRef]
- Sales-Baptista, E.; d’Abreu, M.C.; Ferraz-de-Oliveira, M.I. Overgrazing in the Montado? The need for monitoring grazing pressure at paddock scale. Agrofor. Syst. 2016, 90, 57–68. [Google Scholar] [CrossRef] [Green Version]
- López-Sánchez, A.; Perea, R.; Roig, S.; Isselstein, J.; Schmitz, A. Challenges on the conservation of traditional orchards: Tree damage as an indicator of sustainable grazing. J. Environ. Manag. 2020, 257, 110010. [Google Scholar] [CrossRef]
- Acácio, V.; Holmgren, M.; Jansen, P.A.; Schrotter, O. Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 2007, 10, 1220–1230. [Google Scholar] [CrossRef] [Green Version]
- Vizinho, A.; Príncipe, A.; Vasconcelos, A.C.; Rebelo, R.; Branquinho, C.; Penha-Lopes, G. Using and creating microclimates for cork oak adaptation to climate change. Land 2023, 12, 531. [Google Scholar] [CrossRef]
- Burrows, G.E.; Chisnall, L.K. Buds buried in bark: The reason why Quercus suber (cork oak) is an excellent post-fire epicormic resprouter. Trees 2016, 30, 241–254. [Google Scholar] [CrossRef]
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef]
- Naidoo, S.; Slippers, B.; Plett, J.M.; Coles, D.; Oates, C.N. The Road to Resistance in Forest Trees. Front. Plant Sci. 2019, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- León, I.; García, J.; Fernández, M.; Vázquez-Piqué, J.; Tapias, R. Differences in root growth of Quercus ilex and Quercus suber seedlings infected with Phytophthora cinnamomi. Silva Fenn. 2017, 51, 4. [Google Scholar] [CrossRef] [Green Version]
- Corcobado, T.; Miranda-Torres, J.J.; Martín-García, J.; Jung, T.; Solla, A. Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathol. 2017, 66, 792–804. [Google Scholar] [CrossRef]
- Kräutler, K.; Kirisits, T. The ash dieback pathogen Hymenoscyphus pseudoalbidus is associated with leaf symptoms on ash species (Fraxinus spp.). J. Agric. Ext. Rural Dev. 2012, 4, 261–265. [Google Scholar]
- Vivas, M.; Zas, R.; Solla, A. Screening of Maritime pine (Pinus pinaster) for resistance to Fusarium circinatum, the causal agent of Pitch Canker disease. Forestry 2012, 85, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Collin, E.; Bozzano, M. Implementing the dynamic conservation of elm genetic resources in Europe: Case studies and perspectives. iForest 2015, 8, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Lavee, S. Evaluation of the need and present potential of olive breeding indicating the nature of the available genetic resources involved. Sci. Hortic. 2013, 161, 333–339. [Google Scholar] [CrossRef]
- Martín, J.A.; Domínguez, J.; Solla, A.; Brasier, C.M.; Webber, J.F.; Santini, A.; Martínez-Arias, C.; Bernier, L.; Gil, L. Complexities underlying the breeding and deployment of Dutch elm disease resistant elms. New For. 2021, 1–36. [Google Scholar] [CrossRef]
- Kurinobu, S. Current status of resistance breeding of Japanese pine species to pine wilt disease. For. Sci. Technol. 2008, 4, 51–57. [Google Scholar] [CrossRef]
- Brawner, J.; Chi, N.M.; Chi, N.; Glen, M.; Mohammed, C.; Thu, P.Q.; Kien, N.D. Tolerance of Acacia populations following inoculation with the Ceratocystis canker and wilt pathogen in Vietnam. Tree Genet. Genomes 2020, 16, 77. [Google Scholar] [CrossRef]
- Ngezahayo, F.; Liu, B. Axillary bud proliferation approach for plant biodiversity conservation and restoration. Int. J. Biodivers. 2014, 2014, 27025. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An Academic and Technical Overview on Plant Micropropagation Challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Yancheva, S.; Kondakova, V. Plant Tissue Culture Technology: Present and Future Development. In Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry; Pavlov, A., Bley, T., Eds.; Springer: Cham, Switzerland, 2018; pp. 39–63. [Google Scholar] [CrossRef]
- Bellarosa, R. Oak (Quercus ssp.). In Biotechnology in Agriculture and Forestry; Bajaj, Y., Ed.; Springer: Heidelberg, Germany, 1989; Volume 5, pp. 387–399. [Google Scholar]
- Manzanera, J.A.; Pardos, J.A. Micropropagation of juvenile and adult Quercus suber L. Plant Cell Tissue Organ Cult. 1990, 21, 1–8. [Google Scholar] [CrossRef]
- Romano, A.; Martins-Loução, M.A. Micropropagation of mature cork oak (Quercus suber L.): Establishment problems. Sci. Genmdensis 1992, 18, 17–27. [Google Scholar]
- El-kbiash, M.L.; Ahmed, L.; Abdeslam, A.; Badoc, A. Micropropagation of cork oak (Quercus suber L.) by axillary buds. Acta Bot. Gall. 2004, 151, 401–413. [Google Scholar]
- Pinto, G.; Loureiro, J.; Costa, A.; Fernandes, P.; Santos, C. New plants for Cork Oak Landscapes: Micropropagation and Genetic Stability Studies. In Tissue Culture and Applied Plant Biotechnolog; Kumar, A., Sopory, K.S., Eds.; Aavishkar Publishers Distributors: Jaipur, India, 2011; pp. 130–152. [Google Scholar]
- Jung, T.; Blaschke, H.; Neumann, P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. For. Pathol. 1996, 26, 253–272. [Google Scholar] [CrossRef]
- Martín-García, J.; Solla, A.; Corcobado, T.; Siasou, E.; Woodward, S. Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. For. Pathol. 2015, 45, 215–223. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb. Proc. Int. Plant Prop. Soc. 1980, 30, 421–427. [Google Scholar]
- Gresshoff, P.M.; Doy, C.H. Development and differentiation of haploid Lycopersicon esculentum. Planta 1972, 107, 161–170. [Google Scholar] [CrossRef]
- Vieitez, A.M.; Corredoira, E.; Martínez, M.T.; San-José, M.C.; Sánchez, C.; Valladares, S.; Vidal, N.; Ballester, A. Application of biotechnological tools to Quercus improvement. Eur. J. For. Res. 2012, 131, 519–539. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Martínez, M.T.; Vieitez, A.M.; Corredoira, E.; Cernadas, M.J.; Montenegro, R.; Ballester, A.; Vieitez, F.J.; San-José, M.C. Micropropagation of mature Quercus ilex L. by axillary budding. Plant Cell Tissue Organ Cult. 2017, 131, 499–512. [Google Scholar] [CrossRef]
- Tiberi, R.; Branco, M.; Bracalini, M.; Croci, F.; Panzavolta, T. Cork oak pests: A review of insect damage and management. Ann. For. Sci. 2016, 73, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Menéndez-Gutiérrez, M.; Alonso, M.; Díaz, R. Assessing genetic variation in resistance to Pinewood nematode (Bursaphelenchus xylophilus) in Pinus radiata D. Don half-sib families. Forests 2021, 12, 1474. [Google Scholar] [CrossRef]
- Martínez, M.T.; Vieitez, F.J.; Solla, A.; Tapias, R.; Ramírez-Martín, N.; Corredoira, E. Vegetative propagation of Phytophthora cinnamomi-tolerant holm oak genotypes by axillary budding and somatic embryogenesis. Forests 2020, 11, 841. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; Klerk, G.J.D. The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., Klerk, G.J.D., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 65–113. [Google Scholar] [CrossRef]
- Xue, Y.; Hiti-Bandaralage, J.C.A.; Mitter, N. Micropropagation of Duboisia species: A review on current status. Agronomy 2023, 13, 797. [Google Scholar] [CrossRef]
- Sommer, H.E.; Brown, C.L.; Kormanik, P.P. Differentiation of plantlets in Longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot. Gaz. 1975, 136, 196–200. [Google Scholar] [CrossRef]
- Heller, R. Recherches sur la nutrition minérale des tissus végétaux cultivés ‘in vitro’. Ann. Sci. Nat. (Bot.) Biol. Végétale 1953, 14, 1–223. [Google Scholar]
- Gonçalves, J.; Rainho, C. Micropropagação de sobreiro (Quercus suber) por rebentamento axilar. In Actas do II Encontro sobre Montados de Sobro e Azinho; 1992; pp. 109–111. [Google Scholar]
- Vieitez, A.M.; Pintos, F.; San-José, M.C.; Ballester, A. In vitro shoot proliferation determined by explant orientation of juvenile and mature Quercus rubra L. Tree Physiol. 1993, 12, 107–117. [Google Scholar] [CrossRef]
- Brennan, A.N.; Pence, V.C.; Taylor, M.D.; Trader, B.W.; Westwood, M. Tissue culture using mature material for the conservation of oaks. HortTechnology 2017, 27, 644–649. [Google Scholar] [CrossRef]
- San José, M.C.; Martínez, M.T.; Cernadas, M.J.; Montenegro, R.; Mosteiro, F.; Corredoira, E. Biotechnological efforts for the propagation of Quercus lusitanica Lam., an endangered species. Trees 2017, 31, 1571–1581. [Google Scholar] [CrossRef] [Green Version]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in plant tissue culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xia, X.; An, L.; Xin, X.; Liang, Y. Reversion of hyperhydricity in pink (Dianthus chinensis L.) plantlets by AgNO3 and its associated mechanism during in vitro culture. Plant Sci. 2017, 254, 1–11. [Google Scholar] [CrossRef]
- Kumar, P.P.; Lakshmanan, P.; Thorpe, T.A. Regulation of morphogenesis in plant tissue culture by ethylene. Vitr. Cell. Dev. Biol. Plant 1998, 34, 94–103. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Grosser, J.W.; Dutt, M. Silver compounds regulate leaf drop and improve in vitro regeneration from mature tissues of Australian finger lime (Citrus australasica). Plant Cell Tissue Organ Cult. 2020, 141, 455–464. [Google Scholar] [CrossRef]
- Carvalho Lima, C.P.; Ribeiro, W.S.; de Oliveira, M.M.T.; da Costa, L.C.; Finger, F.L. Ethylene, 1-methylcyclopropene and silver thiosulfate on the post-production of ornamental pepper. Cienc. Rural 2017, 47, 2. [Google Scholar] [CrossRef] [Green Version]
- Panathula, C.S.; Mahadev, M.; Naidu, C. Silver thiosulphate enhance in vitro regeneration of Centella asiatica (L.)—An important antijaundice medicinal plant. Int. J. Med. Aromat. Plants 2014, 4, 82–87. [Google Scholar]
- Vieitez, A.M.; Corredoira, E.; Ballester, A.; Muñoz, F.; Durán, J.; Ibarra, M. In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra. Plant Cell Tissue Organ Cult. 2009, 98, 135–145. [Google Scholar] [CrossRef] [Green Version]
- De Klerk, G.-J. Rooting of microcuttings: Theory and practice. Vitr. Cell. Dev. Biol. Plant 2002, 38, 415–422. [Google Scholar] [CrossRef]
- Ballester, A.; Vidal, N.; Vieitez, A.M. Developmental stages during in vitro rooting of hardwood trees from material with juvenile and mature characteristics. In Adventitious Root Formation of Forest Trees and Horticultural Plants—From Genes to Applications; Niemii, K., Scagel, C., Eds.; Research Singpost: Kerala, India, 2009; pp. 277–299. [Google Scholar]
- Steinitz, B.; Barr, N.; Tabib, Y.; Vaknin, Y.; Bernstein, N. Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Rep. 2010, 29, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Cuba-Diaz, M.; Acuna, D.; Cordero, C.M.; Klagges, M. Optimización de Parámetros Para la Propagación In Vitro de Colobanthus quitensis (Kunth) Bartl. Gayana Bot. 2014, 71, 58–67. Available online: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-66432014000100009&lng=es&nrm=iso (accessed on 3 April 2023). [CrossRef] [Green Version]
- Pérez, F.; Cuenca, B.; Ruíz-Gómez, F.J.; Rey, M.D.; Galea, M.R.; Arrillaga, I.; Corredoira, E.; Manzanera, J.A.; Tapias, R.; Solla, A. Programa de mejora y conservación de los recursos genéticos de la encina y el alcornoque frente al síndrome de la seca. Foresta 2020, 78, 56–61. [Google Scholar]
- Martín-García, J.; Zas, R.; Solla, A.; Woodward, S.; Hantula, J.; Vainio, E.J.; Mullett, M.; Morales-Rodríguez, C.; Vannini, A.; Martínez-Álvarez, P.; et al. Environmentally friendly methods for controlling pine pitch canker. Plant Pathol. 2019, 68, 843–860. [Google Scholar] [CrossRef] [Green Version]
Genotype | Plant Sprouting Ability a | Response to In Vitro Establishment b | Time to Stabilization of Shoot Proliferation (Months) | |||
---|---|---|---|---|---|---|
Shoots Per Plant | Length of Shoots (mm) | Initial Explants | Contamination Rate (%) | Response Rate (%) c | ||
TGR 123 | 25 | 31.3 ± 1.0 | 50 | 6.0 | 72.3 | 2.5 |
TGR 128 | 11 | 41.3 ± 1.1 | 42 | 7.1 | 30.8 | 4 |
TGR 144 | 23 | 32.2 ± 4.7 | 69 | 4.3 | 48.5 | 4 |
TGR 149 | 39 | 45.5 ± 17.3 | 104 | 7.7 | 22.9 | 3 |
Medium | Responsive Explants (%) | Shoots 0.5–1.0 cm | Shoots ≥ 1 cm | Total Shoots | Longest Shoot Length (mm) |
---|---|---|---|---|---|
WPM + STS | 100 ± 0.0 | 3.4 ± 0.2 | 7.9 ± 0.5 b | 11.3 ± 0.4 b | 20.6 ± 0.8 b |
GD − STS | 100 ± 0.0 | 3.7 ± 0.2 | 3.9 ± 0.5 a | 7.6 ± 0.5 a | 15.0 ± 0.4 a |
ANOVA I | ns | ns | 0.0008 *** | 0.0007 *** | 0.0005 *** |
Genotype | Responsive Explants (%) | Shoots 0.5–1.0 cm | Shoots ≥ 1cm | Total Shoots | Longest Shoot Length (mm) |
---|---|---|---|---|---|
TGR 123 | 100 ± 0.0 | 3.4 ± 0.3 a | 7.8 ± 0.5 b | 11.2 ± 0.3 a | 20.0 ± 0.6 ab |
TGR 128 | 100 ± 0.0 | 6.6 ± 0.6 b | 6.0 ± 0.4 a | 12.6 ± 0.4 b | 21.0 ± 1.1 b |
TGR 144 | 100 ± 0.0 | 6.1 ± 0.3 b | 5.4 ± 0.3 a | 11.5 ± 0.5 ab | 17.9 ± 0.7 a |
TGR 149 | 100 ± 0.0 | 4.2 ± 0.3 a | 6.1 ± 0.2 a | 10.3 ± 0.4 a | 26.9 ± 0.6 c |
ANOVA I | ns | 0.0003 *** | 0.0028 ** | 0.0125 * | 0.0000 *** |
Genotype | Rooting (%) | Roots (Nº) | Longest Root Length (mm) | Shoot-tip Necrosis (%) | Secondary Rooting (%) |
---|---|---|---|---|---|
TGR 123 | |||||
⅓ GD 24h IBA 122.5 μM | 80.0 ± 7.5 | 3.6 ± 0.3 | 37.7 ± 1.9 | 12.0 ± 5.8 | 73.5 ± 5.1 b |
⅓ GD 48h IBA 122.5 μM | 74.0 ± 5.8 | 3.3 ± 0.3 | 40.4 ± 4.6 | 18.0 ± 6.0 | 63.2 ± 9.4 b |
½ MS 15d IBA 14.7 Μm + NAA 0.54 μM 122.5 μM mg/L | 84.0 ± 4.8 | 2.6 ± 0.4 | 39.7 ± 5.5 | 34.0 ± 11.4 | 14.5 ± 7.6a |
ANOVA I | ns | ns | ns | ns | 0.0000 *** |
TGR 128 * | |||||
⅓ GD 24 h IBA 122.5 μM | 96.0 ± 3.6 b | 2.8 ± 0.3 | 17.2 ± 2.1 a | 0.0 ± 0.0 a | 0.0 ± 0.0 |
⅓ GD 48 h IBA 122.5 μM | 96.0 ± 3.6 b | 3.9 ± 0.4 | 16.7 ± 1.3 a | 0.0 ± 0.0 a | 0.0 ± 0.0 |
½ MS 15d IBA 14.7 μM + NAA 0.54 μM 122.5 μM mg/L | 76.0 ± 6.7 a | 3.4 ± 0.5 | 40.9 ± 3.2 b | 16.0 ± 3.6 b | 6.7 ± 6.0 |
ANOVA I | 0.0339 * | ns | 0.0000 *** | 0.0004 *** | ns |
TGR 144 * | |||||
⅓ GD 24 h IBA 122.5 μM | 100 ± 0.0 b | 3.9 ± 0.3 | 30.4 ± 2.1 a | 0.0 ± 0.0 | 40.0 ± 12.7 |
⅓ GD 48 h IBA 122.5 μM | 100 ± 0.0 b | 4.4 ± 0.3 | 24.9 ± 1.1 a | 20.0 ± 9.8 | 5.0 ± 3.5 |
½ MS 15d IBA 14.7 μM + NAA 0.54 μM 122.5 μM mg/L | 80.0 ± 8.0 a | 3.8 ± 0.3 | 37.3 ± 1.7 b | 8.0 ± 4.4 | 25.3 ± 10.2 |
ANOVA I | 0.0263 * | ns | 0.0017 ** | ns | ns |
TGR 149 | |||||
⅓ GD 24 h IBA 122.5 μM | 96.0 ± 2.5 b | 3.7 ± 0.4 ab | 23.0 ± 1.7 a | 2.0 ± 1.9 a | 12.0 ± 5.8 |
⅓ GD 48 h IBA 122.5 μM | 94.0 ± 2.9 b | 4.2 ± 0.4 b | 21.7 ± 1.6 a | 0.0 ± 0.0 a | 14.0 ± 5.7 |
½ MS 15d IBA 14.7 μM + NAA 0.54 μM 122.5 μM mg/L | 62.0 ± 8.7 a | 2.5 ± 0.4 a | 52.1 ± 3.3 b | 18.0 ± 6.6 b | 2.0 ± 1.9 |
ANOVA I | 0.0003 *** | 0.0283 * | 0.0000 *** | 0.0095 ** | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, M.T.; Cuenca, B.; Mosteiro, F.; Piñeiro, P.; Pérez, F.; Solla, A.; Corredoira, E. Screening of Cork Oak for Resistance to Phytophthora cinnamomi and Micropropagation of Tolerant Seedlings. Horticulturae 2023, 9, 692. https://doi.org/10.3390/horticulturae9060692
Martínez MT, Cuenca B, Mosteiro F, Piñeiro P, Pérez F, Solla A, Corredoira E. Screening of Cork Oak for Resistance to Phytophthora cinnamomi and Micropropagation of Tolerant Seedlings. Horticulturae. 2023; 9(6):692. https://doi.org/10.3390/horticulturae9060692
Chicago/Turabian StyleMartínez, María Teresa, Beatriz Cuenca, Fátima Mosteiro, Pablo Piñeiro, Felipe Pérez, Alejandro Solla, and Elena Corredoira. 2023. "Screening of Cork Oak for Resistance to Phytophthora cinnamomi and Micropropagation of Tolerant Seedlings" Horticulturae 9, no. 6: 692. https://doi.org/10.3390/horticulturae9060692
APA StyleMartínez, M. T., Cuenca, B., Mosteiro, F., Piñeiro, P., Pérez, F., Solla, A., & Corredoira, E. (2023). Screening of Cork Oak for Resistance to Phytophthora cinnamomi and Micropropagation of Tolerant Seedlings. Horticulturae, 9(6), 692. https://doi.org/10.3390/horticulturae9060692