Pressureless Sintering of YIG Ceramics from Coprecipitated Nanopowders
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Dai, J.W.; Pan, Y.B. Research progress on magneto-optical transparent ceramics. J. Inorg. Mater. 2018, 33, 1–8. [Google Scholar]
- Onbasli, M.; Beran, L.; Zahradník, M.; Kučera, M.; Antoš, R.; Mistrík, J.; Dionne, G.; Veis, M.; Ross, C. Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200–1770 nm. Sci. Rep. 2016, 6, 23640. [Google Scholar] [CrossRef] [Green Version]
- Vojna, D.; Slezák, O.; Lucianetti, A.; Mocek, T. Verdet constant of magneto-active materials developed for high-power faraday devices. Appl. Sci. 2019, 9, 3160. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.H.; Zhu, Z.L. Magneto-optical glass mixed with Tb3+ ions: High Verdet constant and luminescence properties. J. Lumin. 2021, 231, 117804. [Google Scholar] [CrossRef]
- Vojna, D.; Slezák, O.; Yasuhara, R.; Furuse, H.; Lucianetti, A.; Mocek, T. Faraday rotation of Dy2O3, CeF3 and Y3Fe5O12 at the mid-infrared wavelengths. Materials 2020, 13, 5324. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tian, F.; Liu, Z.Y. Research progress and prospects of mid-infrared laser ceramics. J. Synth. Cryst. 2020, 49, 1467–1487. [Google Scholar]
- Li, X.Y.; Liu, Q.; Hu, Z.W.; Jiang, N.; Shi, Y.; Li, J. Influence of ammonium hydrogen carbonate to metal ions molar ratio on co-precipitated nanopowders for TGG transparent ceramics. J. Inorg. Mater. 2019, 34, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Li, X.Y.; Dai, J.W.; Yang, Z.X.; Xie, T.F.; Li, J. Fabrication and characterizations of (Tb1-xPrx)3Al5O12 magneto-optical ceramics for Faraday isolators. Opt. Mater. 2018, 84, 330–334. [Google Scholar] [CrossRef]
- Aung, Y.L.; Ikesue, A. Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material. J. Am. Ceram. Soc. 2017, 100, 4081–4087. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, S.M.; Teng, H. Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications. Opt. Mater. 2011, 33, 1833–1836. [Google Scholar] [CrossRef]
- Dai, J.W.; Pan, Y.B.; Xie, T.F.; Kou, H.M.; Li, J. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids. Opt. Mater. 2018, 78, 370–374. [Google Scholar] [CrossRef]
- Rubinstein, C.B.; Van Uitert, L.G.; Grodkiewicz, W.H. Magneto-optical properties of rare earth (III) aluminum garnets. J. Appl. Phys. 1964, 35, 3069–3070. [Google Scholar] [CrossRef]
- Villaverde, A.B.; Donatti, D.A.; Bozinis, D.G. Terbium gallium garnet Verdet constant measurements with pulsed magnetic field. J. Phys. C Solid State Phys. 1978, 11, L495–L498. [Google Scholar] [CrossRef]
- Sekijima, T.; Kishimoto, H.; Fujii, T.; Wakino, K.; Okada, M. Magnetic, Optical and microwave properties of rare-earth-substituted fibrous yttrium iron garnet single crystals grown by floating zone method. Jpn. J. Appl. Phys. 1999, 38, 5874–5878. [Google Scholar] [CrossRef]
- Kimura, S.; Kitamura, K.; Shindo, I. Growth of rare earth garnet crystals by the floating zone method. J. Cryst. Growth 1983, 65, 543–548. [Google Scholar] [CrossRef]
- Jin, W.Z.; Gai, L.Y.; Li, C.; Lin, H.; Su, L.B.; Zeng, F.M.; Wu, A.H. Crystal growth and characterization of CexY3-xFe5O12 single crystal by optical floating zone method. Phys. B 2020, 588, 412168. [Google Scholar] [CrossRef]
- Basavad, M.; Shokrollahi, H.; Golkari, M. Effect of thermal cycle and Bi/Eu doping on the solubility of Ce in YIG. Ceram. Int. 2020, 46, 20144–20154. [Google Scholar] [CrossRef]
- Wittekoek, S.; Robertson, J.M.; Popma, T.J.A.; Bongers, P.F. Faraday rotation and optical absorption of epitaxial films of Y3-xBixFe5O12. AIP Conf. Proc. 1973, 10, 1418–1422. [Google Scholar]
- Sekijima, T.; Itoh, H.; Fujii, T.; Wakino, K.; Okada, M. Influence of growth atmosphere on solubility limit of Ce3+ ions in Ce-substituted fibrous yttrium iron garnet single crystals. J. Cryst. Growth 2001, 229, 409–414. [Google Scholar] [CrossRef]
- Zhang, X.W.; Zhang, S.Y.; Han, G.R. Growth and characterization of magneto-optical single-crystal ReYbBiIG with temperature-stabilized Faraday rotation. J. Magn. Magn. Mater. 2002, 246, 67–72. [Google Scholar] [CrossRef]
- Sekijima, T.; Satoh, H.; Tahara, K.; Fujii, T.; Wakino, K.; Okada, M. Growth of fibrous YIG single crystals by the self-adjusting solvent FZ method. J. Cryst. Growth 1998, 193, 446–450. [Google Scholar] [CrossRef]
- Lee, S.H.; Kochawattana, S.; Messing, G.L.; Dumm, J.Q.; Quarles, G.; Castillo, V. Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J. Am. Ceram. Soc. 2006, 89, 1945–1950. [Google Scholar] [CrossRef]
- Sanghera, J.; Kim, W.; Villalobos, G.; Shaw, B.; Baker, C.; Frantz, J.; Sadowski, B.; Aggarwal, I. Ceramic laser materials: Past and present. Opt. Mater. 2013, 35, 693–699. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L. Development of optical grade polycrystalline YIG ceramics for faraday rotator. J. Am. Ceram. Soc. 2018, 101, 5120–5126. [Google Scholar] [CrossRef]
- Aung, Y.L.; Ikesue, A.; Watanabe, T.; Makikawa, S.; Iwamoto, Y. Bi substituted YIG ceramics isolator for optical communication. J. Alloy. Compd. 2019, 811, 152059. [Google Scholar] [CrossRef]
- Aung, Y.L.; Ikesue, A. Transparent Tb3Fe5O12 ceramics as Mid-IR isolator. J. Alloy. Compd. 2019, 773, 739–742. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.; Yasuhara, R.; Iwamoto, Y. Giant Faraday rotation in heavily Ce-doped YIG bulk ceramics. J. Eur. Ceram. Soc. 2020, 40, 6073–6078. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, Q.; Pan, H.M.; Jiang, N.; Yang, Z.X.; Xie, T.F.; Wu, L.X.; Li, J. Transparent Tb3Ga5O12 magneto-optical ceramics sintered from co-precipitated nano-powders calcined at different temperatures. Opt. Mater. 2019, 90, 26–32. [Google Scholar] [CrossRef]
- Chen, P.H.; Liu, Q.; Li, X.Y.; Feng, Y.G.; Chen, X.P.; Liu, X.; Wu, L.X.; Li, J. Influence of terminal pH value on co-precipitated nanopowders for yttria-stabilized ZrO2 transparent ceramics. Opt. Mater. 2019, 98, 109475. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Toci, G.; Pirri, A.; Patrizi, B.; Feng, Y.G.; Wei, J.B.; Wu, F.; Yang, Z.X.; Vannini, M.; Li, J. Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. J. Adv. Ceram. 2020, 9, 674–682. [Google Scholar] [CrossRef]
- Belous, A.; Tovstolytkin, A.; Fedorchuk, O.; Shlapa, Y.; Solopan, S.; Khomenko, B. Al-doped yttrium iron garnets Y3AlFe4O12: Synthesis and properties. J. Alloy. Compd. 2021, 856, 158140. [Google Scholar] [CrossRef]
- Hu, D.J.; Liu, X.; Liu, Z.Y.; Li, X.Y.; Tian, F.; Zhu, D.Y.; Yang, Z.X.; Wu, L.X.; Li, J. Fabrication of Dy2O3 transparent ceramics by vacuum sintering using precipitated powders. Magnetochemistry 2021, 7, 6. [Google Scholar] [CrossRef]
- Dai, J.W.; Snetkov, I.L.; Palashov, O.V.; Pan, Y.B.; Kou, H.M.; Li, J. Fabrication, microstructure and magneto-optical properties of Tb3Al5O12 transparent ceramics. Opt. Mater. 2016, 62, 205–210. [Google Scholar] [CrossRef]
- Liu, J.L.; Jin, Q.M.; Wang, S.Y.; Yu, P.; Zhang, C.; Luckhardt, C.; Su, Z.J.; Barua, R.; Harris, V.G. An insight into formation mechanism of rapid chemical co-precipitation for synthesizing yttrium iron garnet nano powders. Mater. Chem. Phys. 2018, 208, 169–176. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.W.; Pan, Y.B.; Chen, H.H.; Xie, T.F.; Kou, H.M.; Li, J. Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: The influence of ammonium hydrogen carbonate to metal ions molar ratio. Ceram. Int. 2017, 43, 14457–14463. [Google Scholar] [CrossRef]
- Lu, B.; Wu, S.F.; Cheng, H.M.; Ye, R.J.; Cai, X.Y.; Wang, M.Y.; Wang, Y. Binary transparent (Ho1-xDyx)2O3 ceramics: Compositional influences on particle properties, sintering kinetics and Faraday magneto-optical effects. J. Eur. Ceram. Soc. 2021, 41, 2826–2833. [Google Scholar] [CrossRef]
- Dai, J.W.; Pan, Y.B.; Wang, W.; Wei, L.; Xie, T.F.; Kou, H.M.; Li, J. Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders. Opt. Mater. 2017, 73, 38–44. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, C.J.; Ji, R.J.; Fang, C.X.; Zeng, Y.W. Low-temperature synthesis and microstructure-property study of single-phase yttrium iron garnet (YIG) nanocrystals via a rapid chemical coprecipitation. Mater. Chem. Phys. 2011, 125, 646–651. [Google Scholar] [CrossRef]
- Muliuoliene, I.; Mathur, S.; Jasaitis, D.; Shen, H.; Sivakov, V.; Rapalaviciute, R.; Beganskiene, A.; Kareiva, A. Evidence of the formation of mixed-metal garnets via sol-gel synthesis. Opt. Mater. 2003, 22, 241–250. [Google Scholar] [CrossRef]
- Azis, R.S.; Syazwan, M.M.; Shahrani, N.M.M.; Hapishah, A.N.; Nazlan, N.; Idris, F.M.; Ismail, I.; Zulkimi, M.M.M.; Ibrahim, I.R.; Abbas, Z.; et al. Influence of sintering temperature on the structural, electrical and microwave properties of yttrium iron garnet (YIG). J. Mater. Sci. Mater. Electron. 2018, 29, 8390–8401. [Google Scholar] [CrossRef]
- Huang, X.Y.; Liu, Y.M.; Liu, Y.; Li, X.Y.; Feng, Y.G.; Chen, X.P.; Chen, P.H.; Liu, X.; Xie, T.F.; Li, J. Fabrication and characterizations of Yb:YAG transparent ceramics using alcohol-water co-precipitation method. J. Inorg. Mater. 2021, 2, 1–8. [Google Scholar] [CrossRef]
- Ahn, Y.S.; Han, M.H.; Kim, C.O. Synthesis of yttrium iron garnet precursor particles by homogeneous precipitation. J. Mater. Sci. 1996, 31, 4233–4240. [Google Scholar] [CrossRef]
- Dai, J.W.; Pan, Y.B.; Chen, H.H.; Xie, T.F.; Kou, H.M.; Li, J. Synthesis of Tb4O7 nanopowders by the carbonate-precipitation method for Tb3Al5O12 magneto-optical ceramics. Opt. Mater. 2017, 73, 706–711. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, J.; Yu, H.Y.; Pan, W. High performance of La-doped Y2O3 transparent ceramics. J. Adv. Ceram. 2020, 9, 493–502. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Liu, B.L.; Liu, W.B.; Zeng, Y.P.; Ba, X.W.; Xie, T.F.; Jiang, B.X.; Liu, Q.; Pan, Y.B.; et al. Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics. J. Eur. Ceram. Soc. 2014, 34, 2497–2507. [Google Scholar] [CrossRef]
- Nazlan, R.; Ismail, I.; Azis, R.S.; Abbas, Z.; Ibrahim, I.R.; Idris, F.M.; Shafiee, F.N.; Aripin, A.S.; Busra, N.A.N. Dependence of magnetic and microwave loss on evolving microstructure in yttrium iron garnet. J. Mater. Sci. Mater. Electron. 2018, 29, 8688–8700. [Google Scholar] [CrossRef]
- Krell, A.; Klimke, J.; Hutzler, T. Transparent compact ceramics: Inherent physical issues. Opt. Mater. 2009, 31, 1144–1150. [Google Scholar] [CrossRef]
- Seeley, Z.M.; Kuntz, J.D.; Cherepy, N.J.; Payne, S.A. Transparent Lu2O3:Eu ceramics by sinter and HIP optimization. Opt. Mater. 2011, 33, 1721–1726. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, X.; Liu, Z.; Hu, D.; Liu, X.; Chen, P.; Tian, F.; Zhu, D.; Zhang, L.; Li, J. Pressureless Sintering of YIG Ceramics from Coprecipitated Nanopowders. Magnetochemistry 2021, 7, 56. https://doi.org/10.3390/magnetochemistry7050056
Yang Y, Li X, Liu Z, Hu D, Liu X, Chen P, Tian F, Zhu D, Zhang L, Li J. Pressureless Sintering of YIG Ceramics from Coprecipitated Nanopowders. Magnetochemistry. 2021; 7(5):56. https://doi.org/10.3390/magnetochemistry7050056
Chicago/Turabian StyleYang, Yimin, Xiaoying Li, Ziyu Liu, Dianjun Hu, Xin Liu, Penghui Chen, Feng Tian, Danyang Zhu, Lixuan Zhang, and Jiang Li. 2021. "Pressureless Sintering of YIG Ceramics from Coprecipitated Nanopowders" Magnetochemistry 7, no. 5: 56. https://doi.org/10.3390/magnetochemistry7050056
APA StyleYang, Y., Li, X., Liu, Z., Hu, D., Liu, X., Chen, P., Tian, F., Zhu, D., Zhang, L., & Li, J. (2021). Pressureless Sintering of YIG Ceramics from Coprecipitated Nanopowders. Magnetochemistry, 7(5), 56. https://doi.org/10.3390/magnetochemistry7050056