Advancements in Lily Viruses Management: Challenges and Solutions in Elimination and Detection
Abstract
:1. Introduction
2. Methods for Lily Virus Elimination
2.1. Production of Virus-Free Lilies
2.2. Methods to Eliminate Viruses from Lily Tissues
2.3. Meristem Tissue Culture for Lily Virus Infection Treatment
2.4. Thermotherapy for In Vitro Lily Virus Eradication
2.5. Chemotherapy for Eradicating Lily Viruses
2.6. Development of Combined In Vitro Methods for Lily Virus Elimination
Treatment Techniques 1 | Virus 2 | Hybrids 3 | Type of Treatment | Treatment Effects 4 | Elimination Rate (%) 5 | Reference |
---|---|---|---|---|---|---|
Meristem tip culture | LSV | Asiatic hybrid ‘Enchantment’ | -Meristem tip culture with 0 to 40 µM of ribavirin | Effective elimination of LSV | 74 56 | [38,41,46] |
LSV | L. longiflorum ‘Fire King’ L. longiflorum ‘Ace’ L. longiflorum ‘Nellie White’ | Meristem tip culture with 0 to 40 µM of ribavirin | 16.7 25 | |||
-LSV and/or TBV | L. longiflorum ‘Arai’ | -Meristem tip culture with 0 to 40 µM of ribavirin | Partial elimination of LSV and/or TBV | 35.46–61.4 | ||
Thermotherapy | LSV | Oriental hybrid ‘Casa Blanca’ | 25 °C | Significant reduction in LSV with bulblet differentiation and multiplication | 80 | [41,46] |
Oriental hybrid ‘Casa Blanca’ | 35 °C | Moderate reduction in LSV with limited bulblet differentiation | 60 | |||
-L. longiflorum ‘Georgia’ | 25 °C | 78% bulblet differentiation and 2.3 bulblets per scale | 88 | |||
35 °C | 0% bulblet differentiation and 0 bulblets per scale | - | ||||
Chemotherapy | LSV | L. longiflorum ‘Royal Respect’ | Ribavirin at 25 °C under ex vitro | Complete elimination of LSV with no phytotoxic effects | 100 | [44] |
L. longiflorum ‘Georgia’ | Ribavirin at 35 °C | Phytotoxic effect Low number of bulblets | Low elimination rate | |||
L. longiflorum ‘Arai’ | Ribavirin at 0.5 to 50 µM 0 to 40 µM 400 µM | Phytotoxic effects observed with a low number of bulblets No effect on the number of microbulbs, reduction in the number of bulblets | Varied elimination rate | |||
L. longiflorum ‘Arai’ | Ribavirin between 100 and 300 µM at 25 °C | No phytotoxic effects observed | - |
2.7. Alternative Approaches for Managing Lily Viruses
2.7.1. Genetic Transformation
2.7.2. Quarantine Measures
2.7.3. Cultural Control Methods
2.7.4. Biological Control Methods
3. Development of Lily Virus Detection Methods
3.1. Serological-Based Methods
3.1.1. Enzyme-Linked Immunosorbent Assay (ELISA)
3.1.2. Immunochromatographic Tests
3.2. Molecular Techniques
3.2.1. Reverse Transcription Polymerase Chain Reaction-Based System for the Simultaneous Detection of Multiple Lily-Infecting Viruses
3.2.2. Detection Using Luminex-Based Liquid Bead Array
3.2.3. Triplex IC-RT-PCR for the Simultaneous Detection of Three Lily Viruses and Hybrid Diagnostic Techniques
3.2.4. Reverse Transcription Loop-Mediated Isothermal Amplification
3.2.5. Real-Time RT-PCR
3.3. Generation and Purification of Recombinant Coat Proteins
Techniques | Principle | Detected Virus | Features | Samples | Reference |
---|---|---|---|---|---|
ELISA | Used to detect single virus infection | LSV and LMoV |
| Large-scale samples | [28] |
ID-ELISA | Separately detect LSV and LMoV | LSV, LMoV, CMV, and PlAMV |
| Large-scale bulbs Field activities | [23,84] |
ICS | Double-antibody Sandwich format and employs two distinct anti-viral Polyclonal antibodies | LMoV and LSV -Triplex IC-RT-PCR for simultaneous detection of LMoV, CMV, and LSV |
| Lily leaf samples | [28,81] |
Real-time PCR | Determine the number of viruses within tested samples | CMV, LSV, and other virus | 1000 times more sensitive than conventional RT-PCR, need for expert personnel and expensive equipment, no risk of contamination | More efficient in leaves than in bulbs | [90] |
IC-RT-PCR | RNA extraction carried out in a single tube | LMoV Simultaneously detecting LSV, CMV, and LMoV |
| Leaf samples | [28] |
Multiplex RT-PCR | The simultaneous detection of multiple viruses in a single reaction, amplifying multiple target sequences using multiple primer pairs in a single reaction tube | LSV LMoV CMV PlAMV |
| Fresh leaves | [94] |
Luminex-based liquid bead array | Specific oligonucleotide probes labeled with an amino group and coupled to fluorescence-encoded microspheres | LSV LMoV CMV |
|
| [82] |
Reverse transcriptionloop-mediated isothermal amplification | Within a closed tube at a constant temperature with specifically designed loop primers and results observed using SYBR Green I | LSV, LMoV |
| Lily bulbs Field detection | [61,105] |
Triplex IC-RT-PCR | LSV-CP, CMV-CP, and LMoV-CPI200 use proteins against viral antigens | LSV, CMV, and LMoV |
| Leaves | [81] |
3.4. Emerging Assays for Lily Virus Detection: Expanding the Toolbox for Portable, Low-Cost, and Rapid On-Site Testing
- CRISPR-based assays: These assays use the CRISPR/Cas system to detect and amplify viral RNA/DNA in a sample. They are highly specific and can provide results in less than an hour [106].
- DNA-based biosensors: These are devices that detect specific molecules (such as viral proteins or nucleic acids) and convert them into a measurable signal. They can be designed to be portable, rapid, and low-cost, making them ideal for on-site detection [107].
- Digital PCR: Digital PCR is a highly sensitive nucleic acid quantification technique that partitions a sample into thousands of individual reactions. It can detect low levels of viral RNA/DNA in a sample and is highly precise. This method has already shown a positive outcome. According to [99], an experiment was conducted using leaf samples from lily plants, specifically the oriental hybrid ‘Siberia’ cultivar, which had low viral loads. The results showed that the reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) outperformed RT-qPCR in diagnosing PlAMV infection in lily plants. Based on these findings, it was recommended to utilize RT-ddPCR, especially in plant quarantine inspection and PlAMV-free certification programs, for the accurate detection of PlAMV infection in lily plants.
- Next-generation sequencing: This is a high-throughput sequencing technique that can detect and identify viral sequences in a sample. It can be used to identify new and emerging viral strains and to monitor viral diversity within a population [108].
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fatihah, H.N.N.; Moñino López, D.; van Arkel, G.; Schaart, J.G.; Visser, R.G.F.; Krens, F.A. The ROSEA1 and DELILA Transcription Factors Control Anthocyanin Biosynthesis in Nicotiana benthamiana and Lilium Flowers. Sci. Hortic. 2019, 243, 327–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Xie, Z.; Yang, G.; Guo, Z.; Wang, L. The Occurrence and Distribution of Viruses Infecting Lanzhou Lily in Northwest, China. Crop Prot. 2018, 110, 73–76. [Google Scholar] [CrossRef]
- Bakhshaie, M.; Khosravi, S.; Azadi, P.; Bagheri, H.; van Tuyl, J.M. Biotechnological Advances in Lilium. Plant Cell Rep. 2016, 35, 1799–1826. [Google Scholar] [CrossRef] [PubMed]
- LingFei, X.; FengWang, M.; Dong, L. Plant Regeneration from in Vitro Cultured Leaves of Lanzhou Lily (Lilium davidii var. unicolor). Sci. Hortic. 2009, 119, 458–461. [Google Scholar] [CrossRef]
- Prudente, D.d.O.; Paiva, R.; de Souza, L.B.; Paiva, P.D.d.O. Cryotherapy as a Technique for Virus Elimination in Ornamental Species. Plant Cell Cult. Microprogation 2018, 13, 29–33. [Google Scholar]
- Wang, F.; Wang, W.; Niu, X.; Huang, Y.; Zhang, J. Isolation and Structural Characterization of a Second Polysaccharide from Bulbs of Lanzhou Lily. Appl. Biochem. Biotechnol. 2018, 186, 535–546. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Y.; Li, Y.; Zhang, L.; Xia, Y. Plantlet Regeneration from Primary Callus Cultures of Lilium brownii F.E.Br. Ex Miellez var. giganteum G. Y. Li & Z. H. Chen, a Rare Bulbous Germplasm. Vitr. Cell. Dev. Biol.—Plant 2019, 55, 44–59. [Google Scholar] [CrossRef]
- Wang, M.-R.; Cui, Z.-H.; Li, J.-W.; Hao, X.-Y.; Zhao, L.; Wang, Q.-C. In Vitro Thermotherapy-Based Methods for Plant Virus Eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Bos, F. Lilium bulbiferum subsp. croceum in the Netherlands and Nothern Germany. Bentham-Moxon Trust 1993, 10, 190–197. [Google Scholar]
- Grassotti, A.; Nesi, B.; Lazzereschi, S.; Cacini, S.; Pacifici, S. Breeding Asiatic Hybrid Lilies: An Italian Experience. Acta Hort Hort 2011, 900, 237–242. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Van Holsteijn, H.C.M. Lily Breeding Research in the Netherlands. Acta Hortic. 1996, 414, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Roh, M.S.; Plants, N. Controlled Flowering in the Genus Lilium—Review of the Past Achievements and the Future Direction of Research. Acta Hort 2011, 900, 189–204. [Google Scholar] [CrossRef]
- Suh, J.K.; Roh, M.S. Scientia Horticulturae New Technique for Cut Flower Production from Bulbils of the Asiatic Hybrid Lily (Lilium × Elegans Thunb.). Sci. Hortic. 2014, 165, 374–383. [Google Scholar] [CrossRef]
- Lawson, R.H. Detection, Diagnosis and Control of Lily Diseases. Acta Hortic. 2011, 900, 313–324. [Google Scholar] [CrossRef]
- Bi, W.-L.; Chen, L.; Guo, L.; Pan, C.; Yin, Z.-F.; Wang, Q.-C. Plant Regeneration via Embryo-like Structures: Histological Observations and Genetic Stability in Regenerants of Lilium spp. J. Hortic. Sci. Biotechnol. 2015, 90, 626–634. [Google Scholar] [CrossRef]
- Shang, Q.H.; Zhao, X.; Li, Y.Y.; Xie, Z.K.; Wang, R.Y. First Report of Fusarium tricinctum Causing Stem and Root Rot on Lanzhou Lily (Lilium davidii var. unicolor) in China. Plant Dis. 2014, 98, 999. [Google Scholar] [CrossRef]
- Jo, Y.; Cho, W.K. RNA Viromes of the Oriental Hybrid Lily Cultivar “Sorbonne”. BMC Genom. 2018, 19, 748. [Google Scholar] [CrossRef] [Green Version]
- Asjes, C.J. Control of Aphid-Borne Lily Symptomless Tirus and Lily Mottle Tirus in Lilium in the Netherlands. Virus Res. 2000, 71, 23–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Meng, J.; Xie, Z.; Wang, R.; Kutcher, H.R.; Guo, Z. Development of an Immunochromatographic Strip Test for Rapid Detection of Lily Symptomless Virus. J. Virol. Methods 2015, 220, 13–17. [Google Scholar] [CrossRef]
- Fan, X.; Du, Y.; Cai, Y.; Zhang, Y.; Zhao, X.; Liang, J.; Yang, D.; Zhang, Q.; Zhang, X.; Zhang, W.; et al. Rapid and Sensitive Detection of Cucumber Mosaic Virus by Reverse Transcription Loop-Mediated Isothermal Amplification. Acta Biochim. Biophys. Sin. 2018, 51, 223–226. [Google Scholar] [CrossRef]
- Cardoso, E.; Bodi, D.A.; Harakava, R. Occurrence and Molecular Analysis of Quarantine Virus in Lily Cultivation Areas in Brazil. Pesqui. Agropecuária Bras. 2016, 51, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.Y.; Ryu, K.H.; Choi, S.H. Reverse Transcription Polymerase Chain Reaction-Based System for Simultaneous Detection of Multiple Lily-Infecting Viruses. Plant Pathol. J. 2013, 29, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, J. Lily Symptomless Virus (Carlavirus LSV) on Martagon Lily (Lilium martagon). Available online: https://www.forestryimages.org/browse/detail.cfm?imgnum=5503429 (accessed on 27 March 2020).
- Aravintharaj, R.; Balaji, C.G.; Nagendran, K.; Priyanka, R.; Karthikeyan, G. First Report of Lily Mottle Virus on Lily (Lilium sp.) in Southern India. Virus Dis. 2017, 28, 222–223. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, J.; Zhang, J.; Teixeira da Silva, J.A.; Wang, C.; Sun, H. Validation of Reference Genes for Accurate Normalization of Gene Expression in Lilium davidii var. unicolor for Real Time Quantitative PCR. PLoS ONE 2015, 10, e0141323. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.; Zhou, Y.; Li, S.; Fan, X.; Yang, L.; Guan, Y.; Zhang, Y. Transcriptome Analysis of Lilium Oriental × Trumpet Hybrid Roots Reveals Auxin-Related Genes and Stress-Related Genes Involved in Picloram-Induced Somatic Embryogenesis Induction. J. Hortic. Sci. Biotechnol. 2019, 94, 317–330. [Google Scholar] [CrossRef]
- Sharma, A.; Mahinghara, B.K.K.; Singh, A.K.K.; Kulshrestha, S.; Raikhy, G.; Singh, L.; Verma, N.; Hallan, V.; Ram, R.; Zaidi, A.A.A. Identification, Detection and Frequency of Lily Viruses in Northern India. Sci. Hortic. 2005, 106, 213–227. [Google Scholar] [CrossRef]
- Yoo, H.N.; Jung, Y.T. Expression of Lily Mottle Virus Coat Protein and Preparation of Igy Antibody against the Recombinant Coat Protein. Korean J. Hortic. Sci. Technol. 2014, 32, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Du, Y.; Zhang, Y.; Liang, J.; Cai, Y.; Xu, Y.; Fan, X.; Wu, W.; Zhang, Q.; Zhang, X.; et al. Effective Detection of Lily Symptomless Virus Using the Reverse Transcription Loop–Mediated Isothermal Amplification Method. Australas. Plant Pathol. 2019, 48, 373–374. [Google Scholar] [CrossRef]
- Panattoni, A.; Luvisi, A.; Triolo, E. Review. Elimination of Viruses in Plants: Twenty Years of Progress. Span. J. Agric. Res. 2013, 11, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Montero-astúa, M. Detection of Plantago Asiatica Mosaic Virus in Lily Hybrid Plants (Lilium spp.) in Costa Rica Grown from Imported Bulbs. Australas. Plant Dis. Notes 2017, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Igiraneza, C.; Dusengemungu, L. Major In Vitro Techniques for Potato Virus Elimination and Post Eradication Detection Methods. A Review. Am. J. Potato Res. 2019, 96, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Bhojwani, S.S.; Dantu, P.K. Production of Virus-Free Plants. In Plant Tissue Culture: An Introductory Text; Bhojwani, S.S., Dantu, P.K., Eds.; Springer: New Delhi, India, 2013; pp. 227–243. ISBN 978-81-322-1026-9. [Google Scholar]
- Dapküniene, S.; Indrißiünaite, G.; Juodkaite, R.; Navalinskiene, M.; Samuitiene, M. Tissue Culture for Elimination of Lily Viruses Depending on Explant Type. Acta Univ. Latv. Biol. 2004, 676, 163–166. [Google Scholar]
- Milosevic, S.; Cingel, A.; Jevremovic, S.; Stankovic, I.; Bulajic, A.; Krstic, B.; Subotic, A.; Milošević, S.; Cingel, A.; Jevremović, S.; et al. Virus Elimination from Ornamental Plants Using in Vitro Culture Techniques. Pestic. Fitomedicina 2012, 27, 203–211. [Google Scholar] [CrossRef]
- Chinestra, S.C.; Curvetto, N.R.; Marinangeli, P.A. Production of Virus-Free Plants of Lilium spp. from Bulbs Obtained in Vitro and Ex Vitro. Sci. Hortic. 2015, 194, 304–312. [Google Scholar] [CrossRef]
- Moses, W.; Rogers, K.; Mildred, O.-S. Effect of Thermotherapy Duration, Virus Type and Cultivar Interactions on Elimination of Potato Viruses X and S in Infected Seed Stocks. Afr. J. Plant Sci. 2017, 11, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Nesi, B.; Trinchello, D.; Lazzereschi, S.; Grassotti, A.; Ruffoni, B. Production of Lily Symptomless Virus-Free Plants by Shoot Meristem Tip Culture and in Vitro Thermotherapy. HortScience 2009, 44, 217–219. [Google Scholar] [CrossRef]
- Masuda, J.I.; Thien, N.Q.; Thi, N.; Hai, L.; Hiramatsu, M.; Takeshita, M.; Kim, J.-H.H.; Nakamura, M.; Iwai, H.; Okubo, H.; et al. Production of Virus-Free Bulblets by Meristematic Tip Culture with Antiviral Chemical in Lilium brownii var. colchesteri. J. Jpn. Soc. Hortic. Sci. 2011, 80, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Antonova, O.Y.; Apalikova, O.V.; Ukhatova, Y.V.; Krylova, E.A.; Shuvalov, O.Y.; Shuvalova, A.R.; Gavrilenko, T.A. Eradication of viruses in microplants of three cultivated potato species (Solanum tuberosum L., S. phureja Juz. & Buk., S. stenotomum Juz. & Buk.) using combined thermo-chemotherapy method. Sel’skokhozyaistvennaya Biol. 2017, 52, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Retheesh, S.T.; Bhat, A.I. Simultaneous Elimination of Cucumber Mosaic Virus and Cymbidium Mosaic Virus Infecting Vanilla Planifolia through Meristem Culture. Crop Prot. 2010, 29, 1214–1217. [Google Scholar] [CrossRef]
- Kaur, C.; Raj, R.; Kumar, S.; Lalit, D.K.P.; Puneet, A. Elimination of Bean Yellow Mosaic Virus from Infected Cormels of Three Cultivars of Gladiolus Using Thermo-, Electro- and Chemotherapy. 3 Biotech 2019, 9, 154. [Google Scholar] [CrossRef]
- Fei, Y.; Pyott, D.E.; Molnar, A. Temperature Modulates Virus-Induced Transcriptional Gene Silencing via Secondary Small RNAs. New Phytol. 2021, 232, 356–371. [Google Scholar] [CrossRef] [PubMed]
- Nesi, B.; Lazzereschi, S.; Pecchioli, S.; Grassotti, A.; Ruffoni, B. Virus Detection and Propagation of Virus-Free Bulbs from Selected Progenies of Pollenless Lilies. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS), Leuven, Belgium, 1 July 2011; Volume 8, pp. 325–331. [Google Scholar]
- Conijna, C.G.M. Developments in the Control of Lily Diseases. Acta Hortic. 2014, 1027, 213–230. [Google Scholar] [CrossRef]
- Bachar, S.C.; Mazumder, K.; Bachar, R.; Aktar, A.; Al Mahtab, M. A Review of Medicinal Plants with Antiviral Activity Available in Bangladesh and Mechanistic Insight Into Their Bioactive Metabolites on SARS-CoV-2, HIV and HBV. Front. Pharmacol. 2021, 12, 732891. [Google Scholar] [CrossRef]
- Kräusslich, H.; Müller, B. Antiviral Drugs. In Encyclopedia of Molecular Pharmacology; Offermanns, S., Rosenthal, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 196–201. ISBN 978-3-540-38918-7. [Google Scholar]
- Niimi, Y.; Han, D.-S.S.; Mori, S.; Kobayashi, H. Detection of Cucumber Mosaic Virus, Lily Symptomless Virus and Lily Mottle Virus in Lilium Species by RT-PCR Technique. Sci. Hortic. 2003, 97, 57–63. [Google Scholar] [CrossRef]
- Gong, H.L.; Dusengemungu, L.; Igiraneza, C.; Rukundo, P. Molecular Regulation of Potato Tuber Dormancy and Sprouting: A Mini-Review. Plant Biotechnol. Rep. 2021, 15, 417–434. [Google Scholar] [CrossRef]
- Rhymer, J.M.; Simberloff, D. Extinction by Hybridization and Introgression. Annu. Rev. Ecol. Syst. 1996, 27, 83–109. [Google Scholar] [CrossRef]
- Azadi, P.; Otang, N.V.; Supaporn, H.; Khan, R.S.; Chin, D.P.; Nakamura, I.; Mii, M. Increased Resistance to Cucumber Mosaic Virus (CMV) in Lilium Transformed with a Defective CMV Replicase Gene. Biotechnol. Lett. 2011, 33, 1249–1255. [Google Scholar] [CrossRef]
- Nehra, N.S.; Kartha, K.K. Meristem and Shoot Tip Culture: Requirements and Applications. In Plant Cell and Tissue Culture; Springer: Dordrecht, The Netherlands, 1994; pp. 37–70. [Google Scholar]
- Chen, Y.; Hou, X.; Zheng, Y.; Lyu, Y. The Establishment of a Genetic Transformation System and the Acquisition of Transgenic Plants of Oriental Hybrid Lily (Lilium L.). Int. J. Mol. Sci. 2023, 24, 782. [Google Scholar] [CrossRef]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef]
- Munir, M. Management of Plant Virus Diseases; Farmer’s Knowledge and Our Suggestions. Hosts Viruses 2017, 4, 28–33. [Google Scholar] [CrossRef]
- Roudine, S.; Le Lann, C.; Bouvaine, S.; Le Ralec, A.; van Baaren, J. Can Biological Control Be a Strategy to Control Vector-Borne Plant Viruses? J. Pest Sci. 2023, 96, 451–470. [Google Scholar] [CrossRef]
- Dixon, G.R. Control: Cultural and Biological Methods. In Plant Pathogens and their Control in Horticulture; Dixon, G.R., Ed.; Macmillan Education: London, UK, 1984; pp. 202–226. ISBN 978-1-349-06923-1. [Google Scholar]
- Zalom, F.G. Pesticide Use Practices in Integrated Pest Management. In Handbook of Pesticide Toxicology; Elsevier: London, UK, 2001; pp. 275–283. [Google Scholar]
- Chastagner, G.A.; van Tuyl, J.M.; Verbeek, M.; Miller, W.B.; Westerdahl, B.B. Diseases of Lily. In Disease of Lily; McGovern, R.J., Elmer, W.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1229–1288. ISBN 978-3-319-39670-5. [Google Scholar]
- Dhiman, M.R.; Sharma, P.; Bhargava, B. Lilium: Conservation, Characterization, and Evaluation. In Floriculture and Ornamental Plants; Datta, S.K., Gupta, Y.C., Eds.; Springer: Singapore, 2021; pp. 1–36. ISBN 978-981-15-1554-5. [Google Scholar]
- He, X.; Xue, F.; Xu, S.; Wang, W. Rapid and Sensitive Detection of Lily Symptomless Virus by Reverse Transcription Loop-Mediated Isothermal Amplification. J. Virol. Methods 2016, 238, 38–41. [Google Scholar] [CrossRef]
- Nega, A. Review on Concepts in Biological Control of Plant Pathogens. J. Biol. Agric. Healthc. 2014, 4, 33–54. [Google Scholar]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Wagemans, J.; Holtappels, D.; Vainio, E.; Rabiey, M.; Marzachì, C.; Herrero, S.; Ravanbakhsh, M.; Tebbe, C.C.; Ogliastro, M.; Ayllón, M.A.; et al. Going Viral: Virus-Based Biological Control Agents for Plant Protection. Annu. Rev. Phytopathol. 2022, 60, 21–42. [Google Scholar] [CrossRef]
- Tricahyati, T.; Suparman; Irsan, C. Natural Enemies of Pentalonia Nigronervosa, Vector of Banana Bunchy Top Virus. Biodiversitas 2022, 23, 3675–3684. [Google Scholar] [CrossRef]
- Kakati, N.; Nath, P. First Report on Development of Sustainable Management Strategy against Pentalonia Nigronervosa Coq. Vector of Banana Bunchy Top Virus Disease, Its Seasonal Variation and Effect on Yield of Banana in Jorhat District of Assam—A North Eastern State of India. J. Entomol. Zool. Stud. 2019, 7, 158–167. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, C.F.; Long, E.Y.; Finke, D.L. A Negative Effect of a Pathogen on Its Vector? A Plant Pathogen Increases the Vulnerability of Its Vector to Attack by Natural Enemies. Oecologia 2014, 174, 1169–1177. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Guo, J.-F.; Reitz, S.R.; Lei, Z.-R.; Wu, S.-Y. A Global Invasion by the Thrip, Frankliniella Occidentalis: Current Virus Vector Status and Its Management. Insect Sci. 2020, 27, 626–645. [Google Scholar] [CrossRef]
- Mouden, S.; Sarmiento, K.F.; Klinkhamer, P.G.L.; Leiss, K.A. Integrated Pest Management in Western Flower Thrips: Past, Present and Future. Pest Manag. Sci. 2017, 73, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhang, Z.; Gao, Y.; Xu, X.; Lei, Z. Interactions between Foliage- and Soil-Dwelling Predatory Mites and Consequences for Biological Control of Frankliniella Occidentalis. BioControl 2016, 61, 717–727. [Google Scholar] [CrossRef]
- Mo, L.F.; Zhi, J.R.; Tian, T. Biological Control Efficiency of Orius Similis Zheng (Hemiptera: Anthocoridae) on Frankliniella Occidentalis (Pergande) under Different Spatial and Caged Conditions. Acta Ecol. Sin. 2013, 33, 7132–7139. [Google Scholar]
- Aragón-Sánchez, M.; Román-Fernández, L.R.; Martínez-García, H.; Aragón-García, A.; Pérez-Moreno, I.; Marco-Mancebón, V.S. Rate of Consumption, Biological Parameters, and Population Growth Capacity of Orius Laevigatus Fed on Spodoptera Exigua. BioControl 2018, 63, 785–794. [Google Scholar] [CrossRef]
- Sarkar, S.C.; Wang, E.; Zhang, Z.; Wu, S.; Lei, Z. Laboratory and Glasshouse Evaluation of the Green Lacewing, Chrysopa Pallens (Neuroptera: Chrysopidae) against the Western Flower Thrips, Frankliniella Occidentalis (Thysanoptera: Thripidae). Appl. Entomol. Zool. 2019, 54, 115–121. [Google Scholar] [CrossRef]
- Messelink, G.J.; Van Steenpaal, S.E.F.; Ramakers, P.M.J. Evaluation of Phytoseiid Predators for Control of Western Flower Thrips on Greenhouse Cucumber. BioControl 2006, 51, 753–768. [Google Scholar] [CrossRef]
- Ahmed, N.; Lou, M. Efficacy of Two Predatory Phytoseiid Mites in Controlling the Western Flower Thrips, Frankliniella Occidentalis (Pergande) (Thysanoptera: Thripidae) on Cherry Tomato Grown in a Hydroponic System. Egypt. J. Biol. Pest Control 2018, 28, 15. [Google Scholar] [CrossRef] [Green Version]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Rawat, C.D.; Mishra, V.; Kaur, J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef]
- Sato, H.; Hagiwara, K.; Nakamura, S.; Morikawa, T.; Honda, Y.; Omura, T. A Comparison of Sensitive and Specific Methods for the Detection of Lily Mottle Virus in Lily Plants. J. Phytopathol. 2002, 150, 20–24. [Google Scholar] [CrossRef]
- Boonham, N.; Kreuze, J.; Winter, S.; Van Der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; et al. Methods in Virus Diagnostics: From ELISA to next Generation Sequencing. Virus Res. 2014, 186, 20–31. [Google Scholar] [CrossRef]
- Cassedy, A.; Parle-McDermott, A.; O’Kennedy, R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front. Mol. Biosci. 2021, 8, 637559. [Google Scholar] [CrossRef]
- Kim, J.H. Development of an Indirect ELISA and Immunocapture RT-PCR for Lily Virus Detection. J. Microbiol. Biotechnol. 2012, 22, 1776–1781. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Xie, Z.; Yang, G.; Guo, Z.; Wang, L. Simultaneous Detection of Three Lily Viruses Using Triplex IC-RT-PCR. J. Virol. Methods 2017, 249, 69–75. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.W.; Jung, Y.T. Development of Serological Procedures for Sensitive, Rapid Detection of Cucumber Mosaic Virus in Lilium. Hortic. Environ. Biotechnol. 2016, 57, 633–639. [Google Scholar] [CrossRef]
- Edwards, M.L.; Cooper, J.I. Plant Virus Detection Using a New Form of Indirect ELISA. J. Virol. Methods 1985, 11, 309–319. [Google Scholar] [CrossRef]
- Wang, R.; Wang, G.; Zhao, Q.; Zhang, Y.; An, L.; Wang, Y. Expression, Purification and Characterization of the Lily Symptomless Virus Coat Protein from Lanzhou Isolate. Virol. J. 2010, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Deng, C.; Zhao, X.; Zhou, Q.; Ge, G.; Liu, Y.; Yan, W.; Xia, Q. Extraction of Total Nucleic Acid Based on Silica-Coated Magnetic Particles for RT-QPCR Detection of Plant RNA Virus/Viroid. J. Virol. Methods 2014, 196, 204–211. [Google Scholar] [CrossRef]
- Jeong, J.; Cho, S.; Lee, W.-H.; Lee, K.; Ju, H. Development of a Rapid Detection Method for Potato Virus X by Reverse Transcription Loop-Mediated Isothermal Amplification. Plant Pathol. J. 2015, 31, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Guedez-López, G.V.; Alguacil-Guillén, M.; González-Donapetry, P.; Bloise, I.; Tornero-Marin, C.; González-García, J.; Mingorance, J.; García-Rodríguez, J.; Montero-Vega, M.D.; Romero, M.P.; et al. Evaluation of Three Immunochromatographic Tests for Rapid Detection of Antibodies against SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2289–2297. [Google Scholar] [CrossRef]
- Jeong, J.-J.; Ju, H.-J.; Noh, J. A Review of Detection Methods for the Plant Viruses. Res. Plant Dis. 2014, 20, 173–181. [Google Scholar] [CrossRef]
- Flores, F.; Garrido, P.; Guevara, F.; Granda, R. Complete Genome Sequence of Lily Symptomless Virus, Isolated from Alstroemeria Plants in Ecuador. Microbiol. Resour. Announc. 2019, 8, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-W.; Zhang, X.-C.; Wang, M.-R.; Bi, W.-L.; Faisal, M.; da Silva, J.A.T.; Volk, G.M.; Wang, Q.-C. Development, Progress and Future Prospects in Cryobiotechnology of Lilium spp. Plant Methods 2019, 15, 125. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.; Min, D.J.; Hong, J.S.; Choi, S.H. Simultaneous Detection of Four Lily-Infecting Viruses by a Multiplex RT-PCR Assay. J. Gen. Plant Pathol. 2021, 87, 219–224. [Google Scholar] [CrossRef]
- Van Brunschot, S.L.; Bergervoet, J.H.W.; Pagendam, D.E.; De Weerdt, M.; Geering, A.D.W.; Drenth, A.; Vlugt, R.A.A. Van Der A Bead-Based Suspension Array for the Multiplexed Detection of Begomoviruses and Their Whitefly Vectors. J. Virol. Methods 2014, 198, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.; Kim, S.M.; Choi, S.H. Simultaneous Detection of Three Lily-Infecting Viruses Using a Multiplex Luminex Bead Array. J. Virol. Methods 2016, 231, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ming, J. Development of a Multiplex RT-PCR Assay for Simultaneous Detection of Lily Symptomless Virus, Lily Mottle Virus, Cucumber Mosaic Virus, and Plantago Asiatica Mosaic Virus in Lilies. Virol. J. 2022, 19, 4–9. [Google Scholar] [CrossRef]
- Gambley, C.F.; Geering, A.D.W.; Thomas, J.E. Development of an Immunomagnetic Capture-Reverse Transcriptase-PCR Assay for Three Pineapple Ampeloviruses. J. Virol. Methods 2009, 155, 187–192. [Google Scholar] [CrossRef]
- Huber, I.; Block, A.; Sebah, D.; Debode, F.; Morisset, D.; Grohmann, L.; Berben, G.; Štebih, D.; Milavec, M.; Žel, J.; et al. Development and Validation of Duplex, Triplex, and Pentaplex Real-Time PCR Screening Assays for the Detection of Genetically Modified Organisms in Food and Feed. J. Agric. Food Chem. 2013, 61, 10293–10301. [Google Scholar] [CrossRef]
- Rigotti, S.; Gugerli, P. Rapid Identification of Potato Virus Y Strains by One-Step Triplex RT-PCR. J. Virol. Methods 2007, 140, 90–94. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wang, Y.J.; Xie, Z.K.; Wang, R.Y.; Yang, G.; Guo, Z.H.; Qiu, Y. A Study of Viral Coat Protein Accumulation in Lily Chloroplasts from Mixed Virus Infections of Lily Mottle Virus and Cucumber Mosaic Virus. Plant Pathol. 2019, 68, 261–268. [Google Scholar] [CrossRef]
- Lee, H.-J.; Choi, S.; Cho, I.-S.; Yoon, J.-Y.; Jeong, R.-D. Development and Application of a Reverse Transcription Droplet Digital PCR Assay for Detection and Quantification of Plantago Asiatica Mosaic Virus. Crop Prot. 2023, 169, 106255. [Google Scholar] [CrossRef]
- Munro, S.B.; Kuypers, J.; Jerome, K.R. Comparison of a Multiplex Real-Time PCR Assay with a Multiplex Luminex Assay for Influenza Virus Detection. J. Clin. Microbiol. 2013, 51, 1124–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Xu, H.; Cao, Y.; Yang, P.; Feng, Y.; Tang, Y.; Yuan, S.; Ming, J. Validation of Reference Genes for Quantitative Real-Time PCR during Bicolor Tepal Development in Asiatic Hybrid Lilies (Lilium spp.). Front. Plant Sci. 2017, 8, 669. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Bosch, A.; Myrmel, M. Extended Direct Lysis Method for Virus Detection on Berries Including Droplet Digital RT-PCR or Real Time RT-PCR with Reduced Influence from Inhibitors. J. Virol. Methods 2019, 271, 113638. [Google Scholar] [CrossRef]
- Ryabchevskaya, E.M.; Evtushenko, E.A.; Arkhipenko, M.V.; Donchenko, E.K.; Nikitin, N.A.; Atabeko, J.G.; Karpova, O. V A Recombinant Rotavirus Antigen Based on the Coat Protein of Alternanthera Mosaic Virus. Mol. Biol. 2020, 54, 278–284. [Google Scholar] [CrossRef]
- Kim, M.H.; Park, I.S.; Il Park, K.; Oh, W.; Kim, K.W. Elimination of Lily Symptomless Virus by in Vitro Scaling and Reinfection Rates under Various Culture Conditions in Korean Native Lilies. Korean J. Hortic. Sci. Technol. 2015, 33, 891–899. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, D.; Zhang, Y.; Xu, Y.; Zhao, X.; Liang, J.; Fan, X.; Du, Y.; Zhu, Z.; Shi, B.; et al. Rapid Visual Detection of Lily Mottle Virus Using a Loop-Mediated Isothermal Amplification Method. Arch. Virol. 2018, 163, 545–548. [Google Scholar] [CrossRef]
- Yin, L.; Man, S.; Ye, S.; Liu, G.; Ma, L. CRISPR-Cas Based Virus Detection: Recent Advances and Perspectives. Biosens. Bioelectron. 2021, 193, 113541. [Google Scholar] [CrossRef]
- Khater, M.; de la Escosura-Muñiz, A.; Merkoçi, A. Biosensors for Plant Pathogen Detection. Biosens. Bioelectron. 2017, 93, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Quer, J.; Colomer-Castell, S.; Campos, C.; Andrés, C.; Piñana, M.; Cortese, M.F.; González-Sánchez, A.; Garcia-Cehic, D.; Ibáñez, M.; Pumarola, T.; et al. Next-Generation Sequencing for Confronting Virus Pandemics. Viruses 2022, 14, 600. [Google Scholar] [CrossRef]
- Babu, B.; Ochoa-Corona, F.M.; Paret, M.L. Recombinase Polymerase Amplification Applied to Plant Virus Detection and Potential Implications. Anal. Biochem. 2018, 546, 72–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, H.; Dusengemungu, L.; Lv, P.; Igiraneza, C. Advancements in Lily Viruses Management: Challenges and Solutions in Elimination and Detection. Horticulturae 2023, 9, 790. https://doi.org/10.3390/horticulturae9070790
Gong H, Dusengemungu L, Lv P, Igiraneza C. Advancements in Lily Viruses Management: Challenges and Solutions in Elimination and Detection. Horticulturae. 2023; 9(7):790. https://doi.org/10.3390/horticulturae9070790
Chicago/Turabian StyleGong, Huiling, Leonce Dusengemungu, Peng Lv, and Clement Igiraneza. 2023. "Advancements in Lily Viruses Management: Challenges and Solutions in Elimination and Detection" Horticulturae 9, no. 7: 790. https://doi.org/10.3390/horticulturae9070790
APA StyleGong, H., Dusengemungu, L., Lv, P., & Igiraneza, C. (2023). Advancements in Lily Viruses Management: Challenges and Solutions in Elimination and Detection. Horticulturae, 9(7), 790. https://doi.org/10.3390/horticulturae9070790