Large Perpendicular Exchange Energy in TbxCo100−x/Cu(t)/[Co/Pt]2 Heterostructures
Abstract
:1. Introduction
2. Experimental Method
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meiklejohn, W.H.; Bean, C.P. New Magnetic Anisotorpy. Phys. Rev. 1957, 105, 904. [Google Scholar] [CrossRef]
- Schuller, I.K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar]
- March, N.H.; Lambin, P.; Herman, F. Cooperative magnetic properties in single-and two-phase 3d metallic alloys relevant to exchange and magnetocrystalline anisotropy. J. Magn. Magn. Mater. 1984, 44, 1–19. [Google Scholar] [CrossRef]
- Ranjbar, S.; Al-Mahdawi, M.; Oogane, M.; Ando, Y. High-Temperature Magnetic Tunnel Junction Magnetometers Based on L1 0 -PtMn Pinned Layer. IEEE Sens. Lett. 2020, 4, 5–8. [Google Scholar] [CrossRef]
- Fujiwara, K.; Oogane, M.; Yokota, S.; Nishikawa, T.; Naganuma, H.; Ando, Y. Fabrication of magnetic tunnel junctions with a bottom synthetic antiferro-coupled free layers for high sensitive magnetic field sensor devices. J. Appl. Phys. 2012, 111, 5–8. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Van Dau, F.N.; Petroff, F.; Eitenne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, R.; Suzuki, K.; Sugihara, A.; Ma, Q.L.; Zhang, X.M.; Miyazaki, T.; Ando, Y.; Mizukami, S. Antiferromagnetic coupling in perpendicularly magnetized cubic and tetragonal Heusler bilayers. Mater. Lett. 2015, 160, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868–871. [Google Scholar] [CrossRef]
- Almeida, J.M.; Ferreira, R.; Freitas, P.P.; Langer, J.; Ocker, B.; Maass, W. 1f noise in linearized low resistance MgO magnetic tunnel junctions. J. Appl. Phys. 2006, 99, 08B314. [Google Scholar] [CrossRef]
- Choi, S.; Lee, K.J.; Choi, S.; Chongthanaphisut, P.; Bac, S.K.; Lee, S.; Liu, X.; Dobrowolska, M.; Furdyna, J.K. Controllable Exchange Bias Effect in (Ga, Mn) As/(Ga, Mn)(As, P) Bilayers with Non-Collinear Magnetic Anisotropy. IEEE Trans. Magn. 2021, 57, 2–5. [Google Scholar] [CrossRef]
- Suzuki, I.; Hamasaki, Y.; Itoh, M.; Taniyama, T. Controllable exchange bias in Fe/metamagnetic FeRh bilayers. Appl. Phys. Lett. 2014, 105, 172401. [Google Scholar] [CrossRef]
- Sbiaa, R.; Piramanayagam, S.N. Multi-level domain wall memory in constricted magnetic nanowires. Appl. Phys. A Mater. Sci. Process. 2014, 114, 1347–1351. [Google Scholar] [CrossRef]
- Atkinson, D.; Eastwood, D.S.; Bogart, L.K. Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept. Appl. Phys. Lett. 2008, 92, 22510. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.S.; Traistaru, O.; Fujiwara, H. Effect of the kinds of ferromagnetic layers on exchange coupling strength in IrMn / FM films Effect of the kinds of ferromagnetic layers on exchange coupling strength in IrMn Õ FM films. J. Appl. Phys. 2004, 95, 6849–6851. [Google Scholar] [CrossRef] [Green Version]
- Schmid, I.; Marioni, M.A.; Kappenberger, P.; Romer, S.; Parlinska-Wojtan, M.; Hug, H.J.; Hellwig, O.; Carey, M.J.; Fullerton, E.E. Exchange bias and domain evolution at 10 nm scales. Phys. Rev. Lett. 2010, 105, 197201. [Google Scholar] [CrossRef]
- Tsunoda, M.; Nishikawa, K.; Damm, T.; Hashimoto, T.; Takahashi, M. Extra large unidirectional anisotropy constant of Co-Fe/Mn-Ir bilayers with ultra-thin antiferromagnetic layer. J. Magn. Magn. Mater. 2002, 239, 182–184. [Google Scholar] [CrossRef]
- Ranjbar, S.; Tsunoda, M.; Oogane, M.; Ando, Y. Composition Dependence of Exchange Anisotropy in PtxMn1-x/Co70Fe30 Films. Jpn. J. Appl. Phys. 2019, 58, 043001. [Google Scholar] [CrossRef]
- Cao, Y.; Rushforth, A.W.; Sheng, Y.; Zheng, H.; Wang, K. Tuning a Binary Ferromagnet into a Multistate Synapse with Spin–Orbit-Torque-Induced Plasticity. Adv. Funct. Mater. 2019, 29, 1808104. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, S.; Tsunoda, M.; Al-mahdawi, M.; Oogane, M.; Ando, Y. Compositional Dependence of Exchange Anisotropy in PtxMn100−x/CoyFe100−y Films. IEEE Magn. Lett. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Mangin, S.; Montaigne, F.; Schuhl, A. Interface domain wall and exchange bias phenomena in ferrimagnetic/ferrimagnetic bilayers. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 68, 140404. [Google Scholar] [CrossRef]
- Hebler, B.; Böttger, S.; Nissen, D.; Abrudan, R.; Radu, F.; Albrecht, M. Influence of the Fe-Co ratio on the exchange coupling in TbFeCo/[Co/Pt] heterostructures. Phys. Rev. B 2016, 93, 184423. [Google Scholar] [CrossRef]
- Tokunaga, T.; Taguchi, M.; Fukami, T.; Nakaki, Y.; Tsutsumi, K. Study of interface wall energy in exchange-coupled double-layer film. J. Appl. Phys. 1990, 67, 4417–4419. [Google Scholar] [CrossRef]
- Lin, C.C.; Lai, C.H.; Jiang, R.F.; Shieh, H.P.D. High interfacial exchange energy in TbFeCo exchange-bias films. J. Appl. Phys. 2003, 93, 6832–6834. [Google Scholar] [CrossRef] [Green Version]
- Romer, S.; Marioni, M.A.; Thorwarth, K.; Joshi, N.R.; Corticelli, C.E.; Hug, H.J.; Oezer, S.; Parlinska-Wojtan, M.; Rohrmann, H. Temperature dependence of large exchange-bias in TbFe-Co/Pt. Appl. Phys. Lett 2012, 101, 222404. [Google Scholar] [CrossRef] [Green Version]
- Radu, F.; Abrudan, R.; Radu, I.; Schmitz, D.; Zabel, H. Perpendicular exchange bias in ferrimagnetic spin valves. Nat. Commun. 2012, 3, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebler, B.; Reinhardt, P.; Katona, G.L.; Hellwig, O.; Albrecht, M. Double exchange bias in ferrimagnetic heterostructures. Phys. Rev. B 2017, 95, 104410. [Google Scholar] [CrossRef] [Green Version]
- Canet, F.; Mangin, S.; Bellouard, C.; Piecuch, M. Positive exchange bias in ferromagnetic-ferrimagnetic bilayers: FeSn/FeGd. Europhys. Lett. 2000, 52, 594–600. [Google Scholar] [CrossRef]
- Finley, J.; Liu, L. Spin-Orbit-Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys. Phys. Rev. Appl. 2016, 6, 054001. [Google Scholar] [CrossRef] [Green Version]
- Gottwald, M.; Hehn, M.; Montaigne, F.; Lacour, D.; Lengaigne, G.; Suire, S.; Mangin, S. Magnetoresistive effects in perpendicularly magnetized Tb-Co alloy based thin films and spin valves. J. Appl. Phys. 2012, 111, 083904. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Han, J.; Finley, J.T.; Ross, C.A.; Liu, L. Current-Induced Domain Wall Motion in a Compensated Ferrimagnet. Phys. Rev. Lett. 2018, 121, 57701. [Google Scholar] [CrossRef] [Green Version]
- Schubert, C.; Hebler, B.; Schletter, H.; Liebig, A.; Daniel, M.; Abrudan, R.; Radu, F.; Albrecht, M. Interfacial exchange coupling in Fe-Tb/[Co/Pt] heterostructures. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 87, 054415. [Google Scholar] [CrossRef]
- Shimanuki, S.; Ichihara, K.; Yasuda, N.; Ito, K.; Kohn, K. Magnetic and Magneto-Optical Properties of Amorphous TbCo Films Prepared by Two Target Magnetron Co-sputtering. J. Magn. Soc. Jpn. 1986, 10, 179–182. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Z.; Jin, Q. Manipulation of perpendicular exchange bias effect in [Co/Ni]N/(Cu, Ta)/TbCo multilayer structures. AIP Adv. 2015, 5, 087153. [Google Scholar] [CrossRef] [Green Version]
- Joo, S.J.; Hong, D.H.; Lee, T.D. Effect of Cu inserted layer between the IrMn and CoFeB interface on magnetic properties of CoFeB. J. Appl. Phys. 2004, 95, 7522–7524. [Google Scholar] [CrossRef]
- Sheng, Y.; Edmonds, K.W.; Ma, X.; Zheng, H.; Wang, K. Adjustable Current-Induced Magnetization Switching Utilizing Interlayer Exchange Coupling. Adv. Electron. Mater. 2018, 4, 1800224. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, B.; Zhu, W.; Zhu, Z.; Jin, Q.Y.; Zhang, Z. Controllable Interfacial Coupling Effects on the Magnetic Dynamic Properties of Perpendicular [Co/Ni] 5 /Cu/TbCo Composite Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 5090–5098. [Google Scholar] [CrossRef]
- Tang, M.H.; Zhang, Z.; Tian, S.Y.; Wang, J.; Ma, B.; Jin, Q.Y. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures. Sci. Rep. 2015, 5, 10863. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.; Klahn, S.; Clausen, C.; Much, G.; Witter, K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Dy, Ho, Fe, Co. J. Appl. Phys. 1991, 69, 3194–3207. [Google Scholar] [CrossRef]
- Harres, A.; Geshev, J. A polycrystalline model for magnetic exchange bias. J. Phys. Condens. Matter 2012, 24, 326004. [Google Scholar] [CrossRef]
- Alebrand, S.; Gottwald, M.; Hehn, M.; Steil, D.; Cinchetti, M.; Lacour, D.; Fullerton, E.E.; Aeschlimann, M.; Mangin, S. Light-induced magnetization reversal of high-anisotropy TbCo alloy films. Appl. Phys. Lett. 2012, 101, 162408. [Google Scholar] [CrossRef] [Green Version]
- Baruth, A.; Keavney, D.J.; Burton, J.D.; Janicka, K.; Tsymbal, E.Y.; Yuan, L.; Liou, S.H.; Adenwalla, S. Origin of the interlayer exchange coupling in [Co∕Pt]∕NiO∕[Co∕Pt] multilayers studied with XAS, XMCD, and micromagnetic modeling. Phys. Rev. B 2006, 74, 054419. [Google Scholar] [CrossRef] [Green Version]
- Lederman, D.; Nogués, J.; Schuller, I.K. Exchange anisotropy and the antiferromagnetic surface order parameter. Phys. Rev. B Condens. Matter Mater. Phys. 1997, 56, 2332–2335. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, S.; Gupta, A. Effect of interface roughness on exchange coupling in polycrystalline Co/CoO bilayer structure: An in-situ investigation. J. Appl. Phys. 2016, 120, 085307. [Google Scholar] [CrossRef]
- Hauet, T.; Mangin, S.; McCord, J.; Montaigne, F.; Fullerton, E.E. Exchange-bias training effect in TbFe GdFe: Micromagnetic mechanism. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 144423. [Google Scholar] [CrossRef] [Green Version]
- Tsunoda, M.; Yoshitaki, S.; Ashizawa, Y.; Kim, D.Y.; Mitsumata, C.; Takahashi, M. Enhancement of exchange bias by ultra-thin Mn layer insertion at the interface of Mn-Ir/Co-Fe bilayers. Phys. Status Solidi Basic Res. 2007, 244, 4470–4473. [Google Scholar] [CrossRef]
FIM Composition | Ms-Tb–Co (emu/cm3) | Ms-[Co/Pt] (emu/cm3) |
---|---|---|
Tb21Co79 | 210 | 1580 |
Tb24Co76 | 280 | 1430 |
Tb27Co73 | 260 | 1550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjbar, S.; Sumi, S.; Tanabe, K.; Awano, H. Large Perpendicular Exchange Energy in TbxCo100−x/Cu(t)/[Co/Pt]2 Heterostructures. Magnetochemistry 2021, 7, 141. https://doi.org/10.3390/magnetochemistry7110141
Ranjbar S, Sumi S, Tanabe K, Awano H. Large Perpendicular Exchange Energy in TbxCo100−x/Cu(t)/[Co/Pt]2 Heterostructures. Magnetochemistry. 2021; 7(11):141. https://doi.org/10.3390/magnetochemistry7110141
Chicago/Turabian StyleRanjbar, Sina, Satoshi Sumi, Kenji Tanabe, and Hiroyuki Awano. 2021. "Large Perpendicular Exchange Energy in TbxCo100−x/Cu(t)/[Co/Pt]2 Heterostructures" Magnetochemistry 7, no. 11: 141. https://doi.org/10.3390/magnetochemistry7110141
APA StyleRanjbar, S., Sumi, S., Tanabe, K., & Awano, H. (2021). Large Perpendicular Exchange Energy in TbxCo100−x/Cu(t)/[Co/Pt]2 Heterostructures. Magnetochemistry, 7(11), 141. https://doi.org/10.3390/magnetochemistry7110141