Tunable and Sensitive Detection of Cortisol Using Anisotropic Phosphorene with a Surface Plasmon Resonance Technique: Numerical Investigation
Abstract
:1. Introduction
2. Theoretical Modeling and Performance Parameters
3. Results and Discussion
3.1. Metal Thickness Optimization and Reflectance Curves
3.2. Analysis of FOM* and LOD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, R.C.; Soelberg, S.D.; Near, S.; Furlong, C.E. Detection of Cortisol in Saliva with a Flow-Filtered, Portable Surface Plasmon Resonance Biosensor System. Anal. Chem. 2008, 80, 6747–6751. [Google Scholar] [CrossRef] [Green Version]
- Dhull, N.; Kaur, G.; Gupta, V.; Tomar, M. Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sens. Actuators B Chem. 2019, 293, 281–288. [Google Scholar] [CrossRef]
- Pandey, A.K.; Sharma, A.K.; Marques, C. On The Application of SiO2/SiC Grating on Ag for High-Performance Fiber Optic Plasmonic Sensing of Cortisol Concentration. Materials 2020, 13, 1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.; Jung, J.; Kim, Y.-H.; Kwon, D.; Kim, B.-G.; Bin Na, H.; Lee, H.H. Surface Plasmon Resonance Characteristics of au Nanoparticles Layered Sensor Chip for Direct Detection of Stress Hormone Conjugated by Nanoparticles. Biochip. J. 2018, 12, 249–256. [Google Scholar] [CrossRef]
- Usha, S.P.; Shrivastav, A.M.; Gupta, B.D. A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film. Biosens. Bioelectron. 2017, 87, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Kämäräinen, S.; Mäki, M.; Tolonen, T.; Palleschi, G.; Virtanen, V.; Micheli, L.; Sesay, A.M. Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 2018, 188, 50–57. [Google Scholar] [CrossRef]
- Dalirirad, S.; Steckl, A.J. Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem. 2019, 283, 79–86. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Cui, D. Surface plasmon resonance immunoassay for cortisol determination with a self-assembling denaturalised bovine serum albumin layer on surface plasmon resonance chip. Micro Nano Lett. 2016, 11, 20–23. [Google Scholar] [CrossRef]
- Frasconi, M.; Mazzarino, M.; Botrè, F.; Mazzei, F. Surface plasmon resonance immunosensor for cortisol and cortisone determination. Anal. Bioanal. Chem. 2009, 394, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Joa, S.; Lee, W.; Park, J.; Kim, W.; Kim, W.; Lee, G.; Lee, H.-J.; Hong, J.; Park, J. Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sens. Actuators Chem. 2020, 304, 127424. [Google Scholar] [CrossRef]
- Leitão, C.; Leal-Junior, A.; Almeida, A.R.; Pereira, S.O.; Costa, F.M.; Pinto, J.L.; Marques, C. Cortisol AuPd plasmonic unclad POF biosensor. Biotechnol. Rep. 2021, 29, e00587. [Google Scholar] [CrossRef]
- Maurya, J.B.; Prajapati, Y.; Singh, V.; Saini, J.; Tripathi, R. Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 2016, 359, 426–434. [Google Scholar] [CrossRef]
- Srivastava, T.; Jha, R. Black Phosphorus: A New Platform for Gaseous Sensing Based on Surface Plasmon Resonance. IEEE Photonics Technol. Lett. 2018, 30, 319–322. [Google Scholar] [CrossRef]
- Singh, M.K.; Pal, S.; Verma, A.; Prajapati, Y.K.; Saini, J.P. Highly sensitive antimonene-coated black phosphorous-based surface plasmon-resonance biosensor for DNA hybridization: Design and numerical analysis. J. Nanophoton. 2020, 14, 046015. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.; Verma, A.; Prajapati, Y.K.; Saini, J.P. Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct. 2020, 145, 106591. [Google Scholar] [CrossRef]
- Pumera, M. Phosphorene and Black Phosphorus for Sensing and Biosensing. Trends Anal. Chem. 2017, 93, 1–6. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, G.; Zuo, X. Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries. Nano-Micro Lett. 2020, 12, 120. [Google Scholar] [CrossRef]
- Cho, S.Y.; Prajapati, Y.; Singh, V.; Saini, J.; Tripathi, R. Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene. Adv. Mater. 2016, 28, 7020–7028. [Google Scholar] [CrossRef]
- Pal, S.; Verma, A.; Prajapati, Y.K.; Saini, J.P. Influence of black phosphorous on performance of surface plasmon resonance biosensor. Opt. Quantum Electron. 2017, 49, 403. [Google Scholar] [CrossRef]
- Khandelwal, A.; Mani, H.; Karigerasi, M.H.; Lahiri, I. Phosphorene–The two-dimensional black phosphorous: Properties, synthesis and applications. Mater. Sci. Eng. B 2017, 221, 17–34. [Google Scholar] [CrossRef]
- Yasaei, P.; Behranginia, A.; Foroozan, T.; Asadi, M.; Kim, K.; Araghi, F.K.; Khojin, A.S. Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 2015, 9, 9898–9905. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Raghuwanshi, S.K. Sensitivity Enhancement of the Surface Plasmon Resonance Gas Sensor with Black Phosphorus. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Pal, S.; Verma, A.; Prajapati, Y.K.; Saini, J.P. Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Appl. Phys. A 2020, 126, 809. [Google Scholar] [CrossRef]
- Sharma, A.K. Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations. J. Appl. Phys. 2013, 114, 044701. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.; Pal, N.; Mishra, V.; Prajapati, Y.K. High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure. Appl. Phys. A 2021, 127, 259. [Google Scholar] [CrossRef]
- Hossain, M.M.; Talukder, M.A. Gate-controlled graphene surface plasmon resonance sensor. Opt. Commun. 2021, 493, 126994. [Google Scholar] [CrossRef]
- Singh, M.K.; Pal, S.; Verma, A.; Das, R.; Prajapati, Y.K. A nanolayered structure for sensitive detection of hemoglobin concentration using surface plasmon resonance. Appl. Phys. A 2021, 127, 832. [Google Scholar] [CrossRef]
Constituent Layers | Thickness (nm) | Refractive Index (RI) |
---|---|---|
BK-7 Prism | - | 1.5102 [15] |
Copper layer | 15 | 0.10807 + i × 5.3990 [25] |
Nickel layer | 80 | 2.2777 + i × 5.0030 [25] |
Phosphorene (BP) | 6 × 0.53 | Optimized by tuning with the rotation angle (φ) of the sensor around the z-axis [23] |
BP Layers | θres. at ns = 1.33 (°) | θres. at ns = 1.3305 (°) | Rmin (a.u.) | S (°/RIU) | FWHM (°) | DA (1/°) | FOM (RIU−1) |
---|---|---|---|---|---|---|---|
1 | 76.7935 | 76.6789 | 0.0612 | 229.18 | 1.89 | 0.5291 | 121.26 |
2 | 77.0972 | 76.9826 | 0.0580 | 240.56 | 1.87 | 0.5348 | 128.64 |
3 | 77.4353 | 77.3092 | 0.0506 | 252.10 | 1.80 | 0.5556 | 140.06 |
4 | 77.8134 | 77.6816 | 0.0417 | 263.56 | 1.78 | 0.5618 | 148.07 |
5 | 78.2374 | 78.0942 | 0.0037 | 286.48 | 1.69 | 0.5917 | 169.51 |
6 | 78.7157 | 78.5553 | 0.0252 | 320.86 | 1.42 | 0.7042 | 225.96 |
Cortisol Conc. (ng/mL) | S(°/RIU) | FOM (1/RIU) | LOD (ng/mL) | Maximum FOM* | ||
---|---|---|---|---|---|---|
0.36 | 78.46 | 1.44 | - | - | - | |
0.72 | 78.56 | 1.44 | 314.67 | 218.52 | 0.0038 | 916.9 |
1.80 | 78.72 | 1.42 | 320.86 | 225.96 | 0.0067 | 1115.3 |
3.60 | 78.75 | 1.41 | 324.86 | 230.40 | 0.0554 | 1313.4 |
4.50 | 78.78 | 1.41 | 343.78 | 243.82 | 0.0262 | 1780.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, V.K.; Pal, S.; Rizal, C.; Prajapati, Y.K. Tunable and Sensitive Detection of Cortisol Using Anisotropic Phosphorene with a Surface Plasmon Resonance Technique: Numerical Investigation. Magnetochemistry 2022, 8, 31. https://doi.org/10.3390/magnetochemistry8030031
Verma VK, Pal S, Rizal C, Prajapati YK. Tunable and Sensitive Detection of Cortisol Using Anisotropic Phosphorene with a Surface Plasmon Resonance Technique: Numerical Investigation. Magnetochemistry. 2022; 8(3):31. https://doi.org/10.3390/magnetochemistry8030031
Chicago/Turabian StyleVerma, Vipin Kumar, Sarika Pal, Conrad Rizal, and Yogendra Kumar Prajapati. 2022. "Tunable and Sensitive Detection of Cortisol Using Anisotropic Phosphorene with a Surface Plasmon Resonance Technique: Numerical Investigation" Magnetochemistry 8, no. 3: 31. https://doi.org/10.3390/magnetochemistry8030031
APA StyleVerma, V. K., Pal, S., Rizal, C., & Prajapati, Y. K. (2022). Tunable and Sensitive Detection of Cortisol Using Anisotropic Phosphorene with a Surface Plasmon Resonance Technique: Numerical Investigation. Magnetochemistry, 8(3), 31. https://doi.org/10.3390/magnetochemistry8030031