A Study on the Causes of Apomixis in Malus shizongensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Methods
2.2.1. Investigation of Apomixis Rate and Fruit Character
2.2.2. Stigma Acceptability Test
2.2.3. Stigma Fluorescence Detection
- (1)
- Stigmas 12 h after artificial pollination were selected and fixed in an FAA (Formalin-Aceto-Alcohol) fixation solution;
- (2)
- Eight mol∙L−1 NaOH was softened at 75 °C for 15–20 min;
- (3)
- Samples were rinsed with deionized water several times;
- (4)
- A dye solution containing 0.1% aniline was applied to the sample for 4 h in dark conditions;
- (5)
- One drop of deionized water was dropped on the slide and the stained stigma was placed on the slide, which was then covered. Ultraviolet excitation light was used as illumination under a research-grade microscope for observation and photography.
2.2.4. Observation of Embryo Sac Development
2.2.5. Observation of Pollen Morphology and Structures
2.2.6. Observation of Male Gamete Development
3. Results
3.1. Statistics of Fruit Setting Rate and Fruit Character of M. shizongensis under Different Treatments
3.2. Low Pollen Germination Rate and Sexual Embryo Sac Abortion in M. shizongensis
3.2.1. Stigma Acceptability Test
3.2.2. Stigma Fluorescence Detection
3.2.3. Embryological Observation of M. shizongensis
3.3. Further Exploring the Causes of Anther Dysplasia and Male Gamete Development Failure in M. shizongensis
3.3.1. Anther Morphological Observation of M. shizongensis
3.3.2. Three-Dimensional Structure of Anthers of M. shizongensis
3.3.3. Development of the Male Gametophyte in M. shizongensis
4. Discussion
4.1. Effects of Different Treatments on Fruit Setting Rate and Satiety Rate
4.2. Effects of Male Gamete Development on Apomixes
4.3. Pollen Germination on Stigma of M. shizongensis after Pollination
4.4. Sexual Embryo Sac Abortion of M. shizongensis
4.5. Apomixis Type of M. shizongensis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, P.P.; Tang, L.P.; Zhang, X.S.; Su, Y.H. Options for engineering apomixis in plants. Front. Plant Sci. 2022, 13, 864987. [Google Scholar] [CrossRef] [PubMed]
- Hojsgaard, D.; Klatt, S.; Baier, R.; Carman, J.G.; Horandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 2014, 33, 414–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, Y.; Goel, S.; Conner, J.A.; Hanna, W.W.; Yamada-Akiyama, H.; Ozias-Akins, P. Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evol. Biol. 2011, 11, 289. [Google Scholar] [CrossRef] [Green Version]
- Conner, J.A.; Goel, S.; Gunawan, G.; Cordonnier-Pratt, M.M.; Johnson, V.E.; Liang, C.; Ozias-Akins, P. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol. 2008, 147, 1396–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Han, D.G.; Gao, C.; Wang, Y.; Zhang, X.Z.; Xu, X.F.; Han, Z.H. Paternity and ploidy segregation of progenies derived from tetraploid Malus xiaojinensis. Tree Genet. Genomes 2012, 8, 1469–1476. [Google Scholar] [CrossRef]
- Baskaware, S.V.; Deodhar, M.A. Apomixis and sexual systems in various species of Garcinia with special reference to Garcinia Indica (Thouars) Choisy. Int. J. Fruit Sci. 2023, 23, 25–33. [Google Scholar] [CrossRef]
- Koltunow, A.M. Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 1993, 5, 1425–1437. [Google Scholar] [CrossRef] [Green Version]
- Barcaccia, G.; Albertini, E. Apomixis in plant reproduction: A novel perspective on an old dilemma. Plant Reprod 2013, 26, 159–179. [Google Scholar] [CrossRef] [Green Version]
- Popelka, O.; Sochor, M.; Duchoslav, M. Reciprocal hybridization between diploid Ficaria calthifolia and tetraploid Ficaria verna subsp. verna: Evidence from experimental crossing, genome size and molecular markers. Bot. J. Linn. Soc. 2019, 189, 293–310. [Google Scholar] [CrossRef]
- Koltunow, A.M.; Grossniklaus, U. Apomixis: A developmental perspective. Annu. Rev. Plant Biol. 2003, 54, 547–574. [Google Scholar] [CrossRef] [Green Version]
- Fei, X.T.; Shi, J.W.; Liu, Y.L.; Niu, J.S.; Wei, A.Z. The steps from sexual reproduction to apomixis. Planta 2019, 249, 1715–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.Z.; Li, Z.X.; Gao, H.; Bao, C.N. A new species of Malus in China, Malus shizongensis Liu sp. nov. J. Integr. Agric. 2020, 19, 2451–2457. [Google Scholar] [CrossRef]
- Drews, G.N.; Koltunow, A.M. The female gametophyte. Arab. Book 2011, 9, 0155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.H.; Zhou, Z.Q. Anatomical characters of apomixis development in the gynoecia of M. xiaojinensis. J. Fruit Sci. 2009, 26, 1–5. [Google Scholar]
- Ferreira, J.A.B.; Ledo, C.A.S.; Souza, F.V.D.; Conceição, J.Q.; Rossi, M.L.; Souza, E.H. Stigma structure and receptivity in papaya (Carica papaya L.). An. Da Acad. Bras. De Ciências 2021, 93, e20190605. [Google Scholar] [CrossRef]
- Castro, S.; Silva, S.; Stanescu, I.; Silveira, P.; Navarro, L.; Santos, C. Pistil anatomy and pollen tube development in Polygala vayredae Costa (Polygalaceae). Plant Biol. 2009, 11, 405–416. [Google Scholar] [CrossRef]
- Cerović, R.; Akšić, M.F.; Đorđević, M.; Meland, M. Viability of embryo sacs and fruit set in different plum (Prunus domestica L.) cultivars grown under Norwegian climatic conditions. Plants 2022, 11, 219. [Google Scholar] [CrossRef]
- Spillane, C.; Steimer, A.; Grossniklaus, U. Apomixis in agriculture: The quest for clonal seeds. Sex. Plant Reprod. 2001, 14, 179–187. [Google Scholar] [CrossRef]
- Xiong, J.; Hu, F.; Ren, J.; Huang, Y.; Liu, C.; Wang, K. Synthetic apomixis: The beginning of a new era. Curr. Opin. Biotechnol. 2023, 79, 102877. [Google Scholar] [CrossRef]
- Conner, J.A.; Clifton, N.J.; Ozias-Akins, P. Apomixis: Engineering the ability to harness hybrid vigor in crop plants. Methods Mol. Biol. 2017, 16, 17–34. [Google Scholar] [CrossRef]
- Xiong, L.Q.; Ning, D.L.; Shi, Z.G.; Xiao, L.J.; Wu, T.; Yang, C.H. Apomictic rate and fruit growth of juglans regia in Yunnan. J. Southwest For. Univ. 2019, 39, 69–75. [Google Scholar] [CrossRef]
- Liu, D.D.; Fang, M.J.; Dong, Q.L.; Hu, D.G.; Zhou, L.J.; Sha, G.L.; Hao, Y.J. Unreduced embryo sacs escape fertilization via a ‘female-late-on-date’ strategy to produce clonal seeds in apomictic crabapples. Sci. Hortic. 2014, 167, 76–83. [Google Scholar] [CrossRef]
- Maia, F.R.; Varassin, I.G.; Goldenberg, R. Apomixis does not affect visitation to flowers of Melastomataceae, but pollen sterility does. Plant Biol. 2016, 18, 132–138. [Google Scholar] [CrossRef]
- Kodad, O.; Rafel Socias i Company. Flower age and pollenizer could affect fruit set in late-blooming self-compatible almond cultivars under warm climatic conditions. Sci Hortic. 2013, 164, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Jahed, K.R.; Hirst, P.M. Pollen tube growth and fruit set in Apple. Hortscience 2017, 52, 1054–1059. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, I.; Ischebeck, T. Male functions and malfunctions: The impact of phosphoinositides on pollen development and pollen tube growth. Plant Reprod. 2016, 29, 3–20. [Google Scholar] [CrossRef]
- Li, T.Z.; Ao, Y.Z.D. Obvertion on structual changes of self-pollinated pollen tube and loca lization of S-RNase in Apple. Acta Hortic. Sin. 2005, 2, 295–297. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Mu, X.; Lin, J. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Ann. Bot. 2004, 93, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Sogo, A.; Tobe, H. Delayed fertilization and pollen-tube growth in pistils of Fagus japonica (Fagaceae). Am. J. Bot. 2006, 93, 1748–1756. [Google Scholar] [CrossRef]
- Carman, J.G.; de Arias, M.M.; Gao, L.; Zhao, X.; Kowallis, B.M.; Sherwood, D.A.; Srivastava, M.K.; Dwivedi, K.K.; Price, B.J.; Watts, L.; et al. Apospory and diplospory in diploid Boechera (Brassicaceae) may facilitate speciation by recombination-driven apomixis-to-sex reversals. Front. Plant Sci. 2019, 10, 724. [Google Scholar] [CrossRef]
- d’Erfurth, I.; Jolivet, S.; Froger, N.; Catrice, O.; Novatchkova, M.; Mercier, R. Turning meiosis into mitosis. PLoS Biol. 2009, 7, e1000124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pollination in Buds | Number of the Pollinated Buds | Number of Fruits in 7 Days after Pollination | Fruit Setting Rate (%) | Number of Fruits in 30 Days after Pollination | Fruit Setting Rate (%) |
---|---|---|---|---|---|
DMPB | 191.00 | 180.00 | 94.20 ± 2.72 a | 167.00 | 87.40 ± 2.65 a |
DMB | 230.00 | 215.00 | 93.50 ± 1.51 a | 181.00 | 78.70 ± 3.03 b |
DSB | 108.00 | 104.00 | 96.30 ± 1.73 a | 98.00 | 90.70 ± 3.04 a |
Pollination in Buds | Fruit Transverse Diameter (mm) | Fruit Longitudinal Diameter (mm) | Fruit Shape Index | Fruit Number | Seed Number | 1000-Seed Weight (g) |
---|---|---|---|---|---|---|
DMPB | 11.03 ± 0.61 a | 10.21 ± 0.50 ab | 1.08 ± 0.056 a | 167.00 | 613.00 | 6.66 ± 0.46 a |
DMB | 11.32 ± 0.97 a | 10.59 ± 0.74 a | 1.07 ± 0.079 a | 181.00 | 644.00 | 5.29 ± 0.30 b |
DSB | 11.03 ± 0.60 a | 9.89 ± 0.54 b | 1.12 ± 0.032 a | 98.00 | 340.00 | 5.34 ± 0.42 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Ning, R.; Wang, Z.; He, Y.; Hu, Y.; Sun, L.; Liu, Z. A Study on the Causes of Apomixis in Malus shizongensis. Horticulturae 2023, 9, 926. https://doi.org/10.3390/horticulturae9080926
Feng Y, Ning R, Wang Z, He Y, Hu Y, Sun L, Liu Z. A Study on the Causes of Apomixis in Malus shizongensis. Horticulturae. 2023; 9(8):926. https://doi.org/10.3390/horticulturae9080926
Chicago/Turabian StyleFeng, Yuchen, Ruiyuan Ning, Zidun Wang, Ying He, Yu Hu, Lulong Sun, and Zhenzhong Liu. 2023. "A Study on the Causes of Apomixis in Malus shizongensis" Horticulturae 9, no. 8: 926. https://doi.org/10.3390/horticulturae9080926
APA StyleFeng, Y., Ning, R., Wang, Z., He, Y., Hu, Y., Sun, L., & Liu, Z. (2023). A Study on the Causes of Apomixis in Malus shizongensis. Horticulturae, 9(8), 926. https://doi.org/10.3390/horticulturae9080926