Sustainability Perspectives of Organic Farming and Plant Factory Systems—From Divergences towards Synergies
Abstract
:1. Introduction
- -
- H1: OF and PF systems are competitive with each other due to their main characteristics; they possess diverging developmental directions.
- -
- H2: The legislation of OF on a global scale does not allow for a transition between OF and PF systems.
- -
- H3: There are no alternative growing media which are compatible with the preferences of both OF and PF systems; therefore, the legislative barrier is insurmountable.
- -
- H4: There are no sharp boundaries among OF and PF systems regarding the profitable production of plant species and varieties.
- -
- H5: Local food production provides broader perspectives for OF systems and is less relevant for PFs.
- -
- H6: Consumers prefer OF products over PF products.
- -
- H7: Both OF and PF systems can be considered as sustainable.
2. Materials and Methods
3. Results and Discussion
3.1. Assessing the Term ‘Sustainability’ in OF and PF Systems
3.2. Characteristics of OF and PF Systems
3.3. Legislation of OF and PF Systems
3.4. Assessing Sustainability in the Key Components of Plant Production
3.4.1. Sustainability of Growing Media
Growing Media | Cultivation System | Meets EU Organic Regulation * | Material Afterlife | Renewability of Source | Nutrient Level | Reference |
---|---|---|---|---|---|---|
natural growing substrates from inorganic sources (unmodified) | ||||||
sand | hydroponics, geoponics | yes | reusable, other use ** | non-renewable | no | [17,78,86] |
gravel | hydroponics, geoponics | yes | reusable | non-renewable | no | [78] |
volcanic tuff/lava rock (riolite, zeolite, and basalt) | ||||||
hydroponics, geoponics | yes | other use ** | non-renewable | low | [74,78,87] | |
pumice | hydroponics, geoponics | yes | reusable, other use ** | non-renewable | low | [86] |
perlite | hydroponics, geoponics | yes | reusable, other use ** | non-renewable | no | [17,78,86] |
vermiculite | hydroponics, geoponics | yes | not reusable, other use ** | non-renewable | no | [17,78,86] |
silt | geoponics | with conditions | not reusable, other use ** | non-renewable | low | [88] |
natural growing substrates from organic sources | ||||||
peat moss (Sphagnum) | hydroponics, geoponics | authorized, not sustainable | reusable a few times, other use **, and biodegradable | non-renewable | low | [74,86,89] |
coconut coir | hydroponics, geoponics | yes | with limitations, other use **, and biodegradable | renewable | low | [17,86,90] |
biochar | geoponics | with conditions (only from plant origin) | other use **, biodegradable | renewable | low | [76,91,92] |
dried digestate residual after production of biomethane gas | ||||||
geoponics | yes | other use **, biodegradable | renewable | low | [93,94] | |
fish fertilizer derived from aquaponics | ||||||
aquaponics | no | biodegradable | renewable | high | [94] | |
composts | ||||||
composted plant materials: leaf compost/leaf mold, Posidonia (seaweed) compost, and spent mushroom compost | ||||||
geoponics | yes | other use **, biodegradable | renewable | high | [17,95,96] | |
municipal solid waste compost | geoponics | with conditions | other use **, biodegradable | renewable | high | [17] |
food processing wastes compost | geoponics | with conditions | other use **, biodegradable | renewable | high | [74] |
animal manure compost | geoponics | yes | other use **, biodegradable | renewable | high | [17,92,97] |
sheep’s wool compost/manure | geoponics | yes | other use **, biodegradable | renewable | low | [98,99] |
sewage sludge | geoponics | with conditions | other use **, biodegradable | renewable | high | [17] |
paper waste | geoponics | with conditions | other use **, biodegradable | non-renewable | low | [74] |
several shells or hulls (rice hulls, almond shells, hazelnut husks peanut hulls, and olive husks) | ||||||
hydroponics, geoponics | yes | other use **, biodegradable | renewable | low | [74,86] | |
dry plant residues (cereal straw, palm fiber trunk waste, switchgrass (Panicum virgatum L.), extracted sweet corn tassel (Zea mays L.), giant reed (Arundo donax L.) wastes, kenaf fiber (Hibiscus cannabinus), and Bagasse (sugarcane pulp)) | ||||||
geoponics | yes | other use **, biodegradable | renewable | low | [74,86,100] | |
pressed fruit residues (olive pomace, grape pomace) | ||||||
geoponics | yes | other use **, biodegradable | renewable | low | [74] | |
wood fiber (wood chips/sawdust/bark) | ||||||
hydroponics, geoponics | yes | other use **, | renewable | low | [17,74,86] | |
vermicompost: earthworms/compost worms/Eisenia foetida (Eisenia sp.), Eudrilus eugeniae, Perionyx excavatus, Dendrobaena veneta, and Lumbricus terrestris with microorganisms (or diluted extract) | ||||||
geoponics | yes | other use **, biodegradable | renewable | high | [92,101,102] | |
‘synthetic substrates’ consist of processed materials (modified) | ||||||
mineral wool | hydroponics | no | reusable with limitations, non-recyclable | non-renewable | no | [74,86,103] |
expanded clay granules | hydroponics | no | reusable, and biodegradable | non-renewable | no | [74,78,86] |
polystyrene (Styrofoam) | hydroponics | no | non-reusable, non-recyclable | non-renewable | no | [78] |
polyurethane sponge/foam | ||||||
hydroponics | no | reusable a few times, not recyclable | non-renewable | no | [78,104] | |
phenolic resin/phenolic foam | ||||||
hydroponics | no | non-renewable | no | [78,86] | ||
foamed glass (growstones) | ||||||
hydroponics | no | reusable, recyclable | non-renewable | no | [78,86] | |
water absorbing crystals/polymers (super absorbent hydrogel) | ||||||
hydroponics, geoponics | no | reusable, natural-based hydrogels are biodegradable | non-renewable, renewable hydrogels | no | [100] | |
polyester fleece | hydroponics | no | non-renewable | no | [78] | |
expanded shale | aquaponics, hydroponics | no | non-renewable | no | [86] |
3.4.2. Species and Variety Selection and Breeding for OF and PF Systems
3.5. Assessing Sustainability from a Consumer Socio-Economic Perspective
3.5.1. Local Food Production
3.5.2. Consumers’ Attitudes toward PF Products
3.5.3. Economic Sustainability of OF and PF Systems
4. Future Directions and Trends
- -
- The role of open fields will be of paramount importance due to the degradative processes that threaten living ecosystems.
- -
- A practice-based allocation of species and varieties will result in the separated production of cash crops and mass-produced crops; valuable (and PF-compatible) species will be produced in controlled environments. As a consequence, the agrochemization of arable fields will be reduced and the emphasis will be laid on sustaining living soils.
- -
- Accelerated urbanization will contribute to the reduction in fields appropriate for organic production; therefore, synergies will be forced.
- -
- The intensification of mass production is an inevitable requirement of humanity—both systems have to be intensified for this aim.
- -
- The economic viability of PFs will be improved; future energy crises and consumer expectations will drive the increased sustainability of PFs. The modularity and miniaturization of PFs may be a solution.
- -
- The occurrence of global epidemics cannot be excluded; therefore, local supply chains will be strengthened. The self-sufficiency of a community starts with common cooperation in food ordering and food production and ultimately ends in community PFs.
- -
- The term ‘sustainability’ has become worn out; re-definition of its meaning is required.
- -
- There is insufficient knowledge both about OF and PFs in society. This gap exists in the heads of experts and of laymen. In order to achieve any progress, information campaigns are needed.
- -
- With technological progress the price of PF products will decrease; consumer awareness will develop towards PF products due to targeted information campaigns by related stakeholders.
- -
- The integration of PF solutions to urban environments will reach architectural levels; premium apartments with direct PF access will become a market advantage in the real estate sector.
- -
- Production on genuine soil is the main identifier of OF; therefore, no progress is expected in terms of regulatory updates, at least in Europe. It is possible, though, that in the US and Asia the regulation of the growing media of OF will become more permissive, which will result in conflicting interests in global certification equivalence.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Urbanization Prospects—Population Division—United Nations. 2014. Available online: https://population.un.org/wup/ (accessed on 26 June 2023).
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food. 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.J.; Wood, R.; Stadler, K.; Bruckner, M.; et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Chang. Biol. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Hashemi, S.Z.; Darzi-Naftchali, A.; Karandish, F.; Ritzema, H.; Solaimani, K. Assessing agro-environmental sustainability of intensive agricultural systems. Sci. Total Environ. 2022, 831, 154994. [Google Scholar] [CrossRef]
- Udeigwe, T.K.; Teboh, J.M.; Eze, P.N.; Stietiya, M.H.; Kumar, V.; Hendrix, J.; Mascagni, H.J., Jr.; Ying, T.; Kandakji, T. Implications of leading crop production practices on environmental quality and human health. J. Environ. Manag. 2015, 151, 267–279. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 June 2023).
- Lee, J. AgTech Trends in 2019: Precision Agriculture, and Millennial Farmers; G2 Crowd Learning Hub: Chicago, IL, USA, 2019. [Google Scholar]
- Sharma, N.; Singhvi, R. Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; p. 163. [Google Scholar]
- Butturini, M.; Marcelis, L.F.M. Vertical Farming in Europe: Present Status and Outlook. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Elsevier: London, UK, 2019; Available online: https://research.wur.nl/en/publications/vertical-farming-in-europe-present-status-and-outlook (accessed on 27 June 2023).
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the lights for leafy greens in indoor vertical farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Gonnella, M.; Renna, M. The Evolution of Soilless Systems towards Ecological Sustainability in the Perspective of a Circular Economy. Is It Really the Opposite of Organic Agriculture? Agronomy 2021, 11, 950. [Google Scholar] [CrossRef]
- Manning, S.W.; Kocik, C.; Lorentzen, B.; Sparks, J.P. Severe multi-year drought coincident with Hittite collapse around 1198–1196 BC. Nature 2023, 614, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Mebratu, D. Sustainability and sustainable development: Historical and conceptual review. Environ. Impact Assess. Rev. 1998, 18, 493–520. [Google Scholar] [CrossRef]
- Nriagu, J.O. Mercury pollution from the past mining of gold and silver in the Americas. Sci. Total Environ. 1994, 149, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Schwab, K. The Fourth Industrial Revolution; World Economic Forum: Cologny, Switzerland, 2017; p. 194. [Google Scholar]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Pigford, A.A.E.; Hickey, G.M.; Klerkx, L. Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agric. Syst. 2018, 164, 116–121. [Google Scholar] [CrossRef]
- Sinha, A.; Pedada, K.; Purkayastha, A.; Srivastava, R.; Balani, S. Digital Transformation as Disruptive Strategy. 2022. Available online: https://cmr.berkeley.edu/assets/documents/pdf/2022-05-digital-transformation-as-disruptive-strategy.pdf (accessed on 27 June 2023).
- Lubna, F.A.; Lewus, D.C.; Shelford, T.J.; Both, A.J. What You May Not Realize about Vertical Farming. Horticulturae 2022, 8, 322. [Google Scholar] [CrossRef]
- Wong, C.; Wood, J.; Paturi, S. Vertical farming: An assessment of Singapore City. Etropic Electron. J. Stud. Trop. 2020, 19, 228–248. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Nally, D. Against Food Security: On Forms of Care and Fields of Violence. Glob. Soc. 2016, 30, 558–582. [Google Scholar] [CrossRef]
- European Commission. European Commission—European Commission. The Future of Food and Farming—For a Flexible, Fair and Sustainable Common Agricultural Policy. 2017. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_17_4841 (accessed on 27 June 2023).
- European Commission. Shaping Europe’s Digital Future. 2021. Available online: https://digital-strategy.ec.europa.eu/en (accessed on 27 June 2023).
- European Commission. A European Green Deal. 2021. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 3 July 2023).
- Kowalska, A.; Bieniek, M. Meeting the European green deal objective of expanding organic farming. Equilib. Q. J. Econ. Econ. Policy 2022, 17, 607–633. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists (Text with EEA Relevance). OJ L July 15, 2021. Available online: http://data.europa.eu/eli/reg_impl/2021/1165/oj/eng (accessed on 15 May 2023).
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can soil-less crop production be a sustainable option for soil conservation and future agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Tiessen, H.; Cuevas, E.; Chacon, P. The role of soil organic matter in sustaining soil fertility. Nature 1994, 371, 783–785. [Google Scholar] [CrossRef]
- Mockshell, J.; Villarino, M.E.J. Agroecological Intensification: Potential and Limitations to Achieving Food Security and Sustainability. In Encyclopedia of Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2019; Volume 3, pp. 64–70. [Google Scholar]
- Mockshell, J.; Kamanda, J. Beyond the agroecological and sustainable agricultural intensification debate: Is blended sustainability the way forward? Int. J. Agric. Sustain. 2018, 16, 127–149. [Google Scholar] [CrossRef]
- Phalan, B.T. What Have We Learned from the Land Sparing-sharing Model? Sustainability 2018, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Shin, H.R.; Shyun, O.; Yu, K.H. Analysis on the Economic Feasibility of a Plant Factory Combined with Architectural Technology for Energy Performance Improvement. Agriculture 2022, 12, 684. [Google Scholar] [CrossRef]
- Kozai, T. Current Status of Plant Factories with Artificial Lighting (PFALs) and Smart PFALs. In Smart Plant Factory: The Next Generation Indoor Vertical Farms; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 3–13. [Google Scholar] [CrossRef]
- Shahbandeh, M.; Indoor Farming—Statistics & Facts. Statista. 2022. Available online: https://www.statista.com/topics/4467/indoor-farming/ (accessed on 9 November 2022).
- Lu, N.; Kikuchi, M.; Keuter, V.; Takagaki, M. Chapter 15—Business model and cost performance of mini-plant factory in downtown. In Plant Factory Basics, Applications and Advances; Kozai, T., Niu, G., Masabni, J., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 271–293. Available online: https://www.sciencedirect.com/science/article/pii/B9780323851527000021 (accessed on 2 November 2022).
- Nakamura, K.; Shimizu, H. Chapter 8.3—Plant Factories in Japan. In Plant Factory Using Artificial Light; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 319–325. Available online: https://www.sciencedirect.com/science/article/pii/B9780128139738000282 (accessed on 2 November 2022).
- Zhang, T.; Yang, Y.; Ni, J.; Xie, D. Construction of an integrated technology system for control agricultural non-point source pollution in the Three Gorges Reservoir Areas. Agric. Ecosyst. Environ. 2020, 295, 106919. [Google Scholar] [CrossRef]
- Huang, L.C. Consumer Attitude, Concerns, and Brand Acceptance for the Vegetables Cultivated with Sustainable Plant Factory Production Systems. Sustainability 2019, 11, 4862. [Google Scholar] [CrossRef] [Green Version]
- Armanda, D.T.; Guinée, J.B.; Tukker, A. The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability—A review. Glob. Food Secur. 2019, 22, 13–24. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Yu-Xin, T.; Qi-Chang, Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar] [CrossRef]
- Mytton-Mills, H. Controlled environment agriculture: What is it, and how is it applied? Trop. Agric. Assoc. 2018, 34, 4–8. [Google Scholar]
- Huebbers, J.W.; Buyel, J.F. On the verge of the market—Plant factories for the automated and standardized production of biopharmaceuticals. Biotechnol. Adv. 2021, 46, 107681. [Google Scholar] [CrossRef]
- Battaglia, D. Aeroponic gardens and their magic: Plants/persons/ethics in suspension. Hist. Anthropol. 2017, 28, 263–292. [Google Scholar] [CrossRef]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed. Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Oita, A.; Hayashi, K.; Matsubae, K. Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability 2022, 14, 1042. [Google Scholar] [CrossRef]
- Lampkin, N. Organic Farming; Farming Press Books: Ipswich, UK, 1990; p. 784. [Google Scholar]
- Jiao, Y. The Most Valuable Scenario of Vertical Farming by Comparing Different Business Production Models. Master’s Thesis, Wageningen University and Research, Economic Management and Consumer Science MSc Program, Business Management & Organisation Chair Group, Wageningen, The Netherlands, 2020. Available online: https://edepot.wur.nl/533244 (accessed on 23 June 2023).
- Piechowiak, M.; Vertical Farming Planet. Can Vertical Farming Be Organic? 2022. Available online: https://verticalfarmingplanet.com/can-vertical-farming-be-organic/ (accessed on 28 June 2023).
- Chung, H.Y.; Wu, C.C.; Fang, W. Cultivating hydroponically grown lettuce with low potassium, sodium and nitrate concentration in plant factory with artificial lighting. J. Taiwan Soc. Hortic. Sci. 2018, 64, 113–124. [Google Scholar]
- IFOAM. Organics in Action, General Assembly. International Federeation of Organic Agriculture Movements. 2021. Available online: https://www.ifoam.bio/sites/default/files/2021-06/organicsinaction.pdf (accessed on 29 June 2023).
- Benis, K.; Ferrão, P. Commercial farming within the urban built environment—Taking stock of an evolving field in northern countries. Glob. Food Secur. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Gruda, N.S.; Fernández, J.A. Optimising Soilless Culture Systems and Alternative Growing Media to Current Used Materials. Horticulturae 2022, 8, 292. [Google Scholar] [CrossRef]
- Fruscella, L.; Kotzen, B.; Milliken, S. Organic aquaponics in the European Union: Towards sustainable farming practices in the framework of the new EU regulation. Rev. Aquac. 2021, 13, 1661–1682. [Google Scholar] [CrossRef]
- European Comission. Regulation (Eu) 2018/848 of The European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A02018R0848-20230221 (accessed on 15 June 2023).
- Arora, A.; Nandal, P.; Chaudhary, A. Critical evaluation of novel applications of aquatic weed Azolla as a sustainable feedstock for deriving bioenergy and feed supplement. Environ. Rev. 2023, 31, 195–205. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. (Eds.) Chapter 29—Selected PFALs in the United States, the Netherlands, and China. In Plant Factory, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 419–436. Available online: https://www.sciencedirect.com/science/article/pii/B9780128166918000297 (accessed on 29 June 2023).
- OTA. Greenhouse & Container Production|OTA. 2023. Available online: https://ota.com/advocacy/organic-standards/emerging-organic-standards/greenhouse-container-production (accessed on 29 June 2023).
- Birkby, J. Vertical Farming—ATTRA—Sustainable Agriculture. 2016. Available online: https://attra.ncat.org/publication/vertical-farming/ (accessed on 29 June 2023).
- Juniwal, C.; Khan, A.R.; Ganesh, A.; Carvalho, R.M.; Karunamay, S. Constraints in milk production of dairy cattle: A review. Pharma Innov. J. 2022; SP-11, 3991–3994. [Google Scholar]
- Ren, P.; Deng, M.; Feng, J.; Li, R.; Ma, X.; Liu, J.; Wang, D. Partial Replacement of Oat Hay with Whole-Plant Hydroponic Barley Seedlings Modulates Ruminal Microbiota and Affects Growth Performance of Holstein Heifers. Microorganisms 2022, 10, 2000. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Rincón-Quintero, A.D.; Sandoval-Rodríguez, C.L.; Lengerke-Perez, O.; Rueda-Osma, M.F.; Mateus-Ariza, J.A. Evaluation and Control of Psychrometric Variables Present in an Automated Greenhouse for the Production of Organic Tomato. In Recent Advances in Electrical Engineering, Electronics and Energy; Botto-Tobar, M., Cruz, H., Díaz Cadena, A., Eds.; Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 165–180. [Google Scholar]
- Rigby, D.; Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Staling, S. Vertical Farmers to Launch Eco-Standard as Organics Sector Digs in on Soil. 2021. Available online: https://fif.cnsmedia.com/a/1ooYO0x5zNM= (accessed on 29 June 2023).
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Marcinkowska, K.; Gruszka, D.; Kluczek, K. The Effects of Rabbit-Manure-Derived Biochar Co-Application with Compost on the Availability and Heavy Metal Uptake by Green Leafy Vegetables. Agronomy 2022, 12, 2552. [Google Scholar] [CrossRef]
- Takácsné Hájos, M. Zöldséghajtatás; DUPress: Debrecen, Hungary, 2014; p. 98. [Google Scholar]
- Bar-Tal, A.; Saha, U.K.; Raviv, M.; Tuller, M. Inorganic and Synthetic Organic Components of Soilless Culture and Potting Mixtures. In Soilless Culture, 2nd ed.; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier: Boston, MA, USA, 2019; pp. 259–301. Available online: https://www.sciencedirect.com/science/article/pii/B9780444636966000074 (accessed on 28 November 2022).
- Ceglie, F.G.; Bustamante, M.A.; Amara, M.B.; Tittarelli, F. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef]
- Jakusné Sári, S. Tőzeghelyettesítő Anyagok a Paprikahajtatásban. Ph.D. Thesis, Corvinus University of Budapest, Budapest, Hungary, 2007. [Google Scholar]
- Sári, S.J.; Forró, E. Composted and natural organic materials as potential peat-substituting media in green pepper growing. Int. J. Hortic. Sci. 2006, 12, 31–35. [Google Scholar]
- Tate, R.L., III. Soil Organic Matter. Biological and Ecological Effects; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Schmilewski, G. Growing medium constituents used in the EU. In Proceedings of the International Symposium on Growing Media 2007, Nottingham, UK, 2–8 September 2007; pp. 33–46. [Google Scholar]
- European Parliament. Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the Assessment of the Effects of Certain Public and Private Projects on the Environment (Codification) Text with EEA Relevance. OJ L 2011. Available online: http://data.europa.eu/eli/dir/2011/92/oj/eng (accessed on 15 May 2023).
- Thakulla, D.; Dunn, B.; Hu, B. Soilless Growing Mediums. 2021. Available online: https://scholar.googleusercontent.com/scholar?q=cache:_9SK11Vh0XgJ:scholar.google.com/+growing+media+reuse+polyurethane&hl=hu&as_sdt=0,5 (accessed on 27 January 2023).
- Milišić, K.; Ugrinović, M.; Zečević, B.; Damnjanović, J.; Adžić, S.; Girek, Z. Enriched Zeolites for Vegetable Seedling production. Paper presented at Abstract Proceedings [Elektronski Izvor]/Young Researchers Conference 2020, YOURS 2020, Belgrade, Serbia, 28 September 2020; Available online: http://RIVeC.institut-palanka.rs/handle/123456789/294 (accessed on 5 December 2022).
- Younis, A.; Riaz, A.; Waseem, M.; Khan, M.A.; Nadeem, M. Production of quality croton (Codiaeum variegatum) plants by using different growing media. Am. Eurasian J. Agric. Environ. Sci. 2010, 7, 232–237. [Google Scholar]
- Lal, R. Encyclopedia of Soil Science; CRC Press: Boca Raton, FL, USA, 2017; p. 2795. [Google Scholar]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Hagbard, L. Biochar and Hemp as Peat Substituents in Horticultural Substrates and Their Effects on Presence of Microbiota; SLU, Dept. of Biosystems and Technology (from 130101): Alnarp, Sweden, 2022; Available online: https://stud.epsilon.slu.se/18349/ (accessed on 10 November 2022).
- Durán-Lara, E.F.; Valderrama, A.; Marican, A. Natural Organic Compounds for Application in Organic Farming. Agriculture 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, S.F.; Eller, F.J.; Evangelista, R.L.; Moser, B.R.; Lee, E.; Wagner, R.E.; Peterson, S.C. Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Ind. Crops Prod. 2015, 65, 467–471. [Google Scholar] [CrossRef]
- Coppens, J.; Grunert, O.; Van Den Hende, S.; Vanhoutte, I.; Boon, N.; Haesaert, G.; De Gelder, L. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J. Appl. Phycol. 2016, 28, 2367–2377. [Google Scholar] [CrossRef]
- Bidarnamani, F.; Karimian, M.A.; Fazeli-Nasab, B.; Mohkami, Z. Coconut coir dust as a waste on growth of Pothos (Scindapsus aureum L.). IJROWA 2023, 12, 73–84. [Google Scholar] [CrossRef]
- Paula, F.S.; Tatti, E.; Abram, F.; Wilson, J.; O’Flaherty, V. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. J. Environ. Manag. 2017, 196, 476–486. [Google Scholar] [CrossRef]
- Mehmood, T.; Ahmad, W.; Shafique Ahmad, K.; Shafi, J.; Asif Shehzad, M.; Aqeel Sarwar, M. Comparative Effect of Different Potting Media on Vegetative and Reproductive Growth of Floral Shower (Antirrhinum majus L.). Ujps 2013, 1, 104–111. [Google Scholar] [CrossRef]
- Žutić, I.; Nižić, I.; Mioč, B.; Uher, S.F.; Opačić, N.; Toth, N. Growing of sweet basil seedlings on substrate amended by sheep wool. In Proceedings of the 54th Croatian and 14th International Agronomy Symposium, Vodice, Croatia, 17–22 February 2019; pp. 273–278. [Google Scholar]
- Karaca, U.Ç.Ç. The Effect of Sheep Wool Manure on Growth and Yield of Pepper (Capsicum annuum) Plant. Int. J. Agric. Nat. Sci. 2022, 15. Available online: https://ijans.org/index.php/ijans/article/view/567 (accessed on 5 December 2022).
- Sahmat, S.S.; Rafii, M.Y.; Oladosu, Y.; Jusoh, M.; Hakiman, M.; Mohidin, H. A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture. Horticulturae 2022, 8, 1026. [Google Scholar] [CrossRef]
- Draskovits, E.; Németh-Borsányi, B.; Rivier, P.A.; Szabó, A. Vermikomposztálás, mint a szennyvíziszap-komposztálás alternatív megoldása—Szemle. Agrochem. Soil Sci. 2017, 66, 397–418. [Google Scholar] [CrossRef]
- Ahmad, A.; Aslam, Z.; Bellitürk, K.; Raza, A.; Asif, M. Vermicomposting by Bio-Recycling of Animal and Plant Waste: A Review on the Miracle of Nature. J. Innov. Sci. 2022, 8, 175–187. [Google Scholar] [CrossRef]
- Song, S.; Arora, S.; Laserna, A.K.C.; Shen, Y.; Thian, B.W.Y.; Cheong, J.C.; Tan, J.K.N.; Chiam, Z.; Fong, S.L.; Ghosh, S.; et al. Biochar for urban agriculture: Impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. Sci. Total Environ. 2020, 727, 138742. [Google Scholar] [CrossRef]
- Choi, H.G.; Kwon, J.K.; Park, K.S.; Kang, Y.I.; Cho, M.W.; Rho, I.R.; Kang, N.J. Effects of Germination Condition, Nursery Media and Nutrient Concentration on Seedling Growth Characteristics of Pak-choi and Lettuce in Plant Factory. J. Biol. Environ. Control. 2011, 20, 320–325. [Google Scholar]
- Winter, E.; Grovermann, C.; Aurbacher, J.; Orsini, S.; Schäfer, F.; Lazzaro, M.; Solfanelli, F.; Messmer, M.M. Sow what you sell: Strategies for integrating organic breeding and seed production into value chain partnerships. Agroecol. Sustain. Food Syst. 2021, 45, 1500–1527. [Google Scholar] [CrossRef]
- Weltzien, E.; Christinck, A. Chapter 8—Participatory Breeding: Developing Improved and Relevant Crop Varieties with Farmers. In Agricultural Systems, 2nd ed.; Snapp, S., Pound, B., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 259–301. Available online: https://www.sciencedirect.com/science/article/pii/B9780128020708000086 (accessed on 14 June 2023).
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Lammerts Van Bueren, E.T.; Verhoog, H.; Tiemens-Hulscher, M.; Struik, P.C.; Haring, M.A. Organic agriculture requires process rather than product evaluation of novel breeding techniques. NJAS Wagening. J. Life Sci. 2007, 54, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Avgoustaki, D.D.; Xydis, G. How energy innovation in indoor vertical farming can improve food security, sustainability, and food safety? In Advances in Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–51. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2452263520300021 (accessed on 26 June 2023).
- Folta, K.M. Breeding new varieties for controlled environments. Plant Biol. 2019, 21, 6–12. [Google Scholar] [CrossRef]
- Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proc. Jpn. Acad. Ser. B. 2013, 89, 447–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, R.; Urano, D. Molecular Breeding for Plant Factory: Strategies and Technology. In Smart Plant Factory: The Next Generation Indoor Vertical Farms; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 301–323. [Google Scholar] [CrossRef]
- Avgoustaki, D.D. Optimization of Photoperiod and Quality Assessment of Basil Plants Grown in a Small-Scale Indoor Cultivation System for Reduction of Energy Demand. Energies 2019, 12, 3980. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, C.A.; Bonnett, G.D.; McIntyre, C.L.; Hochman, Z.; Wasson, A.P. Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agric. Syst. 2019, 174, 133–144. [Google Scholar] [CrossRef]
- Ampim, P.; Obeng, E.; Olvera-Gonzalez, E. Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants 2022, 11, 2843. [Google Scholar] [CrossRef]
- Nájera, C.; Gallegos-Cedillo, V.M.; Ros, M.; Pascual, J.A. Role of Spectrum-Light on Productivity, and Plant Quality over Vertical Farming Systems: Bibliometric Analysis. Horticulturae 2023, 9, 63. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G. Chapter 4—Plant Factory as a Resource-Efficient Closed Plant Production System. In Plant Factory; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 69–90. Available online: https://www.sciencedirect.com/science/article/pii/B9780128017753000044 (accessed on 10 February 2023).
- Han, T.; Vaganov, V.; Cao, S.; Li, Q.; Ling, L.; Cheng, X.; Peng, L.; Zhang, C.; Yakovlev, A.N.; Zhong, Y.; et al. Improving “color rendering” of LED lighting for the growth of lettuce. Sci. Rep. 2017, 7, 45944. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; KrishnaKumar, S.; Atulba, S.L.S.; Jeong, B.R.; Hwang, S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Meng, Q.; Boldt, J.; Runkle, E.S. Blue Radiation Interacts with Green Radiation to Influence Growth and Predominantly Controls Quality Attributes of Lettuce. J. Am. Soc. Hortic. Sci. 2020, 145, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.C.; Burritt, D.J. Light Quality Influences Adventitious Shoot Production from Cotyledon Explants of Lettuce (Lactuca sativa L.). In Vitro Cell. Dev. Biol. Plant 2004, 40, 215–220. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Ke, X.; Yoshida, H.; Hikosaka, S.; Goto, E. Optimization of Photosynthetic Photon Flux Density and Light Quality for Increasing Radiation-Use Efficiency in Dwarf Tomato under LED Light at the Vegetative Growth Stage. Plants 2022, 11, 121. [Google Scholar] [CrossRef]
- Maeda, K.; Ito, Y. Effect of Different PPFDs and Photoperiods on Growth and Yield of Everbearing Strawberry ‘Elan’ in Plant Factory with White LED Lighting. Environ. Control. Biol. 2020, 58, 99–104. [Google Scholar] [CrossRef]
- Le, L.T.; Dinh, H.T.; Watanabe, K.; Ureshino, K.; Yamamoto, M.; Kawamitsu, Y. Improvement of Growth and Fruit Sugar Accumulation in Strawberry under Plant Factory Conditions through Manipulation of Phosphorus and Light Spectrum Applications. Trop. Agric. Dev. 2021, 65, 29–40. [Google Scholar]
- Kwon, C.T.; Heo, J.; Lemmon, Z.H.; Capua, Y.; Hutton, S.F.; Van Eck, J.; Park, S.J.; Lippman, Z.B. Rapid customization of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 2020, 38, 182–188. [Google Scholar] [CrossRef]
- Hiwasa-Tanase, K.; Kato, K.; Ezura, H. Chapter 20—Molecular breeding of miraculin-accumulating tomatoes with suitable traits for cultivation in plant factories with artificial lightings and the optimization of cultivation methods. In Plant Factory Basics, Applications and Advances; Kozai, T., Niu, G., Masabni, J., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 377–390. Available online: https://www.sciencedirect.com/science/article/pii/B9780323851527000100 (accessed on 8 February 2023).
- Varkonyi-Gasic, E.; Wang, T.; Voogd, C.; Jeon, S.; Drummond, R.S.M.; Gleave, A.P.; Allan, A.C. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol. J. 2019, 17, 869–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, N.; Singh, B.; Kaur, A.; Yadav, M.P.; Singh, N.; Ahlawat, A.K.; Singh, A.M. Effect of growing conditions on proximate, mineral, amino acid, phenolic composition and antioxidant properties of wheatgrass from different wheat (Triticum aestivum L.) varieties. Food Chem. 2021, 341, 128201. [Google Scholar] [CrossRef]
- Ghumman, A.; Singh, N.; Kaur, A. Chemical, nutritional and phenolic composition of wheatgrass and pulse shoots. Int. J. Food Sci. Technol. 2017, 52, 2191–2200. [Google Scholar] [CrossRef]
- Jähne, F.; Hahn, V.; Würschum, T.; Leiser, W.L. Speed breeding short-day crops by LED-controlled light schemes. Theor. Appl. Genet. 2020, 133, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Herrera, L.A.; Ortiz, R. Plant breeding for organic agriculture: Something new? Agric. Food Secur. 2015, 4, 25. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G. Chapter 2—Role of the plant factory with artificial lighting (PFAL) in urban areas. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 7–34. Available online: https://www.sciencedirect.com/science/article/pii/B9780128166918000029 (accessed on 4 July 2023).
- Pretty, J.N.; Ball, A.S.; Lang, T.; Morison, J.I.L. Farm costs and food miles: An assessment of the full cost of the UK weekly food basket. Food Policy 2005, 30, 1–19. [Google Scholar] [CrossRef]
- Enthoven, L.; Van den Broeck, G. Local food systems: Reviewing two decades of research. Agric. Syst. 2021, 193, 103226. [Google Scholar] [CrossRef]
- Prigent-Simonin, A.H.; Hérault-Fournier, C. The role of trust in the perception of the quality of local food products: With particular reference to direct relationships between producer and consumer. Anthropol. Food 2005, 4. [Google Scholar] [CrossRef]
- Cerrada-Serra, P.; Moragues-Faus, A.; Zwart, T.A.; Adlerova, B.; Ortiz-Miranda, D.; Avermaete, T. Exploring the contribution of alternative food networks to food security. A comparative analysis. Food Secur. 2018, 10, 1371–1388. [Google Scholar] [CrossRef]
- Kinnunen, P.; Guillaume, J.; Taka, M.; D’Odorico, P.; Siebert, S.; Puma, M.; Jalava, M.; Kummu, M. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food. 2020, 1, 229–237. [Google Scholar] [CrossRef]
- Despommier, D.D. The Vertical Farm: Feeding the World in the 21st Century, 1st ed.; Thomas Dunne Books/St. Martin’s Press: New York, NY, USA, 2010; p. 305. [Google Scholar]
- Gnauer, C.; Pichler, H.; Schmittner, C.; Tauber, M.; Christl, K.; Knapitsch, J.; Parapatits, M. A recommendation for suitable technologies for an indoor farming framework. E I Elektrotechnik und Informationstechnik 2020, 137, 370–374. [Google Scholar] [CrossRef]
- Yeşil, V.; Tatar, O. An Innovative Approach to Produce Forage Crops: Barley Fodder in Vertical Farming System. Sci. Pap. Ser. A Agron. 2020, 63, 723–728. [Google Scholar]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef] [Green Version]
- Edwards-Jones, G. Does eating local food reduce the environmental impact of food production and enhance consumer health? Proc. Nutr. Soc. 2010, 69, 582–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumont de Oliveira, F.; Bannon, S.; Evans, L.; Anderson, L.; Myers, P.; Thomas, J.M.H. Pathways to net-zero farming: A carbon footprint comparison of vertical versus traditional agriculture. Acta Hortic. 2023, 125–132. [Google Scholar] [CrossRef]
- Martin, M.; Weidner, T.; Gullström, C. Estimating the Potential of Building Integration and Regional Synergies to Improve the Environmental Performance of Urban Vertical Farming. Front. Sustain. Food Syst. 2022, 6, 849304. [Google Scholar] [CrossRef]
- Seth, N.; Díaz Barrado, C.M.; Durán YLalaguna, P. SDGs, Main Contributions and Challenges. UN. 2019. Available online: https://www.un-ilibrary.org/content/books/9789210476768 (accessed on 29 June 2023).
- Goodman, D.; DuPuis, E.M. Knowing food and growing food: Beyond the production–consumption debate in the sociology of agriculture. Sociol. Rural. 2002, 42, 5–22. [Google Scholar] [CrossRef]
- Food Foundation. COVID-19 UK Veg Box Scheme Report|Food Foundation. 2020. Available online: https://foodfoundation.org.uk/publication/covid-19-uk-veg-box-scheme-report (accessed on 4 July 2023).
- Bonfert, B. ‘What we’d like is a CSA in every town’. Scaling community supported agriculture across the UK. J. Rural. Stud. 2022, 94, 499–508. [Google Scholar] [CrossRef]
- Little, T.; Giles, N. Evaluation of the Impact of Community Supported Agriculture in Wales. Community Supported Agriculture. 2020. Available online: https://communitysupportedagriculture.org.uk/wp-content/uploads/2020/07/CSA-Evaluation-Full-report-JULY-2020.pdf (accessed on 4 July 2023).
- Quayson, M.; Bai, C.; Osei, V. Digital Inclusion for Resilient Post-COVID-19 Supply Chains: Smallholder Farmer Perspectives. IEEE Eng. Manag. Rev. 2020, 48, 104–110. [Google Scholar] [CrossRef]
- Michel-Villarreal, R.; Vilalta-Perdomo, E.L.; Canavari, M.; Hingley, M. Resilience and Digitalization in Short Food Supply Chains: A Case Study Approach. Sustainability 2021, 13, 5913. [Google Scholar] [CrossRef]
- Marshall, A.; Dezuanni, M.; Burgess, J.; Thomas, J.; Wilson, C.K. Australian farmers left behind in the digital economy: Insights from the Australian Digital Inclusion Index. J. Rural Stud. 2020, 80, 195–210. [Google Scholar] [CrossRef]
- Mehrabi, Z.; McDowell, M.J.; Ricciardi, V.; Levers, C.; Martinez, J.D.; Mehrabi, N.; Wittman, H.; Ramankutty, N.; Jarvis, A. The global divide in data-driven farming. Nat. Sustain. 2021, 4, 154–160. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Li, C. Electronic agriculture, blockchain and digital agricultural democratization: Origin, theory and application. J. Clean. Prod. 2020, 268, 122071. [Google Scholar] [CrossRef]
- Coyle, B.D.; Ellison, B. Will Consumers Find Vertically Farmed Produce “Out of Reach”? Choices 2017, 32, 1–8. [Google Scholar]
- Kurihara, S.; Ishida, T.; Suzuki, M.; Maruyama, A. Consumer Evaluation of Plant Factory Produced Vegetables. Focus. Mod. Food Ind. 2014, 3, 1. [Google Scholar] [CrossRef]
- Broad, G.; Marschall, W.; Ezzeddine, M. Perceptions of high-tech controlled environment agriculture among local food consumers: Using interviews to explore sense-making and connections to good food. Agric. Hum. Values 2022, 39, 417–433. [Google Scholar] [CrossRef]
- Jürkenbeck, K.; Heumann, A.; Spiller, A. Sustainability Matters: Consumer Acceptance of Different Vertical Farming Systems. Sustainability 2019, 11, 4052. [Google Scholar] [CrossRef] [Green Version]
- Jansen, G.; Cila, N.; Kanis, M.; Slaats, Y. Attitudes Towards Vertical Farming at Home: A User Study. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 3091–3098. [Google Scholar]
- Grebitus, C.; Chenarides, L.; Muenich, R.; Mahalov, A. Consumers’ Perception of Urban Farming—An Exploratory Study. Front. Sustain. Food Syst. 2020, 4, 79. Available online: https://www.frontiersin.org/articles/10.3389/fsufs.2020.00079 (accessed on 29 June 2023). [CrossRef]
- Yano, Y.; Nakamura, T.; Ishitsuka, S.; Maruyama, A. Consumer Attitudes toward Vertically Farmed Produce in Russia: A Study Using Ordered Logit and Co-Occurrence Network Analysis. Foods 2021, 10, 638. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Ha, B.; Jaeger, S.R. Consumer attitudes to vertical farming (indoor plant factory with artificial lighting) in China, Singapore, UK, and USA: A multi-method study. Food Res. Int. 2021, 150, 110811. [Google Scholar] [CrossRef]
- Akiti, K. Improving Urban Agriculture and Nutrition in the Anthropocene: A Comparison of Crop Quality in Organic and Vertical Farms. 25 July 2019. Available online: https://dataspace.princeton.edu/handle/88435/dsp019019s529z (accessed on 29 June 2023).
- Ambroise, S. Research for Applying Vertical Farming in Paris with Customers Point of Views; Aeres Hogeschool: Wageningen, The Netherlands, 2019; Available online: https://hbo-kennisbank.nl/details/aereshogeschool%3Aoai%3Awww.greeni.nl%3AVBS%3A2%3A145203 (accessed on 29 June 2023).
- Association for Vertical Farming. Sustainable Indoor Farm Certified. Available online: https://www.sif-certification.org/ (accessed on 22 June 2023).
- Fielke, S.J.; Botha, N.; Reid, J.; Gray, D.; Blackett, P.; Park, N.; Williams, T. Lessons for co-innovation in agricultural innovation systems: A multiple case study analysis and a conceptual model. J. Agric. Educ. Ext. 2018, 24, 9–27. [Google Scholar] [CrossRef]
- Santiteerakul, S.; Sopadang, A.; Yaibuathet Tippayawong, K.; Tamvimol, K. The Role of Smart Technology in Sustainable Agriculture: A Case Study of Wangree Plant Factory. Sustainability 2020, 12, 4640. [Google Scholar] [CrossRef]
- Nagy, F.; Gabrielli, M.; Zhu, A.; Ge, G. Agricultural Sustainability in the Yangtze River Delta, China. A Comparison of Coventional, Organic, and Vertical Farming; Abovefarm: Shanghai, China; Environmental Policy Group, Wageningen University and Research: Wageningen, The Netherlands, 2020; Available online: https://acrobat.adobe.com/link/track?uri=urn%3Aaaid%3Ascds%3AUS%3A257bcbd9-0cb0-417a-8afe-a8b9fa2d7ac0&viewer%21megaVerb=group-discover (accessed on 29 June 2023).
- Orsini, F.; Pennisi, G.; Zulfiqar, F.; Gianquinto, G. Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci. 2020, 85, 297–309. [Google Scholar] [CrossRef]
- EPA. Nutrient Pollution—The Sources and Solutions: Agriculture; Environmental United States Protection Agency: Washington, DC, USA, 2020. Available online: https://www.epa.gov/nutrientpollution/sources-and-solutions-agriculture (accessed on 28 June 2023).
- Ranawade, P.S.; Tidke, S.D.; Kate, A.K. Comparative Cultivation and Biochemical Analysis of Spinacia oleraceae Grown in Aquaponics, Hydroponics and Field Conditions. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1007–1013. [Google Scholar]
- Al-Karaki, G.N.; Al-Hashimi, M. Green Fodder Production and Water Use Efficiency of Some Forage Crops under Hydroponic Conditions. Int. Sch. Res. Not. 2011, 2012, e924672. [Google Scholar] [CrossRef] [Green Version]
- Wildeman, R. Vertical Farming: A Future Perspective or a Mere Conceptual Idea? Master’s Thesis, Engineering Technology Faculty, University of Twente, Enschede, The Netherlands, 2020. [Google Scholar]
- Aulakh, M.S. Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutr. Cycl. Agroecosyst. 1996, 47, 197–212. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Os E van Anseeuw, D.; Havermaet, R.V.; Junge, R. Hydroponic Technologies. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 77–110. [Google Scholar] [CrossRef] [Green Version]
- Linden, K.G.; Hull, N.; Speight, V. Thinking Outside the Treatment Plant: UV for Water Distribution System Disinfection. Acc. Chem. Res. 2019, 52, 1226–1233. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Kanematsu, Y.; Yoshikawa, N.; Okubo, T.; Takagaki, M. Environmental and resource use analysis of plant factories with energy technology options: A case study in Japan. J. Clean. Prod. 2018, 186, 703–717. [Google Scholar] [CrossRef]
- Wei, Z.; Hoffland, E.; Zhuang, M.; Hellegers, P.; Cui, Z. Organic inputs to reduce nitrogen export via leaching and runoff: A global meta-analysis. Environ. Pollut. 2021, 291, 118176. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, J.L.; Muñoz-Carpena, R.; Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 2012, 155, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Chang. Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef]
- Beillouin, D.; Pelzer, E.; Baranger, E.; Carrouée, B.; Cernay, C.; de Chezelles, E.; Schneider, A.; Jeuffroy, M.-H. Diversifying cropping sequence reduces nitrogen leaching risks. Field Crops Res. 2021, 272, 108268. [Google Scholar] [CrossRef]
- Stein, E.W. The Transformative Environmental Effects Large-Scale Indoor Farming May Have on Air, Water, and Soil—Eric W. Stein, 2021. Air Soil Water Res. 2021, 3, 1–8. [Google Scholar]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Yang, Q.C.; Tong, Y.X.; Cheng, R. Using Movable Light-emitting Diodes for Electricity Savings in a Plant Factory Growing Lettuce. HortTechnology 2014, 24, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, J.; Balázs, L.; Friedler, F. Optimization of vertical farms energy efficiency via multiperiodic graph-theoretical approach. J. Clean. Prod. 2023, 416, 137938. [Google Scholar] [CrossRef]
- Slotosch, A. Beekeeper. 4 Novel Ways to Transform Your Factory into a Green Manufacturing Plant. 2022. Available online: https://www.beekeeper.io/blog/4-ways-manufacturing-companies-can-go-green/ (accessed on 28 June 2023).
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csambalik, L.; Divéky-Ertsey, A.; Gál, I.; Madaras, K.; Sipos, L.; Székely, G.; Pusztai, P. Sustainability Perspectives of Organic Farming and Plant Factory Systems—From Divergences towards Synergies. Horticulturae 2023, 9, 895. https://doi.org/10.3390/horticulturae9080895
Csambalik L, Divéky-Ertsey A, Gál I, Madaras K, Sipos L, Székely G, Pusztai P. Sustainability Perspectives of Organic Farming and Plant Factory Systems—From Divergences towards Synergies. Horticulturae. 2023; 9(8):895. https://doi.org/10.3390/horticulturae9080895
Chicago/Turabian StyleCsambalik, László, Anna Divéky-Ertsey, Izóra Gál, Krisztina Madaras, László Sipos, Géza Székely, and Péter Pusztai. 2023. "Sustainability Perspectives of Organic Farming and Plant Factory Systems—From Divergences towards Synergies" Horticulturae 9, no. 8: 895. https://doi.org/10.3390/horticulturae9080895
APA StyleCsambalik, L., Divéky-Ertsey, A., Gál, I., Madaras, K., Sipos, L., Székely, G., & Pusztai, P. (2023). Sustainability Perspectives of Organic Farming and Plant Factory Systems—From Divergences towards Synergies. Horticulturae, 9(8), 895. https://doi.org/10.3390/horticulturae9080895