Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. 13C NMR Data of Squalene and Olive Oil
2.2. Validation of the Experimental Procedure for Quantitative Determination of Squalene Using 13C NMR
- CDCl3 has been conserved as solvent and trioleine has been used as a model for olive oil;
- Longitudinal relaxation times have been measured for carbons of squalene by the inversion-recovery method. They ranged from 0.4 to 10.0 s, the highest values (4.1–10.0 s) being measured, as expected, for quaternary carbons (Table 1). T1 values of vinylic methines and allylic methylenes ranged from 1.2 s to 2.5 s and from 0.4 s to 0.9 s, respectively. Finally, T1s of the four methyl groups ranged from 1.9 s to 4.5 s. Quantitative analysis has been conducted with resonances of carbons not overlapped, perfectly resolved and with T1 values comprised from 0.7 s to 4.5 s;
- Di-2-methoxyethyl oxide (diglyme) has been chosen as internal standard (T1 value of its methylenes = 3.8 s) since its resonances do not overlap with those of triglycerides contained in olive oil.
2.3. Quantification of Squalene in Various Olive Oil Samples of Corsican Origin
3. Materials and Methods
3.1. Chemicals
3.2. NMR Experiments
3.2.1. Quantitative 13C NMR Spectra
3.2.2. T1 Measurements
3.2.3. Calibration Line
3.2.4. Quantification of Squalene in Olive Oils
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Psomiadou, E.; Tsimidou, M. On the role of squalene in olive oil stability. J. Agric. Food Chem. 1999, 47, 4025–4032. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Yang, G.Y.; Seril, D.N.; Liao, J.; Kim, S. Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis by dietary olive oil and squalene. Carcinogenesis 1998, 19, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Newmark, H.L. Squalene, olive oil, and cancer risk: A review and hypothesis. Cancer Epidemiol. Biomark. Prev. 1997, 6, 1101–1103. [Google Scholar] [CrossRef]
- Rao, C.V.; Newmark, H.L.; Reddy, B.S. Chemopreventive effect of squalene on colon cancer. Carcinogenesis 1998, 19, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.H.; Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 2009, 61, 1412–1426. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.B. Squalene emulsions for parenteral vaccine and drug delivery. Molecules 2009, 14, 3286–3312. [Google Scholar] [CrossRef] [PubMed]
- Auffray, B. Protection against singlet oxygen, the main actor of sebum squalene peroxidation during sun exposure, using Commiphora myrrha essential oil. Int. J. Cosmet. Sci. 2007, 29, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Jame, P.; Casabianca, H.; Batteau, M.; Goetinck, P.; Salomon, V. Differentiation of the origin of squalene and squalane using stable isotopes ratio analysis. SOFW J. 2010, 136, 2–7. [Google Scholar]
- Deprez, P.; Volkman, J.; Davenport, S. Squalene content and neutral lipids composition of livers from deep-sea sharks caught in Tasmanian waters. Mar. Freshw. Res. 1990, 41, 375–387. [Google Scholar] [CrossRef]
- Wetherbee, B.M.; Nichols, P.D. Lipid composition of the liver oil of deep-sea sharks from the chatham rise, New Zealand. Comp. Biochem. Physiol. B Biochem. Mol. Biol. B 2000, 125, 511–521. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.C.; Ahrens, E.H.; Schreibman, P.H.; Crouse, J.R. Measurement of squalene in human tissues and plasma: Validation and application. J. Lipid Res. 1976, 17, 38–45. [Google Scholar] [PubMed]
- Grigoriadou, D.; Androulaki, A.; Psomiadou, E.; Tsimidou, M.Z. Solid phase extraction in the analysis of squalene and tocopherols in olive oil. Food Chem. 2007, 105, 675–680. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Squalene in Oils and Fats. Titrimetric Method, Official Method AOAC; AOAC: Rockville, MD, USA, 1999. [Google Scholar]
- Popa, O.; Băbeanu, N.E.; Popa, I.; Niță, S.; Dinu-Pârvu, C.E. Methods for Obtaining and Determination of Squalene from Natural Sources. BioMed Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed]
- Bondioli, P.; Mariani, C.; Lanzani, A.; Fedeli, E.; Muller, A. Squalene recovery from olive oil deodorizer distillates. J. Am. Oil Chem. Soc. 1993, 70, 763–766. [Google Scholar] [CrossRef]
- De Leonardis, A.; Macciola, V.; De Felice, M. Rapid determination of squalene in virgin olive oils using gas-liquid chromatography. Ital. J. Food Sci. 1998, 10, 75–80. [Google Scholar]
- Giacometti, J. Determination of aliphatic alcohols, squalene, α-tocopherol and sterols in olive oils: Direct method involving gas chromatography of the unsaponifiable fraction following silylation. Analyst 2001, 126, 472–475. [Google Scholar] [CrossRef] [PubMed]
- He, H.P.; Cai, Y.; Sun, M.; Corke, H. Extraction and purification of squalene from Amaranthus grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Nenadis, N.; Tsimidou, M. Determination of squalene in olive oil using fractional crystallization for sample preparation. J. Am. Oil Chem. Soc. 2002, 79, 257–259. [Google Scholar] [CrossRef]
- Oueslati, I.; Anniva, C.; Daoud, D.; Tsimidou, M.Z.; Zarrouk, M. Virgin olive oil (VOO) production in Tunisia: The commercial potential of the major olive varieties from the arid Tataouine zone. Food Chem. 2009, 112, 733–741. [Google Scholar] [CrossRef]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Wurtele, G.; Spiegelhalder, B.; Bartsch, H. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol. 2000, 1, 107–112. [Google Scholar] [CrossRef]
- Villén, J.; Blanch, G.P.; Ruiz del Castillo, M.L.; Herraiz, M. Rapid and simultaneous analysis of free sterols, tocopherols, and squalene in edible oils by coupled Reversed-Phase Liquid Chromatography-gas chromatography. J. Agric. Food Chem. 1998, 46, 1419–1422. [Google Scholar] [CrossRef]
- Russo, A.; Muzzalupo, I.; Perri, E.; Sindona, G. A new method for detection of squalene in olive oils by mass spectrometry. J. Biotechnol. 2010, 150, 296–297. [Google Scholar] [CrossRef]
- Mannina, L.; Sobolev, A.P. High resolution NMR characterization of olive oils in terms of quality, authenticity and geographical origin. Magn. Reson. Chem. 2011, 49, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Dais, P.; Hatzakis, E. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Anal. Chim. Acta 2013, 765, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.I.; Tsiafoulis, C.G.; Gerothanassis, I.P. High resolution NMR spectroscopy as structural and analytical tool for unsaturated lipids in solution. Molecules 2017, 22, 1663. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Héberger, K.; Holland, M.V.; Moreno-Rojas, J.M.; Mariani, C.; Bellan, G.; Reniero, F.; Guillou, C. Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes. Food Chem. 2010, 118, 956–965. [Google Scholar] [CrossRef]
- Mannina, L.; D’Imperio, M.; Capitani, D.; Rezzi, S.; Guillou, C.; Mavromoustakos, T.; Vilchez, M.D.; Fernández, A.; Thomas, F.; Aparicio, R. 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined Hazelnut oil. J. Agric. Food Chem. 2009, 57, 11550–11556. [Google Scholar] [CrossRef] [PubMed]
- Robosky, L.C.; Wade, K.; Woolson, D.; Baker, J.D.; Manning, M.L.; Gage, D.A.; Reily, M.D. Quantitative evaluation of sebum lipid components with nuclear magnetic resonance. J. Lipid Res. 2008, 49, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Exarchou, V.; Troganis, A.; Gerothanassis, I.P. Rapid and novel discrimination and quantification of oleanolic and ursolic acids in complex plant extracts using two-dimensional nuclear magnetic resonance spectroscopy—Comparison with HPLC methods. Anal. Chim. Acta 2009, 635, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Tsiafoulis, C.G.; Skarlas, T.; Tzamaloukas, O.; Miltiadou, D.; Gerothanassis, I.P. Direct nuclear magnetic resonance identification and quantification of geometric isomers of conjugated linoleic acid in milk fraction without derivatization steps: Overcoming sensitivity and resolution barriers. Anal. Chim. Acta 2014, 821, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Blanc, M.C.; Bradesi, P.; Casanova, J. Identification and Quantitative Determination of Eudesman-Type Acids from Dittrichia viscosa sp. viscosa Essential Oil using 13C-NMR Spectroscopy. Phytochem. Anal. 2005, 16, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Castilho, P.; Tomi, F.; Rodrigues, A.I.; Costa, M.C.; Casanova, J. Direct Identification and Quantitative Determination of Costunolide and Dehydrocostuslactone in Laurus novocanariensis Fixed Oil using 13C-NMR Spectroscopy. Phytochem. Anal. 2005, 16, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Nam, A.M.; Paoli, M.; Castola, V.; Casanova, J.; Bighelli, A. Identification and Quantitative Determination of Lignans in Cedrus atlantica Resins using 13C NMR Spectroscopy. Nat. Prod. Commun. 2011, 6, 379–385. [Google Scholar] [PubMed]
- Castola, V.; Bighelli, A.; Casanova, J. Direct Qualitative and Quantitative Analysis of Triterpenes Using 13C NMR Spectroscopy Exemplified by Dichloromethanic Extracts of Cork. Appl. Spectrosc. 1999, 53, 344–350. [Google Scholar] [CrossRef]
- Duquesnoy, E.; Castola, V.; Casanova, J. Identification and quantitative determination of triterpenes in the hexane extract of Olea europaea L. leaves using 13C NMR spectroscopy. Phytochem. Anal. 2007, 18, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Pogliani, L.; Ceruti, M.; Ricchiardi, G.; Viterbo, D. An NMR and molecular mechanics study of squalene and squalene derivatives. Chem. Phys. Lipids 1994, 70, 21–34. [Google Scholar] [CrossRef]
- Bronzini de Caraffa, V.; Gambotti, C.; Giannettini, J.; Maury, J.; Berti, L.; Gandemer, G. Using lipid profiles and genotypes for the characterization of Corsican olive oils. Eur. J. Lipid Sci. Technol. 2008, 110, 40–47. [Google Scholar] [CrossRef]
- Duquesnoy, E.; Castola, V.; Casanova, J. Identification and quantitative determination of carbohydrates in ethanol extracts of two conifers using 13C NMR spectroscopy. Carbohydr. Res. 2008, 343, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Paoli, M.; Bighelli, A.; Castola, V.; Tomi, F.; Casanova, J. Quantification of taxanes in a leaf and twig extract from Taxus baccata L. using 13C NMR spectroscopy. Magn. Reson. Chem. 2013, 51, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Günther, H. La Spectroscopie de RMN. Principes de Base, Concepts et Applications de la Spectroscopie de Résonance Magnétique Nucléaire du Proton et du Carbone-13 en Chimie; Masson: Paris, France, 1994. [Google Scholar]
- Becker, E.D.; Ferretti, J.A.; Gambhir, P.N. Selection of optimum parameters for pulse Fourier transform nuclear magnetic resonance. Anal. Chem. 1979, 51, 1413–1420. [Google Scholar] [CrossRef]
C | δ (SQ) | T1 | C | δ (SQ) | T1 |
1 | 25.71 | 1.9 | 9 | 39.77 * | 0.7 |
2 | 131.26 | 10.0 | 10 | 135.11 | 5.2 |
3 | 124.42 | 2.5 | 11 | 124.32 # | 1.7 |
4 | 26.78 | 0.9 | 12 | 28.29 | 0.4 |
5 | 39.74 * | 0.7 | 13 | 17.69 | 4.5 |
6 | 134.90 | 4.1 | 14 | 16.05 † | 2.8 |
7 | 124.28 # | 1.2 | 15 | 16.01 † | 3.3 |
8 | 26.67 | 0.6 |
AD | 0.9901 | 0.9955 | 0.9959 | 1.0074 | 1.0011 | 0.9845 | 1.0168 | 1.0139 |
ASQ | 0.0734 | 0.1220 | 0.1668 | 0.1970 | 0.2253 | 0.2689 | 0.3129 | 0.3431 |
mw (mg) | 0.37 | 0.55 | 0.74 | 0.92 | 1.10 | 1.29 | 1.47 | 1.66 |
mc (mg) | 0.33 | 0.56 | 0.74 | 1.00 | 1.03 | 1.22 | 1.44 | 1.58 |
ER (%) | 10.3 | −0.7 | 0.0 | −9.1 | 6.8 | 5.5 | 2.2 | 4.8 |
Sample | Olive Variety | Squalene (%)* |
---|---|---|
1 | Zinzala | 0.35 |
2 | 0.37 | |
3 | 0.41 | |
4 | Sabine | 0.35 |
5 | 0.35 | |
6 | 0.40 | |
7 | 0.42 | |
8 | Picholine | 0.38 |
9 | Germaine | 0.40 |
10 | 0.43 | |
11 | 0.44 | |
12 | 0.49 | |
13 | 0.51 | |
14 | 0.51 | |
15 | 0.83 | |
16 | Cortenaise | 0.42 |
17 | 0.47 | |
18 | Capannacce | 0.52 |
19 | Germaine/Picholine | 0.37 |
20 | Germaine/Capanacce | 0.44 |
21 | 0.67 | |
22 | Germaine/Sabine | 0.47 |
23 | 0.49 | |
24 | Sabine/Picholine | 0.46 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, A.-M.; Bighelli, A.; Tomi, F.; Casanova, J.; Paoli, M. Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy. Magnetochemistry 2017, 3, 34. https://doi.org/10.3390/magnetochemistry3040034
Nam A-M, Bighelli A, Tomi F, Casanova J, Paoli M. Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy. Magnetochemistry. 2017; 3(4):34. https://doi.org/10.3390/magnetochemistry3040034
Chicago/Turabian StyleNam, Anne-Marie, Ange Bighelli, Félix Tomi, Joseph Casanova, and Mathieu Paoli. 2017. "Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy" Magnetochemistry 3, no. 4: 34. https://doi.org/10.3390/magnetochemistry3040034
APA StyleNam, A. -M., Bighelli, A., Tomi, F., Casanova, J., & Paoli, M. (2017). Quantification of Squalene in Olive Oil Using 13C Nuclear Magnetic Resonance Spectroscopy. Magnetochemistry, 3(4), 34. https://doi.org/10.3390/magnetochemistry3040034