Biomagnetic Flow with CoFe2O4 Magnetic Particles through an Unsteady Stretching/Shrinking Cylinder
Abstract
:1. Introduction
2. Mathematical Flow Equations with Flow Geometry
3. Transformation Analysis
4. Physical Quantities of Skin Friction Coefficient and Rate of Heat Transfer (Local Nusselt Number)
5. Numerical Procedure
6. Numerical Code Validation with Previous Published Literature
7. Parameter Estimation and Values of Thermophysical Properties of Blood and CoFe2O4
8. Results and Discussion
9. Conclusions
- The velocity and pressure profiles of blood-CoFe2O4 are decreased for both stretching and shrinking cases with the enhancement of the values of ferromagnetic interaction parameter, thermal conductivity parameter and radiation parameter.
- Increasing values of curvature parameter, volume fraction of magnetic particles and/or heat source are causing a rise in the velocity profile.
- The velocity profile is reduced when the values of the magnetic parameter and unsteady parameter are increased gradually for the stretching case, whereas the opposite behavior is observed for the shrinking case. Similar behavior is also observed for the pressure profile.
- The blood pressure is enhanced for larger values of the curvature parameter and volume fraction for the stretching case, whereas the opposite is true for the shrinking case.
- For both stretching and shrinking cases the temperature profile exacerbates when the values of the unsteady parameter, radiation parameter and thermal conductivity parameter are increased; while the contrary behavior is found for the heat source parameter.
- With increasing values of ferromagnetic interaction parameter, magnetic field parameter, curvature parameter and the temperature profile are increased for the stretching cylinder while they are decreased in the cylinder surface for the shrinking mode.
- It is obtained temperature profile diminution with the volume fraction of the nanoparticles for the stretching mode, whereas it is raised for the shrinking case.
- The skin friction coefficient onward in stretching mode while it is decreased for the shrinking mode when the values of magnetic field parameter, curvature parameter and unsteady parameter are large.
- For increasing values of the ferromagnetic interaction parameter, the skin friction coefficient is enhanced for both cases, while the reverse is observed for the values of the magnetic particles volume fraction.
- The rate of heat transfer is diminished for both stretching and shrinking cases due to the enhancing values of the unsteady parameter while, interestingly, the reverse attitude is observed for the curvature parameter, magnetic field parameter and volume fraction.
- The rate of heat transfer is increased with increasing values of the ferromagnetic number as in the stretching case while the opposing trend is found for the shrinking case.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stark, D.D.; Weissleder, R.; Elizondo, G.; Hahn, P.F.; Saini, S.; Todd, L.E.; Wittenberg, J.; Ferrucci, J.T. Superparamagnetic iron oxide: Clinical application as a contrast agent for MR imaging of the liver. Radiology 1988, 168, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ma, S.; Sun, J.; Xia, C.; Liu, C.; Wang, Z. Magnetese ferrite nanoparticle micellarnanocomposites as MRI contrast agent for liver imaging. Biomaterials 2009, 30, 2919–2928. [Google Scholar] [CrossRef]
- Suzuki, M.; Honda, H.; Kobayashi, T.; Wakabayashi, T.; Yoshida, J.; Takahashi, M. Development of a target-directed magnetic resonance contrast agent using monoclonal antibody-conjugated magnetic particles. Brain Tumor Pathol. 1996, 13, 127–132. [Google Scholar]
- Dürr, S.; Janko, C.; Lyer, S.; Tripal, P.; Schwarz, M.; Zaloga, J.; Tietze, R.; Alexiou, C. Magnetic nanoparticles for cancer therapy. Nanotechnol. Rev. 2013, 2, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Haik, Y.; Chen, J.C.; Pai, V.M. Development of bio-magnetic fluid dynamics. In Proceedings of the IX International Symposium on Transport Properties in Thermal Fluids Engineering, Singapore, 25–28 June 1996; Winoto, S.H., Chew, Y.T., Wijeysundera, N.E., Eds.; Pacific Center of Thermal Fluid Engineering: Kihei, HI, USA, 1996; pp. 121–126. [Google Scholar]
- Tzirtzilakis, E.E. A mathematical model for blood flow in magnetic field. Phys. Fluids 2005, 17, 077103. [Google Scholar] [CrossRef]
- Tzirtzilakis, E.E. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles. Phys. Fluids 2015, 27, 061902. [Google Scholar] [CrossRef]
- Abdollahzadeh Jamalobadi, M.Y.; Daqiqshirazij, M.; Nasir, H.; Safaei, M.R.; Nguyen, T.K. Modeling and analysis of biomagnetic blood carreau fluid flow through a stenosis artery with magnetic heat transfer: A transient study. PLoS ONE 2018, 13, e0192138. [Google Scholar] [CrossRef]
- Murtaza, M.G.; Tzirtzilakis, E.E.; Ferdows, M. Three-Dimensional Biomagnetic Flow and Heat Transfer over a Stretching Surface with Variable Fluid Properties. Adv. Mech. Math. 2019, 3, 403–414. [Google Scholar]
- Murtaza, M.G.; Tzirtzilakis, E.E.; Ferdows, M. Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet. Z. Angew. Phys. 2017, 68, 93. [Google Scholar] [CrossRef]
- Murtaza, M.G.; Tzirtzilakis, E.E.; Ferdows, M. Numerical solution of three dimensional unsteady biomagnetic flow and heat transfer through stretching/shrinking sheet using temperature dependent magnetization. Arch. Mech. 2018, 70, 161–185. [Google Scholar]
- Misra, J.C.; Shit, G.C. Flow of a Biomagnetic Visco-Elastic Fluid in a Channel with Stretching Walls. J. Appl. Mech. 2009, 76, 061006. [Google Scholar] [CrossRef]
- Misra, J.C.; Sinha, A. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion. Heat Mass Transf. 2013, 49, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Misra, J.C.; Sinha, A.; Shit, G.C. Flow of a biomagnetic viscoelastic fluid: Application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment. Appl. Math. Mech. 2010, 31, 1405–1420. [Google Scholar] [CrossRef]
- Sushma, S.; Samuel, N.; Neeraja, G. Slip flow effects on unsteady MHD blood flow in a permeable vessel in the presence of heat source/sink and chemical reaction. Glob. J. Pure Appl. Math. 2018, 14, 1083–1099. [Google Scholar]
- Ferdows, M.; Murtaza, M.G.; Tzirtzilakis, E.E.; Alzahrani, F. Numerical study of blood flow and heat transfer through stretching cylinder in the presence of a magnetic dipole. Z. Angew. Math. Mech. 2020, 100, e201900278. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995; pp. 99–105. [Google Scholar]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Qasim, M.; Khan, Z.H.; Khan, W.; Shah, I.A. MHD Boundary Layer Slip Flow and Heat Transfer of Ferrofluid along a Stretching Cylinder with Prescribed Heat Flux. PLoS ONE 2014, 9, e83930. [Google Scholar] [CrossRef]
- Singh, K.; Pandey, A.K.; Kumar, M. Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder. J. Egypt. Math. Soc. 2021, 29, 1. [Google Scholar] [CrossRef]
- Malik, R.; Khan, M.; Mushtaq, M. Cattaneo-Christov heat flux model for Sisko fluid flow past a permeable non-linearly stretching cylinder. J. Mol. Liq. 2016, 222, 430–434. [Google Scholar] [CrossRef]
- Abbas, Z.; Rasool, S.; Rashidi, M.M. Heat transfer analysis due to an unsteady stretching/shrinking cylinder with partial slip condition and suction. Ain Shams Eng. J. 2015, 6, 939–945. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Khan, A.; Kumam, P.; Alrabaiah, H.; Shah, Z.; Khan, W.; Zubair, M.; Jawad, M. Radiative mixed convection flow of maxwell nanofluid over a stretching cylinder with joule heating and heat source/sink effects. Sci. Rep. 2020, 10, 17823. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, T.; Hussain, A.; Malik, M.Y.; Awais, M.; Khan, M. Carreau nanofluid impinging over a stretching cylinder with generalized slip effects: Using finite difference scheme. Results Phys. 2017, 7, 3090–3099. [Google Scholar] [CrossRef]
- Zeeshan, A.; Maskeen, M.M.; Mehmood, O.U. Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media. Neural Comput. Appl. 2018, 30, 3479–3489. [Google Scholar] [CrossRef]
- Ashorynejad, H.R.; Sheikholeslami, M.; Pop, I.; Ganji, D.D. Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf. 2013, 49, 427–436. [Google Scholar] [CrossRef]
- Gangadhar, K.; Venkata, R.; Dasaradha, R.; Kamar, B.R. Slip flow of a nanofluid over a stretching cylinder with Cattaneo-Christov flux model: Using SRM. Int. J. Eng. Technol. 2018, 7, 225–232. [Google Scholar]
- Kakac, K.; Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 2009, 52, 3187–3196. [Google Scholar] [CrossRef]
- Kleinstreuer, C.; Feng, Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review. Nanoscale Res. Lett. 2011, 6, 229. [Google Scholar] [CrossRef] [Green Version]
- Ozernic, S.; Kakac, S.; Yazcioglu, A. Enhanced thermal conductivity of nanofluids: A state of the art-review. Renew. Sustain. Energy Rev. 2010, 25, 670–686. [Google Scholar]
- Khan, S.U.; Al-Khaled, K.; Aldabesh, A.; Awais, M.; Tlili, I. Bioconvection flow in accelerated couple stress nanoparticles with activation energy: Bio-fuel applications. Sci. Rep. 2021, 11, 3331. [Google Scholar] [CrossRef]
- Kolsi, L.; Dero, S.; Ali-Lund, L.; Alqsair, U.F.; Omri, M.; Khan, S.U. Thermal stability and performances of hybrid nanoparticles for convective heat transfer phenomenon with multiple solutions. Case Stud. Therm. Eng. 2021, 28, 101684. [Google Scholar] [CrossRef]
- Abbasi, A.; Khan, S.U.; Al-Khaled, K.; Khan, M.I.; Farooq, W.; Galal, A.M.; Javid, K.; Malik, M. Thermal prospective of Casson nano-materials in radiative binary reactive flow near oblique stagnation point flow with activation energy applications. Chem. Phys. Lett. 2021, 786, 139172. [Google Scholar] [CrossRef]
- Islam, S.; Dawar, A.; Shah, Z.; Tariq, A. Cattaneo–Christov theory for a time-dependent magnetohydrodynamic Maxwell fluid flow through a stretching cylinder. Adv. Mech. Eng. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Krishnamurthy, M.; Prasannakumara, B.; Gireesha, B.; Gorla, R.S.R. Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Eng. Sci. Technol. Int. J. 2016, 19, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Rosensweig, R.E. Magnetic fluids. Annu. Rev. Fluid Mech. 1987, 19, 437–461. [Google Scholar] [CrossRef]
- Das, S.; Chakraborty, S.; Jana, R.N.; Makinde, O.D. Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Appl. Math. Mech. 2015, 36, 1593–1610. [Google Scholar] [CrossRef]
- Dandapat, B.S.; Santra, B.; Singh, S.K. Thin film flow over a non-linear stretching sheet in presence of uniform transverse magnetic field. Z. Angew. Math. Phys. 2010, 61, 685–695. [Google Scholar] [CrossRef]
- Misra, J.C.; Rath, H.J.; Shit, G.C. Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: Some applications to haemodynamics. Comput. Fluids 2008, 37, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tzirtzilakis, E.; Kafoussias, N.G. Three-Dimensional Magnetic Fluid Boundary Layer Flow over a Linearly Stretching Sheet. J. Heat Transf. 2009, 132, 1–8. [Google Scholar] [CrossRef]
- Tzirtzilakis, E.E.; Kafoussias, N.G. Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization. Z. Angew. Math. Phys. 2003, 54, 551–565. [Google Scholar]
- Tzirtzilakis, E.; Tanoudis, G. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer. Int. J. Numer. Methods Heat Fluid Flow 2003, 13, 830–848. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, S.; Ullah, N.; Khan, A.U.; Akbar, T. Effect of homogeneous-heterogeneous reactions on ferrofluid in the presence of magnetic dipole along a stretching cylinder. Results Phys. 2017, 7, 3574–3582. [Google Scholar] [CrossRef]
- Tahir, H.; Khan, U.; Din, A.; Chu, Y.-M.; Muhammad, N. Heat Transfer in a Ferromagnetic Chemically Reactive Species. J. Thermophys. Heat Transf. 2021, 35, 402–410. [Google Scholar] [CrossRef]
- Makinde, O.D. Stagnation Point flow with heat and mass transfer and temporal stability of ferrofluid past a permeable stretching/shrinking sheet. Defect Diffus. Forum 2018, 387, 510–522. [Google Scholar] [CrossRef]
- Alam, J.; Murtaza, G.; Tzirtzilakis, E.; Ferdows, M. Biomagnetic Fluid Flow and Heat Transfer Study of Blood with Gold Nanoparticles over a Stretching Sheet in the Presence of Magnetic Dipole. Fluids 2021, 6, 113. [Google Scholar] [CrossRef]
- Kafoussias, N.G.; Williams, E.W. An improved approximation technique to obtain numerical solution of a class of two-point boundary value similarity problems in fluid mechanics. Int. J. Numer. Methods Fluids 1993, 17, 145–162. [Google Scholar] [CrossRef]
- Vajravelu, K.; Prasad, K.; Santhi, S. Axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer at a non-isothermal stretching cylinder. Appl. Math. Comput. 2012, 219, 3993–4005. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, K.; Gorla, R. Boundary layer flow and heat transfer over a permeable shrinking cylinder with surface mass transfer. Int. J. Appl. Mech. Eng. 2013, 18, 1003–1012. [Google Scholar] [CrossRef] [Green Version]
- Tzirtzilakis, E.E.; Xenos, M.; Loukopoulos, V.C.; Kafoussias, N.G. Turbulent biomagnetic fluid flow in a rectangular channel under the action of a localized magnetic field. Int. J. Eng. Sci. 2006, 44, 1205–1224. [Google Scholar] [CrossRef]
- Alam, M.J.; Murtaza, M.G.; Tzirtzilakis, E.E.; Ferdows, M. Effect of thermal radiation on biomagnetic fluid flow and heat transfer over an unsteady stretching sheet. Comput. Assist. Methods Eng. Sci. (CAMES) 2021, 28, 81–104. [Google Scholar]
- Bhattacharyya, K. Effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet with mass suction. Chem. Eng. Res. Bull. 2011, 15, 12–17. [Google Scholar] [CrossRef]
- Ismail, H.N.; Abdel-Wahed, M.S.; Omama, M. Effect of variable thermal conductivity on the MHD boundary-layer of Casson nanofluid over a moving plate with variable thickness. Therm. Sci. 2021, 25, 145–157. [Google Scholar] [CrossRef]
- Muhammad, K.A.M.; Farah, N.A.; Salleh, M.Z. MHD boundary layer flow over a permeable flat plate in a ferrofluid with thermal radiation effect. J. Phys. Conf. Ser. 2019, 1366, 012014. [Google Scholar]
- Kumar, K.A.; Sandeep, N.; Sugunamma, V.; Animasaum, I.I. Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J. Therm. Anal. 2020, 139, 2145–2153. [Google Scholar] [CrossRef]
- Ferdows, M.; Murtaza, G.; Misra, J.C.; Tzirtzilakis, E.E.; Alsenafi, A. Dual solutions in biomagnetic fluid flow and heat transfer over a nonlinear stretching/shrinking sheet: Application of lie group transformation method. Math. Biosci. Eng. 2020, 17, 4852–4874. [Google Scholar] [CrossRef] [PubMed]
Magnetic Fluid Properties | Applied Model |
---|---|
Density | |
Dynamic viscosity | |
Heat capacitance | |
Electrical conductivity | |
Thermal conductivity |
M | D | Present Results | Vajravelu et al. [48] |
---|---|---|---|
0.0 | 0.0 | 1.069 | 1.00000 |
0.25 | 1.087 | 1.091826 | |
0.5 | 1.189 | 1.182410 | |
0.75 | 1.271 | 1.271145 | |
1.0 | 1.361 | 1.358198 | |
0.5 | 0.0 | 1.279 | 1.224745 |
0.25 | 1.328 | 1.328505 | |
0.5 | 1.412 | 1.42715 | |
0.75 | 1.523 | 1.521975 | |
1.0 | 1.623 | 1.613858 | |
1.0 | 0.0 | 1.461 | 1.414214 |
0.25 | 1.521 | 1.523163 | |
0.5 | 1.622 | 1.626496 | |
0.75 | 1.718 | 1.725576 | |
1.0 | 1.822 | 1.821302 |
D | S | Pr | − (0) | |
---|---|---|---|---|
Present Results | Bhattacharyya et al. [49] | |||
0.1 | 2.6 | 0.5 | 1.117 | 1.1198103 |
0.2 | 2.6 | 0.5 | 1.12 | 1.1225730 |
0.3 | 2.6 | 0.5 | 1.132 | 1.131007 |
0.1 | 2.5 | 0.5 | 1.059 | 1.0671973 |
0.1 | 2.7 | 0.5 | 1.268 | 1.2746036 |
0.1 | 2.6 | 0.3 | 0.7143 | 0.7119983 |
0.1 | 2.6 | 1.0 | 2.079 | 2.0825834 |
Properties | Base Fluid | Magnetic Particles |
---|---|---|
Blood | CoFe2O4 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdows, M.; Alam, J.; Murtaza, G.; Tzirtzilakis, E.E.; Sun, S. Biomagnetic Flow with CoFe2O4 Magnetic Particles through an Unsteady Stretching/Shrinking Cylinder. Magnetochemistry 2022, 8, 27. https://doi.org/10.3390/magnetochemistry8030027
Ferdows M, Alam J, Murtaza G, Tzirtzilakis EE, Sun S. Biomagnetic Flow with CoFe2O4 Magnetic Particles through an Unsteady Stretching/Shrinking Cylinder. Magnetochemistry. 2022; 8(3):27. https://doi.org/10.3390/magnetochemistry8030027
Chicago/Turabian StyleFerdows, Mohammad, Jahangir Alam, Ghulam Murtaza, Efstratios E. Tzirtzilakis, and Shuyu Sun. 2022. "Biomagnetic Flow with CoFe2O4 Magnetic Particles through an Unsteady Stretching/Shrinking Cylinder" Magnetochemistry 8, no. 3: 27. https://doi.org/10.3390/magnetochemistry8030027
APA StyleFerdows, M., Alam, J., Murtaza, G., Tzirtzilakis, E. E., & Sun, S. (2022). Biomagnetic Flow with CoFe2O4 Magnetic Particles through an Unsteady Stretching/Shrinking Cylinder. Magnetochemistry, 8(3), 27. https://doi.org/10.3390/magnetochemistry8030027