Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. THz Emission Spectroscopy Measurement
3. Results and Discussion
3.1. The THz Emission with Different NiO Thicknesses
3.2. The THz Emission with Different Pump Fluences and Rotations
3.3. The Temperature Dependence of the THz Emission
3.4. The Phase Spectra of the THz Emission
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Pepper, M.; Taday, P. Terahertz spectroscopy: Signatures and fingerprints. Nat. Photonics 2008, 2, 541–543. [Google Scholar] [CrossRef]
- Shi, X.; Han, Z. Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes. Sci. Rep. 2017, 7, 13147. [Google Scholar] [CrossRef] [PubMed]
- Dikmelik, Y.; Spicer, J.B.; Fitch, M.J.; Osiander, R. Effects of surface roughness on reflection spectra obtained by terahertz time-domain spectroscopy. Opt. Lett. 2006, 31, 3653. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Pissard, A.; Pierna, J.A.F.; Rogez, H.; Souza, J.; Dortu, F.; Goel, S.; Hernandez, Y.; Baeten, V. A method for non-destructive determination of cocoa bean fermentation levels based on terahertz hyperspectral imaging. Int. J. Food Microbiol. 2022, 365, 109537. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- El-Shenawee, M.; Vohra, N.; Bowman, T.; Bailey, K. Cancer detection in excised breast tumors using terahertz imaging and spectroscopy. Biomed. Spectrosc. Imaging 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Liu, K.; Feng, Y.; Han, C.; Chang, B.; Chen, Z.; Xu, Z.; Li, L.; Zhang, B.; Wang, Y.; Xu, Q. High-speed 0.22 THz communication system with 84 Gbps for real-time uncompressed 8K video transmission of live events. Nat. Commun. 2024, 15, 8037. [Google Scholar] [CrossRef]
- Luo, Y.; Jelic, V.; Chen, G.; Nguyen, P.H.; Liu, Y.-J.R.; Calzada, J.A.M.; Mildenberger, D.J.; Hegmann, F.A. Nanoscale terahertz STM imaging of a metal surface. Phys. Rev. B 2020, 102, 205417. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Seifert, T.S.; Cheng, L.; Wei, Z.; Kampfrath, T.; Qi, J. Spintronic sources of ultrashort terahertz electromagnetic pulses. Appl. Phys. Lett. 2022, 120, 180401. [Google Scholar] [CrossRef]
- Seifert, T.; Jaiswal, S.; Martens, U.; Hannegan, J.; Braun, L.; Maldonado, P.; Freimuth, F.; Kronenberg, A.; Henrizi, J.; Radu, I.; et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 2016, 10, 483–488. [Google Scholar] [CrossRef]
- Wu, Y.; Elyasi, M.; Qiu, X.; Chen, M.; Liu, Y.; Ke, L.; Yang, H. High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures. Adv. Mater. 2017, 29, 1603031. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Ma, X.F.; Jin, Y.; Lu, T.-M.; Boden, E.P.; Phelps, P.D.; Stewart, K.R.; Yakymyshyn, C.P. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 1992, 61, 3080–3082. [Google Scholar] [CrossRef]
- Hirori, H.; Doi, A.; Blanchard, F.; Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl. Phys. Lett. 2011, 98, 091106. [Google Scholar] [CrossRef]
- Auston, D.H.; Shank, C.V. Picosecond ellipsometry of transient electron-hole plasmas in germanium. Phys. Rev. Lett. 1974, 32, 1120–1123. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.P.; Smith, P.R. Picosecond photoconducting hertzian dipoles. Appl. Phys. Lett. 1984, 45, 284–286. [Google Scholar] [CrossRef]
- Ketchen, M.B.; Grischkowsky, D.; Chen, T.C.; Chi, C.-C.; Duling, I.N.; Halas, N.J.; Halbout, J.-M.; Kash, J.A.; Li, G.P. Generation of subpicosecond electrical pulses on coplanar transmission lines. Appl. Phys. Lett. 1986, 48, 751–753. [Google Scholar] [CrossRef]
- Kumar, N.; Hendrikx, R.W.A.; Adam, A.J.L.; Planken, P.C.M. Thickness dependent terahertz emission from cobalt thin films. Opt. Express 2015, 23, 14252. [Google Scholar] [CrossRef]
- Qiu, H.S.; Kato, K.; Hirota, K.; Sarukura, N.; Yoshimura, M.; Nakajima, M. Layer thickness dependence of the terahertz emission based on spin current in ferromagnetic heterostructures. Opt. Express 2018, 26, 15247. [Google Scholar] [CrossRef]
- Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 2013, 8, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, L.; Ruhwedel, M.; Karfaridis, D.; Vasileiadis, I.G.; Sokoluk, D.; Torosyan, G.; Vourlias, G.; Dimitrakopoulos, G.P.; Rahm, M.; Hillebrands, B.; et al. THz emission from Fe/Pt spintronic emitters with L10-FePt alloyed interface. iScience 2022, 25, 104319. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, S.; Zhang, S.; Cai, Q.; Wang, P.; Tian, C.; Zhou, L.; Wu, Y.; Tao, Z. Active spintronic-metasurface terahertz emitters with tunable chirality. Adv. Photonics 2021, 3, 056002. [Google Scholar] [CrossRef]
- Li, X.; Qiu, T.; Zhang, J.; Baldini, E.; Lu, J.; Rappe, A.M.; Nelson, K.A. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 2019, 364, 1079–1082. [Google Scholar] [CrossRef]
- Schlauderer, S.; Lange, C.; Baierl, S.; Ebnet, T.; Schmid, C.P.; Valovcin, D.C.; Zvezdin, A.K.; Kimel, A.V.; Mikhaylovskiy, R.V.; Huber, R. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 2019, 569, 383–387. [Google Scholar] [CrossRef]
- Saitoh, E.; Ueda, M.; Miyajima, H.; Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 2006, 88, 182509. [Google Scholar] [CrossRef]
- Wang, H.; Du, C.; Hammel, P.C.; Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 2014, 113, 097202. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, J.; Hou, D.; Arenholz, E.; N’Diaye, A.T.; Tan, A.; Uchida, K.; Sato, K.; Okamoto, S.; Tserkovnyak, Y.; et al. Spin-current probe for phase transition in an insulator. Nat. Commun. 2016, 7, 12670. [Google Scholar] [CrossRef]
- Lin, W.; Chen, K.; Zhang, S.; Chien, C.L. Enhancement of thermally injected spin current through an antiferromagnetic insulator. Phys. Rev. Lett. 2016, 116, 186601. [Google Scholar] [CrossRef]
- Prakash, A.; Brangham, J.; Yang, F.; Heremans, J.P. Spin Seebeck effect through antiferromagnetic NiO. Phys. Rev. B 2016, 94, 014427. [Google Scholar] [CrossRef]
- Hou, D.; Qiu, Z.; Saitoh, E. Spin transport in antiferromagnetic insulators: Progress and challenges. NPG Asia Mater. 2019, 11, 35. [Google Scholar] [CrossRef]
- Uchida, K.; Xiao, J.; Adachi, H.; Ohe, J.; Takahashi, S.; Ieda, J.; Ota, T.; Kajiwara, Y.; Umezawa, H.; Kawai, H.; et al. Spin Seebeck insulator. Nat. Mater. 2010, 9, 894–897. [Google Scholar] [CrossRef]
- Hirsch, J.E. Spin Hall effect. Phys. Rev. Lett. 1999, 83, 1834–1837. [Google Scholar] [CrossRef]
- Paries, F.; Selz, F.; Santos, C.N.; Lampin, J.-F.; Koleják, P.; Lezier, G.; Troadec, D.; Tiercelin, N.; Vanwolleghem, M.; Addda, A.; et al. Optical damage thresholds of single-mode fiber-tip spintronic terahertz emitters. Opt. Express 2024, 32, 24826. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.; Omar, A.; Mansourzadeh, S.; Wulf, F.; Sabanés, N.M.; Müller, M.; Seifert, T.S.; Weigel, A.; Jakob, G.; Kläui, M.; et al. Average power scaling of THz spintronic emitters efficiently cooled in reflection geometry. Opt. Express 2022, 30, 20451. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nivedan, A.; Singh, A.; Kumar, Y.; Malhotra, P.; Tondusson, M.; Freysz, E.; Kumar, S. Optical damage limit of efficient spintronic THz emitters. iScience 2021, 24, 103152. [Google Scholar] [CrossRef]
- Ambrose, T.; Chien, C.L. Finite-size effects and uncompensated magnetization in thin antiferromagnetic CoO layers. Phys. Rev. Lett. 1996, 76, 1743–1746. [Google Scholar] [CrossRef]
- Alders, D.; Tjeng, L.H.; Voogt, F.C.; Hibma, T.; Sawatzky, G.A.; Chen, C.T.; Vogel, J.; Sacchi, M.; Iacobucci, S. Temperature and thickness dependence of magnetic moments in NiO epitaxial films. Phys. Rev. B 1998, 57, 11623–11631. [Google Scholar] [CrossRef]
- Ambrose, T.; Chien, C.L. Dependence of exchange coupling on antiferromagnetic layer thickness in NiFe/CoO bilayers. J. Appl. Phys. 1998, 83, 6822–6824. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Adenwalla, S. Closely linear temperature dependence of exchange bias and coercivity in out-of-plane exchange-biased [Pt/Co]3/NiO (11 Å) multilayer. J. Appl. Phys. 2003, 94, 1105–1109. [Google Scholar] [CrossRef]
- Khymyn, R.; Lisenkov, I.; Tiberkevich, V.S.; Slavin, A.N.; Ivanov, B.A. Transformation of spin current by antiferromagnetic insulators. Phys. Rev. B 2016, 93, 224421. [Google Scholar] [CrossRef]
- Takei, S.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnet-mediated spin transfer between a metal and a ferromagnet. Phys. Rev. B 2015, 92, 020409. [Google Scholar] [CrossRef]
- Bender, S.A.; Skarsvåg, H.; Brataas, A.; Duine, R.A. Enhanced spin conductance of a thin-film insulating antiferromagnet. Phys. Rev. Lett. 2017, 119, 056804. [Google Scholar] [CrossRef] [PubMed]
- Rezende, S.M.; Rodríguez-Suárez, R.L.; Azevedo, A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B 2016, 93, 054412. [Google Scholar] [CrossRef]
- Dąbrowski, M.; Nakano, T.; Burn, D.M.; Frisk, A.; Newman, D.G.; Klewe, C.; Li, Q.; Yang, M.; Shafer, P.; Arenholz, E.; et al. Coherent transfer of spin angular momentum by evanescent spin waves within antiferromagnetic NiO. Phys. Rev. Lett. 2020, 124, 217201. [Google Scholar] [CrossRef]
- Li, Q.; Yang, M.; Klewe, C.; Shafer, P.; N’Diaye, A.T.; Hou, D.; Wang, T.Y.; Gao, N.; Saitoh, E.; Hwang, C.; et al. Coherent ac spin current transmission across an antiferromagnetic CoO insulator. Nat. Commun. 2019, 10, 5265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Wang, Y.; Liu, Z.; Pei, Y.; Huang, Q.; Fu, Z.; Wang, J.; Lu, Y. Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure. Magnetochemistry 2025, 11, 7. https://doi.org/10.3390/magnetochemistry11020007
Shi W, Wang Y, Liu Z, Pei Y, Huang Q, Fu Z, Wang J, Lu Y. Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure. Magnetochemistry. 2025; 11(2):7. https://doi.org/10.3390/magnetochemistry11020007
Chicago/Turabian StyleShi, Wei, Yangkai Wang, Zhixin Liu, Yilin Pei, Qiuping Huang, Zhengping Fu, Jianlin Wang, and Yalin Lu. 2025. "Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure" Magnetochemistry 11, no. 2: 7. https://doi.org/10.3390/magnetochemistry11020007
APA StyleShi, W., Wang, Y., Liu, Z., Pei, Y., Huang, Q., Fu, Z., Wang, J., & Lu, Y. (2025). Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure. Magnetochemistry, 11(2), 7. https://doi.org/10.3390/magnetochemistry11020007