The Phosphoproteomic Response of Pepper (Capsicum annuum L.) Seedlings to Selenium Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Protein Extraction and Pancreatic Enzyme Hydrolysis
2.3. TMT Labeling, HPLC Fractionation, and Phosphorylated Peptide Enrichment
2.4. Liquid Chromatography-Mass Spectrometry Analysis
2.5. Database Search and Bioinformatics Methods
3. Results
3.1. Analysis of Primary MS Data and Quantitative Phosphorylation Proteomics
3.2. Annotation and Classification of All the Phosphorylated Proteins Identified in Peppers
3.3. Analysis of Phosphorylation Sites
3.4. Differentially Phosphorylated Proteins (DPPs) Responding to Selenium Treatment
3.5. Enrichment Analysis of the DPPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pavlovic, Z.; Miletic, I.; Zekovic, M.; Nikolic, M.; Glibetic, M. Impact of selenium addition to animal feeds on human selenium status in serbia. Nutrients 2018, 10, 225. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, T.S.; Briens, M.; Engberg, R.M.; Lauridsen, C. The influence of selenium and selenoproteins on immune responses of poultry and pigs. Anim. Feed. Sci. Tech. 2018, 238, 73–83. [Google Scholar] [CrossRef]
- Frydman, J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu. Rev. Biochem. 2001, 70, 603–647. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Wei, X.F.; Dao, Y.R.; Zhao, F.; Wang, R.M.; Li, P.W. Use of fulvic acid-like compounds from pulp-derived black liquor for enhancing the selenium content of peanut buds. Bmc. Plant Biol. 2022, 22, 546. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. Iubmb Life 2016, 68, 97–105. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, D.; Sun, H.; Zou, R.; Duan, W.; Liu, J.; Yan, Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd(2+) and alleviating the oxidative damage and photosynthesis impairment. Front. Plant Sci. 2023, 14, 1103241. [Google Scholar] [CrossRef]
- Chitta, K.R.; Landero Figueroa, J.A.; Caruso, J.A.; Merino, E.J. Selenium mediated arsenic toxicity modifies cytotoxicity, reactive oxygen species and phosphorylated proteins. Metallomics 2013, 5, 673–685. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, G.; Fang, Y.; Deng, X.; Yin, Y.; Huang, K. Selenium (IV) alleviates chromium (VI)-induced toxicity in the green alga Chlamydomonas reinhardtii. Environ. Pollut. 2021, 272, 116407. [Google Scholar] [CrossRef]
- Zhou, X.B.; Yang, J.; Kronzucker, H.J.; Shi, W.M. Selenium biofortification and interaction with other elements in plants: A review. Front. Plant Sci. 2020, 11, 586421. [Google Scholar] [CrossRef]
- Akbulut, M.; Cakir, S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol. Biochem. 2010, 48, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Sharma, S.; Kaur, N.; Pathania, D.; Bhandhari, K.; Kaushal, N.; Kaur, R.; Singh, K.; Srivastava, A.; Nayyar, H. Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol. Trace Elem Res. 2011, 140, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Hladun, K.R.; Parker, D.R.; Tran, K.D.; Trumble, J.T. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). Environ. Pollut. 2013, 172, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Molnarova, M.; Fargasova, A. Se(IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L., Triticum aestivum L.) and dicotyledonae crops (Sinapis alba L., Brassica napus L.). J. Hazard. Mater. 2009, 172, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Sors, T.G.; Ellis, D.R.; Na, G.N.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D.E. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005, 42, 785–797. [Google Scholar] [CrossRef]
- White, P.J. Selenium metabolism in plants. BBA-Gen. Subj. 2018, 1862, 2333–2342. [Google Scholar] [CrossRef]
- Balk, J.; Pilon, M. Ancient and essential: The assembly of iron-sulfur clusters in plants. Trends Plant Sci. 2011, 16, 218–226. [Google Scholar] [CrossRef]
- Carr, S.N.; Crites, B.R.; Pate, J.L.; Hughes, C.H.K.; Matthews, J.C.; Bridges, P.J. Form of supplemental selenium affects the expression of mRNA transcripts encoding selenoproteins, and proteins regulating cholesterol uptake, in the corpus luteum of grazing beef cows. Animals 2022, 12, 313. [Google Scholar] [CrossRef]
- Hugouvieux, V.; Dutilleul, C.; Jourdain, A.; Reynaud, F.; Lopez, V.; Bourguignon, J. Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. Plant Physiol. 2009, 151, 768–781. [Google Scholar] [CrossRef]
- van Noorden, G.E.; Verbeek, R.; Dinh, Q.D.; Jin, J.; Green, A.; Ng, J.L.P.; Mathesius, U. Molecular signals controlling the inhibition of nodulation by nitrate in Medicago truncatula. Int. J. Mol. Sci. 2016, 17, 1060. [Google Scholar] [CrossRef]
- Takac, T.; Pechan, T.; Samaj, J. Differential proteomics of plant development. J. Proteom. 2011, 74, 577–588. [Google Scholar] [CrossRef]
- Yu, C.L.; Wu, Q.F.; Sun, C.D.; Tang, M.L.; Sun, J.W.; Zhan, Y.H. The Phosphoproteomic response of Okra (Abelmoschus esculentus L.) seedlings to salt stress. Int. J. Mol. Sci. 2019, 20, 1262. [Google Scholar] [CrossRef]
- Reinders, J.; Sickmann, A. State-of-the-art in phosphoproteomics. Proteomics 2005, 5, 4052–4061. [Google Scholar] [CrossRef] [PubMed]
- Chao, Q.; Liu, X.Y.; Mei, Y.C.; Gao, Z.F.; Chen, Y.B.; Qian, C.R.; Hao, Y.B.; Wang, B.C. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. Plant Mol. Biol. 2014, 85, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Xu, B.Y.; Geng, W.; Shen, Y.D.; Xuan, D.J.; Lai, Q.X.; Shen, C.J.; Jin, C.W.; Yu, C.L. Comparative proteomic analysis of pepper (Capsicum annuum L.) seedlings under selenium stress. Peer J. 2019, 7, e8020. [Google Scholar] [CrossRef]
- Perez-Gonzalez, A.; Prejano, M.; Russo, N.; Marino, T.; Galano, A. Capsaicin, a powerful (OH)-O-center dot-Inactivating ligand. Antioxidants 2020, 9, 1247. [Google Scholar] [CrossRef]
- Liu, Z.B.; Lv, J.H.; Liu, Y.H.; Wang, J.; Zhang, Z.Q.; Chen, W.C.; Song, J.S.; Yang, B.Z.; Tan, F.J.; Zou, X.X.; et al. Comprehensive phosphoproteomic analysis of pepper fruit development provides insight into plant signaling transduction. Int. J. Mol. Sci. 2020, 21, 1962. [Google Scholar] [CrossRef] [PubMed]
- Beltrao, P.; Bork, P.; Krogan, N.J.; van Noort, V. Evolution and functional cross-talk of protein post-translational modifications. Mol. Syst. Biol. 2013, 9, 714. [Google Scholar] [CrossRef]
- Stulemeijer, I.J.; Joosten, M.H. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Mol. Plant Pathol. 2008, 9, 545–560. [Google Scholar] [CrossRef]
- Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127, 635–648. [Google Scholar] [CrossRef]
- Reiland, S.; Messerli, G.; Baerenfaller, K.; Gerrits, B.; Endler, A.; Grossmann, J.; Gruissem, W.; Baginsky, S. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 2009, 150, 889–903. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.W.; Li, X.; Zhang, M.; Gu, A.Q.; Zhen, S.M.; Wang, C.; Li, X.H.; Yan, Y.M. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. BMC Genom. 2014, 15, 375. [Google Scholar] [CrossRef] [PubMed]
- Mergner, J.; Frejno, M.; List, M.; Papacek, M.; Chen, X.; Chaudhary, A.; Samaras, P.; Richter, S.; Shikata, H.; Messerer, M.; et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 2020, 579, 409–414. [Google Scholar] [CrossRef]
- un, W.B.; Wang, Y.P.; Zhang, F. Phosphoproteomic analysis of potato tuber reveals a possible correlation between phosphorylation site occupancy and protein attributes. Plant Mol. Biol. Rep. 2021, 39, 163–178. [Google Scholar]
- Van Breusegem, F.; Dat, J.F. Reactive oxygen species in plant cell death. Plant Physiol. 2006, 141, 384–390. [Google Scholar] [CrossRef]
- Yu, C.L.; Zeng, H.; Wang, Q.; Chen, W.C.; Chen, W.J.; Yu, W.W.; Lou, H.Q.; Wu, J.S. Multi-omics analysis reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. J. Hazard. Mater. 2022, 436, 129181. [Google Scholar] [CrossRef] [PubMed]
- Rafikov, R.; Kumar, S.; Aggarwal, S.; Hou, Y.; Kangath, A.; Pardo, D.; Fineman, J.R.; Black, S.M. Endothelin-1 stimulates catalase activity through the PKCdelta-mediated phosphorylation of serine 167. Free. Radic. Biol. Med. 2014, 67, 255–264. [Google Scholar] [CrossRef]
- Alam, S.B.; Rochon, D. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection. J. Virol. 2015, 90, 3302–3317. [Google Scholar] [CrossRef]
- Di Fino, L.M.; D’Ambrosio, J.M.; Tejos, R.; van Wijk, R.; Lamattina, L.; Munnik, T.; Pagnussat, G.C.; Laxalt, A.M. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. Planta 2017, 245, 717–728. [Google Scholar] [CrossRef]
- Singh, A.; Bhatnagar, N.; Pandey, A.; Pandey, G.K. Plant phospholipase C family: Regulation and functional role in lipid signaling. Cell Calcium 2015, 58, 139–146. [Google Scholar] [CrossRef]
- Fukushima, A.; Kuroha, T.; Nagai, K.; Hattori, Y.; Kobayashi, M.; Nishizawa, T.; Kojima, M.; Utsumi, Y.; Oikawa, A.; Seki, M.; et al. Metabolite and phytohormone profiling illustrates metabolic reprogramming as an escape strategy of deepwater rice during partially submerged stress. Metabolites 2020, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Asati, V.; Sharma, P.K. Purification and characterization of an isoflavones conjugate hydrolyzing beta-glucosidase (ICHG) from Cyamopsis tetragonoloba (guar). Biochem. Biophysi. Rep. 2019, 20, 100669. [Google Scholar]
- Xu, Y.; Zhang, S.; Guo, H.; Wang, S.; Xu, L.; Li, C.; Qian, Q.; Chen, F.; Geisler, M.; Qi, Y.; et al. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J. 2014, 79, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.L.; Sun, C.D.; Shen, C.J.; Wang, S.K.; Liu, F.; Liu, Y.; Chen, Y.L.; Li, C.Y.; Qian, Q.; Aryal, B.; et al. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J. 2015, 83, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.J.; Watanabe, K.A.; Zhang, L.Y.; Shen, Q.X.J. WRKY transcription factor genes in wild rice Oryza nivara. DNA Res. 2016, 23, 311–323. [Google Scholar] [CrossRef]
- Song, H.; Wang, P.F.; Hou, L.; Zhao, S.Z.; Zhao, C.Z.; Xia, H.; Li, P.C.; Zhang, Y.; Bian, X.T.; Wang, X.J. Global analysis of WRKY genes and their response to dehydration and salt stress in Soybean. Front. Plant Sci. 2016, 7, 9. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.W.; Li, Q.T.; Wei, W.; Li, W.; Zhang, W.K.; Ma, B.; Bi, Y.D.; Lai, Y.C.; Liu, X.L.; et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J. 2015, 83, 224–236. [Google Scholar] [CrossRef]
- Lau, O.S.; Bergmann, D.C. Stomatal development: A plant’s perspective on cell polarity, cell fate transitions and intercellular communication. Development 2012, 139, 3683–3692. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Li, F.; Liu, H.; Yang, W.; Chong, K.; Xu, Y. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev. Cell 2017, 43, 731–743.e5. [Google Scholar] [CrossRef]
- Guan, Q.; Yue, X.; Zeng, H.; Zhu, J. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Plant Cell 2014, 26, 438–453. [Google Scholar] [CrossRef]
Protein Accession | Position | Regulated Type | Amino Acid | Protein Description | Gene Name | Modified Sequence | Mock | Se |
---|---|---|---|---|---|---|---|---|
A0A2G2ZB33 | 17 | Up | S | Uncharacterized protein | T459_17272 | AIS(0.975)ELT(0.025)QGR | 0.49 | 1.51 |
A0A2G2Z9L9 | 73 | Up | S | Uncharacterized protein | T459_16748 | SDMGS(0.002)LQNS(0.998)PR | 0.49 | 1.51 |
A0A2G3AE16 | 153 | Up | T | Glutathione peroxidase | T459_00315 | YS(0.007)PT(0.117)T(0.759)S(0.117)PAS(0.001)MEK | 0.58 | 1.42 |
A0A1U8ESJ2 | 50 | Up | S | Uncharacterized protein | T459_33300 | LSHFEMDHEGES(1)LK | 0.78 | 1.22 |
A0A2G3A3R3 | 39 | Up | S | Vacuolar cation/proton exchanger 2 | T459_10985 | IDSLHYEAPHIVS(1)PR | 0.73 | 1.27 |
A0A1U8FQK8 | 461 | Up | S | MLO-like protein | MLO | ALGNGS(1)PR | 0.77 | 1.23 |
A0A1U8FX70 | 128 | Up | S | Uncharacterized protein | T459_05982 | S(0.003)S(0.003)GGIIGS(0.992)PPS(0.002)VENSSLK | 0.80 | 1.20 |
A0A2G2YKX7 | 290 | Up | S | Phosphoinositide phospholipase C | T459_25500 | AWGAEIS(1)DLTQK | 0.67 | 1.33 |
A0A2G2YQ26 | 925 | Down | S | Uncharacterized protein | T459_22633 | YYS(1)LPDISGR | 1.25 | 0.75 |
A0A2G2Z5Z3 | 259 | Up | S | Heat shock protein 90-2 | T459_20949 | EVSNEWS(1)LVNK | 0.77 | 1.23 |
A0A1U8FK60 | 514 | Up | S | Serine/threonine protein phosphatase 2A regulatory subunit | T459_04826 | AASNEPVLVS(1)PR | 0.65 | 1.35 |
A0A2G2YJZ6 | 128 | Up | T | Plasma membrane-associated cation-binding protein 1 | T459_25171 | VS(0.154)T(0.846)FIVIPEEEK | 0.80 | 1.20 |
A0A2G2YQ26 | 748 | Up | S | Uncharacterized protein | T459_22633 | VPEPLINS(0.135)NMY(0.042)S(0.823)PK | 0.76 | 1.24 |
A0A1U8G2S9 | 98 | Up | S | Serine/threonine-protein phosphatase | T459_08345 | LRPAGEPPS(1)PR | 0.36 | 1.64 |
A0A2G2YWS6 | 12 | Up | S | Guanine nucleotide-binding protein alpha-1 subunit | T459_21440 | HY(0.028)S(0.971)QADDEENAQTAEIER | 0.63 | 1.37 |
A0A2G2ZUY0 | 25 | Up | S | Guanine nucleotide-binding protein subunit gamma 1 | T459_07889 | HRIS(1)AELKR | 0.78 | 1.22 |
J9Q173 | 451 | Up | S | MLO-like protein | MLO2 | GT(0.077)S(0.923)PVHLLR | 0.76 | 1.24 |
A0A2G2YAT8 | 434 | Up | S | Catalase | T459_31096 | Y(0.003)RS(0.997)WAPDR | 0.44 | 1.56 |
A0A2G2YJP7 | 153 | Up | S | Uncharacterized protein | T459_25072 | NS(0.009)T(0.01)LT(0.238)T(0.744)PPIS(1)PK | 0.75 | 1.25 |
A0A2G2YRS0 | 246 | Up | S | Phosphoinositide phospholipase C | T459_23224 | EVS(1)DLKAR | 0.75 | 1.25 |
A0A1U8GJX1 | 99 | Up | S | Extra-large guanine nucleotide-binding protein 3 | T459_00959 | IAGVT(0.18)S(0.82)PPS(0.5)QS(0.5)PR | 0.37 | 1.63 |
A0A2G2Z9L9 | 130 | Up | S | Uncharacterized protein | T459_16748 | DFS(1)FEKR | 0.33 | 1.67 |
A0A1U8ESJ2 | 35 | Up | S | Uncharacterized protein | T459_33300 | HILNIS(0.998)PS(0.002)K | 0.64 | 1.36 |
A0A2G3AE16 | 154 | Up | S | Glutathione peroxidase | T459_00315 | YSPTT(0.022)S(0.887)PAS(0.091)MEK | 0.59 | 1.41 |
A0A2G2Z950 | 219 | Up | S | Heat shock protein 82 | T459_16580 | QIS(1)DDEDDEPKK | 0.56 | 1.44 |
A0A2G2YJZ6 | 223 | Up | S | Plasma membrane-associated cation-binding protein 1 | T459_25171 | VEAAPAAAAAAAPAPS(1)KA | 0.65 | 1.35 |
A0A2G2Y2E0 | 1051 | Up | S | ATP-dependent DNA helicase Q-like 4A | T459_32407 | GS(0.001)LT(0.014)S(0.012)GKQS(0.972)PPR | 0.78 | 1.22 |
A0A2G2YYE8 | 9 | Down | S | Rho GTPase-activating protein 3 | T459_22041 | S(0.026)KS(0.962)YT(0.012)FGR | 1.31 | 0.69 |
A0A2G2Z5Z3 | 424 | Up | S | Heat shock protein 90-2 | T459_20949 | LGIHEDS(1)QNR | 0.66 | 1.34 |
A0A1U8GMP3 | 297 | Up | S | Uncharacterized protein | T459_12607 | EVSPEAVS(1)PIAMK | 0.54 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Guo, S.; Wang, J.; He, J.; Li, X.; Zhan, Y. The Phosphoproteomic Response of Pepper (Capsicum annuum L.) Seedlings to Selenium Stress. Horticulturae 2023, 9, 935. https://doi.org/10.3390/horticulturae9080935
Wu J, Guo S, Wang J, He J, Li X, Zhan Y. The Phosphoproteomic Response of Pepper (Capsicum annuum L.) Seedlings to Selenium Stress. Horticulturae. 2023; 9(8):935. https://doi.org/10.3390/horticulturae9080935
Chicago/Turabian StyleWu, Jiahua, Shixian Guo, Jing Wang, Jiaojun He, Xingfu Li, and Yihua Zhan. 2023. "The Phosphoproteomic Response of Pepper (Capsicum annuum L.) Seedlings to Selenium Stress" Horticulturae 9, no. 8: 935. https://doi.org/10.3390/horticulturae9080935
APA StyleWu, J., Guo, S., Wang, J., He, J., Li, X., & Zhan, Y. (2023). The Phosphoproteomic Response of Pepper (Capsicum annuum L.) Seedlings to Selenium Stress. Horticulturae, 9(8), 935. https://doi.org/10.3390/horticulturae9080935