Magnetically Induced Near-Infrared Circularly Polarized Electroluminescence from an Achiral Perovskite Light-Emitting Diode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Magnetic Circularly Polarized Electroluminescent Devices
2.2. Measurement of Electroluminescence (EL), Magnetic Electroluminescence (MEL), and Magnetic Circularly Polarized Electroluminescence (MCPEL)
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Praveen, V.K.; Vedhanarayanan, B.; Mal, A.; Mishra, R.K.; Ajayaghosh, A. Self-assembled extended π-systems for sensing and security applications. Acc. Chem. Res. 2020, 53, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Zinna, F.; Pasini, M.; Galeotti, F.; Botta, C.; Di Bari, L.; Giovanella, U. Design of lanthanide-based OLEDs with remarkable circularly polarized electroluminescence. Adv. Funct. Mater. 2017, 27, 1603719. [Google Scholar] [CrossRef]
- Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H.T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508. [Google Scholar] [CrossRef]
- Hirohata, A.; Takanashi, K. Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 2014, 47, 193001. [Google Scholar] [CrossRef]
- McMillin, D.R.; Moore, J.J. Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy=2,2′;6′,2″-terpyridine). Coord. Chem. Rev. 2002, 229, 113–121. [Google Scholar] [CrossRef]
- Wadas, T.J.; Wang, Q.-M.; Kim, Y.-J.; Flaschenreim, C.; Blanton, T.N.; Eisenberg, R. Vapochromism and its structural basis in a luminescent Pt(II) terpyridine−nicotinamide complex. J. Am. Chem. Soc. 2004, 126, 16841–16849. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-D.; Qin, Y.-H.; Zhang, L.-Y.; Shi, L.-X.; Chen, Z.-N. Luminescent heterotrinuclear complexes with Pt(diimine)(dithiolate) and metal diphosphine as components. Inorg. Chem. 2004, 43, 1197–1205. [Google Scholar] [CrossRef]
- Tzeng, B.-C.; Chiu, T.-H.; Lin, S.-Y.; Yang, C.-M.; Chang, T.-Y.; Huang, C.-H.; Chang, A.H.-H.; Lee, G.-H. Structural isomerism of luminescent dinuclear Pt(II)-thiolate diimines. Cryst. Growth Des. 2009, 12, 5356–5362. [Google Scholar] [CrossRef]
- Qian, G.; Yang, X.; Wang, X.; Herod, J.D.; Bruce, D.W.; Wang, S.; Zhu, W.; Duan, P.; Wang, Y. Chiral platinum-based metallomesogens with highly efficient circularly polarized electroluminescence in solution-processed organic light-emitting diodes. Adv. Opt. Mater. 2020, 8, 2000775. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, J.; Gao, T.; Ma, J.; Liu, Z.; Chen, R. Rational design of axially chiral platinabinaphthalenes with aggregation-induced emission for red circularly polarized phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 9520–9527. [Google Scholar] [CrossRef]
- Yan, Z.-P.; Liu, T.-T.; Wu, R.; Liang, X.; Li, Z.-Q.; Zhou, L.; Zheng, Y.-X.; Zuo, J.-L. Chiral thermally activated delayed fluorescence materials based on R/S-N2,N2’-diphenyl-[1,1’-binaphthalene]-2,2’-diamine donor with narrow emission spectra for highly efficient circularly polarized electroluminescence. Adv. Funct. Mater. 2021, 31, 2103875. [Google Scholar] [CrossRef]
- Xie, F.-M.; Zhou, J.-X.; Zeng, X.-Y.; An, Z.-D.; Li, Y.-Q.; Han, D.-X.; Duan, P.-F.; Wu, Z.-G.; Zheng, Y.-X.; Tang, J.-X. Efficient circularly polarized electroluminescence from chiral thermally activated delayed fluorescence emitters featuring symmetrical and rigid coplanar acceptors. Adv. Opt. Mater. 2021, 9, 2100017. [Google Scholar] [CrossRef]
- Luo, X.-F.; He, J.; Wang, Y.; Hong, D.; Wu, Z.-G. Research advances in helicene structure-based chiral luminescent materials and their circularly polarized electroluminescence. Chin. J. Struct. Chem. 2022, 41, 221207. [Google Scholar] [CrossRef]
- Crassous, J.; Di Bari, L.; Wong, W.-Y.; Zheng, Y.-X. Circularly polarized luminescence: A themed collection. J. Mater. Chem. C 2023, 11, 5905–5907. [Google Scholar] [CrossRef]
- Hara, K.; Morimoto, A.; Matsudaira, K.; Suzuki, S.; Yagi, S.; Fujiki, M.; Imai, Y. External magnetic field driven, ambidextrous circularly polarized electroluminescence from organic light emitting diodes containing racemic cyclometalated iridium(III) complexes. ChemPhotoChem 2022, 6, e202100253. [Google Scholar] [CrossRef]
- Kitahara, M.; Hara, K.; Suzuki, S.; Iwasaki, H.; Yagi, S.; Imai, Y. Red–green–blue–yellow (RGBY) magnetic circularly polarized electroluminescence from iridium(III)-magnetic circularly polarized organic light-emitting diodes. Org. Electron. 2023, 119, 106814. [Google Scholar] [CrossRef]
- Imai, Y.; Yamamoto, Y.; Suzuki, S.; Hara, K.; Kitahara, M.; Yagi, S. Tuning of external magnetic field-driven circularly polarized electroluminescence in OLED devices with a single achiral Pt(II) complex. Org. Electron. 2023, 122, 106893. [Google Scholar] [CrossRef]
- Liu, P.; Chen, W.; Okazaki, Y.; Battie, Y.; Brocard, L.; Decossas, M.; Pouget, E.; Müller-Buschbaum, P.; Kauffmann, B.; Pathan, S.; et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 2020, 20, 8453–8460. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Zhai, Y.; Gaulding, E.A.; Habisreutinger, S.N.; Moot, T.; Rosales, B.A.; Lu, H.; Hazarika, A.; Brunecky, R.; Wheeler, L.M.; et al. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 2020, 14, 8816–8825. [Google Scholar] [CrossRef]
- Zhao, B.; Gao, X.; Pan, K.; Deng, J. Chiral helical polymer/perovskite hybrid nanofibers with intense circularly polarized luminescence. ACS Nano 2021, 15, 7463–7471. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, M.; Wang, Y.; Duan, P. Electric-field-regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap. Adv. Mater. 2020, 32, 2000820. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhou, M.; Han, J.; Li, B.; Zhang, T.; Jiang, S.; Duan, P. A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Res. 2022, 15, 1047–1053. [Google Scholar] [CrossRef]
- Jang, D.M.; Park, K.; Kim, D.H.; Park, J.; Shojaei, F.; Kang, H.S.; Ahn, J.-P.; Lee, J.W.; Song, J.K. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 2015, 15, 5191–5199. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Quintero, O.A.; Sanchez, R.S.; Rincon, M.; Mora-Sero, I. Bright visible-infrared light emitting diodes based on hybrid halide perovskite with Spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 2015, 6, 1883–1890. [Google Scholar] [CrossRef]
- Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J.H.; Sadhanala, A.; Myoung, N.; Yoo, S.; et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, J.; Mai, C.; Cun, Y.; Zhang, B.; Huang, G.; Yu, D.; Li, J.; Mu, L.; Cao, L.; et al. Bifacial passivation towards efficient FAPbBr3-based inverted perovskite light-emitting diodes. Nanoscale 2020, 12, 14724–14732. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Mao, Y.; Zhang, H.; Ye, F.; Liu, D.; Wang, T. Organic ligands armored ZnO enhances efficiency and stability of CsPbI2Br perovskite solar cells. Adv. Sci. 2020, 7, 2000421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jiang, M.; Yan, G.; Feng, Y.; Zhang, B. Surface ligand engineering involving fluorophenethyl ammonium for stable and strong emission CsPbBr3 quantum dots and high-performance QLEDs. J. Mater. Chem. C 2022, 10, 5849–5855. [Google Scholar] [CrossRef]
- Du, P.; Li, J.; Wang, L.; Sun, L.; Wang, X.; Xu, X.; Yang, L.; Pang, J.; Liang, W.; Luo, J.; et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 2021, 12, 4751. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, T.; Xie, Z.; Jiang, W.; Wang, L.; Jang, W.; Zhang, X. Enhanced performance of perovskite light-emitting-diodes based on ionic liquid modified CsPbBr3 nanocrystals. Opt. Mater. 2020, 111, 110620. [Google Scholar] [CrossRef]
- Pan, R.; Wang, K.; Yu, Z.-G. Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites. Mater. Horiz. 2022, 9, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, T.; Mimura, Y.; Fujiki, M.; Imai, Y. Ambidextrous solid-state magnetic circularly polarized luminescence (MCPL) from red-green-blue inorganic luminophores without molecular chirality. Chem. Lett. 2021, 50, 916–919. [Google Scholar] [CrossRef]
- Amasaki, R.; Kitahara, M.; Kimoto, T.; Fujiki, M.; Imai, Y. Mirror-image magnetic circularly polarized luminescence from perovskite (M+Pb2+Br3, M+=Cs+ and amidinium) quantum dots. Eur. J. Inorg. Chem. 2022, 2022, e202101066. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E.A.; Harvey, S.P.; Berry, J.J.; Vardeny, Z.V.; Luther, J.M.; et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133. [Google Scholar] [CrossRef]
- Ghosh, S.; Cherumukkil, S.; Suresh, C.H.; Ajayaghosh, A. A supramolecular nanocomposite as a near-infrared-transmitting optical filter for security and forensic applications. Adv. Mater. 2017, 29, 1703783. [Google Scholar] [CrossRef]
- Dehghani, H.; Eames, M.E.; Yalavarthy, P.K.; Davis, S.C.; Srinivasan, S.; Carpenter, C.M.; Pogue, B.W.; Paulsen, K.D. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Commun. Numer. Methods Eng. 2009, 25, 711–732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fan, Y.; Pei, P.; Sun, C.; Lu, L.; Zhang, F. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding. Angew. Chem. Int. Ed. 2019, 58, 10153–10157. [Google Scholar] [CrossRef] [PubMed]
- Bidikoudi, M.; Kymakis, E. Novel approaches and scalability prospects of copper based hole transporting materials for planar perovskite solar cells. J. Mater. Chem. C 2019, 7, 13680–13708. [Google Scholar] [CrossRef]
- Pérez-Tomas, A.; Xie, H.; Wang, Z.; Kim, H.-S.; Shirley, I.; Turren-Cruz, S.-H.; Morales-Melgares, A.; Saliba, B.; Tanenbaum, D.; Saliba, M.; et al. PbZrTiO3 ferroelectric oxide as an electron extraction material for stable halide perovskite solar cells. Sustain. Energy Fuels 2019, 3, 382–389. [Google Scholar] [CrossRef]
Device | I | II |
---|---|---|
λEL (nm) | 770 | 767 |
R (W sr−1 m−2) [@1.0 V] | 0.996 | 1.87 |
Device | λMCPEL (nm) | |gMCPEL| (×10−3) (T−1) | MCPEL Sign for N-Up |
---|---|---|---|
I | 771 | 3.3 | (−) |
II | 773 | 4.3 | (−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imai, Y.; Amasaki, R.; Yanagibashi, Y.; Suzuki, S.; Shikura, R.; Yagi, S. Magnetically Induced Near-Infrared Circularly Polarized Electroluminescence from an Achiral Perovskite Light-Emitting Diode. Magnetochemistry 2024, 10, 39. https://doi.org/10.3390/magnetochemistry10060039
Imai Y, Amasaki R, Yanagibashi Y, Suzuki S, Shikura R, Yagi S. Magnetically Induced Near-Infrared Circularly Polarized Electroluminescence from an Achiral Perovskite Light-Emitting Diode. Magnetochemistry. 2024; 10(6):39. https://doi.org/10.3390/magnetochemistry10060039
Chicago/Turabian StyleImai, Yoshitane, Ryo Amasaki, Yoshihiko Yanagibashi, Seika Suzuki, Ryuta Shikura, and Shigeyuki Yagi. 2024. "Magnetically Induced Near-Infrared Circularly Polarized Electroluminescence from an Achiral Perovskite Light-Emitting Diode" Magnetochemistry 10, no. 6: 39. https://doi.org/10.3390/magnetochemistry10060039
APA StyleImai, Y., Amasaki, R., Yanagibashi, Y., Suzuki, S., Shikura, R., & Yagi, S. (2024). Magnetically Induced Near-Infrared Circularly Polarized Electroluminescence from an Achiral Perovskite Light-Emitting Diode. Magnetochemistry, 10(6), 39. https://doi.org/10.3390/magnetochemistry10060039