Control of Molecular Orientation and Carrier Transport of Thiophene-Based Semiconducting Polymer via Superparamagnetic Nanoparticles Fe3O4@C-Assisted Magnetic Alignment Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Monodispersed Fe3O4@C Colloidal Nanoparticles
2.3. Preparation of Fe3O4@C/PBTTT Composite Solution
2.4. Magnetic Alignment
2.5. Sample Characterization
2.6. OFET Fabrication and Characterization
3. Results and Discussion
3.1. Microstructure of Fe3O4@C Nanoparticles
3.2. Microstructure of Magnetically Aligned Films
3.3. Charge Transport Studies
3.4. The Mechanism for Magnetic Alignment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.Y.; Yao, Z.F.; Lu, Y.; Zhang, S.; Ahmad, Z.; Wang, J.Y.; Gu, X.; Pei, J. Achieving High Alignment of Conjugated Polymers by Controlled Dip-Coating. Adv. Electron. Mater. 2020, 6, 2000080. [Google Scholar] [CrossRef]
- Gamage, P.L.; Udamulle Gedara, C.M.; Gunawardhana, R.; Bulumulla, C.; Ma, Z.; Shrivastava, A.; Biewer, M.C.; Stefan, M.C. Enhancement in Charge Carrier Mobility by Using Furan as Spacer in Thieno[3,2-b]Pyrrole and Alkylated-Diketopyrrolopyrrole Based Conjugated Copolymers. Appl. Sci. 2022, 12, 3150. [Google Scholar] [CrossRef]
- Bae, E.J.; Kang, S.W.; Choi, G.S.; Jang, E.B.; Baek, D.H.; Ju, B.K.; Park, Y.W. Enhanced Light Extraction from Organic Light-Emitting Diodes with Micro-Nano Hybrid Structure. Nanomaterials 2022, 12, 1266. [Google Scholar] [CrossRef]
- Dhbaibi, K.; Abella, L.; Meunier-Della-Gatta, S.; Roisnel, T.; Vanthuyne, N.; Jamoussi, B.; Pieters, G.; Racine, B.; Quesnel, E.; Autschbach, J.; et al. Achieving high circularly polarized luminescence with push-pull helicenic systems: From rationalized design to top-emission CP-OLED applications. Chem. Sci. 2021, 12, 5522–5533. [Google Scholar] [CrossRef]
- Diterlizzi, M.; Ferretti, A.M.; Scavia, G.; Sorrentino, R.; Luzzati, S.; Boccia, A.C.; Scamporrino, A.A.; Po, R.; Quadrivi, E.; Zappia, S.; et al. Amphiphilic PTB7-Based Rod-Coil Block Copolymer for Water-Processable Nanoparticles as an Active Layer for Sustainable Organic Photovoltaic: A Case Study. Polymers 2022, 14, 1588. [Google Scholar] [CrossRef]
- Vuk, D.; Radovanovic-Peric, F.; Mandic, V.; Lovrincevic, V.; Rath, T.; Panzic, I.; Le-Cunff, J. Synthesis and Nanoarchitectonics of Novel Squaraine Derivatives for Organic Photovoltaic Devices. Nanomaterials 2022, 12, 1206. [Google Scholar] [CrossRef]
- Chang, M.; Lim, G.T.; Park, B.; Reichmanis, E. Control of Molecular Ordering, Alignment, and Charge Transport in Solution-Processed Conjugated Polymer Thin Films. Polymers 2017, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.J.; Guo, C.; Chuang, W.T.; Wang, C.L.; Wang, Q.; Liu, H.; Hsu, C.S.; Jiang, L. Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs. Adv. Mater. 2017, 29, 1606987. [Google Scholar] [CrossRef]
- Tanigaki, N.; Takechi, C.; Nagamatsu, S.; Mizokuro, T.; Yoshida, Y. Oriented Thin Films of Insoluble Polythiophene Prepared by the Friction Transfer Technique. Polymers 2021, 13, 2393. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, M.; Lee, J. Enhanced Performance of Cyclopentadithiophene-Based Donor-Acceptor-Type Semiconducting Copolymer Transistors Obtained by a Wire Bar-Coating Method. Polymers 2021, 14, 2. [Google Scholar] [CrossRef]
- Yuan, Y.; Giri, G.; Ayzner, A.L.; Zoombelt, A.P.; Mannsfeld, S.C.; Chen, J.; Nordlund, D.; Toney, M.F.; Huang, J.; Bao, Z. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 2014, 5, 3005. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.-K.; Shin, E.-S.; Noh, Y.-Y.; Kim, D.-Y. A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors. Org. Electron. 2018, 55, 6–14. [Google Scholar] [CrossRef]
- Khim, D.; Han, H.; Baeg, K.J.; Kim, J.; Kwak, S.W.; Kim, D.Y.; Noh, Y.Y. Simple bar-coating process for large-area, high-performance organic field-effect transistors and ambipolar complementary integrated circuits. Adv. Mater. 2013, 25, 4302–4308. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.; Sun, Y.; Li, Q.; Cai, Z.; Li, J.; Guo, Y.; Hu, W.; Liu, Y. Fast Deposition of Aligning Edge-On Polymers for High-Mobility Ambipolar Transistors. Adv. Mater. 2019, 31, e1805761. [Google Scholar] [CrossRef]
- Xiao, M.; Kang, B.; Lee, S.B.; Perdigao, L.M.A.; Luci, A.; Warr, D.A.; Senanayak, S.P.; Nikolka, M.; Statz, M.; Wu, Y.; et al. Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electron-Deficient Polymer Processed by Solution Shear Coating. Adv. Mater. 2020, 32, e2000063. [Google Scholar] [CrossRef]
- Kim, G.W.; Kwon, E.H.; Kim, M.; Park, Y.D. Uniform and Reliable Dip-Coated Conjugated Polymers for Organic Transistors as Obtained by Solvent Vapor Annealing. J. Phys. Chem. C 2019, 123, 23255–23263. [Google Scholar] [CrossRef]
- Kakade, M.V.; Givens, S.; Gardner, K.; Lee, K.H.; Chase, D.B.; Rabolt, J.F. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J. Am. Chem. Soc. 2007, 129, 2777–2782. [Google Scholar] [CrossRef]
- Gupta, P.; Rajput, M.; Singla, N.; Kumar, V.; Lahiri, D. Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. Polymer 2016, 89, 119–127. [Google Scholar] [CrossRef]
- Winkler, A.; Modler, N.; Gude, M.; Xu, Y.; Helwig, M.; Dohmen, E.; Dittes, A.; Hohlich, D.; Lampke, T. Numerical Investigation of the Orientability of Single Reinforcement Fibers in Polymer Matrices. Polymers 2022, 14, 534. [Google Scholar] [CrossRef]
- Mishra, S.; Bhowmick, D. Asymmetric Magnetoelectrochemistry: An Efficient Method to Grow Enantiopure Self-Assemble Monolayer. Magnetochemistry 2020, 6, 37. [Google Scholar] [CrossRef]
- van Essen, M.; Montree, E.; Houben, M.; Borneman, Z.; Nijmeijer, K. Magnetically Aligned and Enriched Pathways of Zeolitic Imidazolate Framework 8 in Matrimid Mixed Matrix Membranes for Enhanced CO2 Permeability. Membranes 2020, 10, 155. [Google Scholar] [CrossRef]
- Kimura, T. Study on the effect of magnetic fields on polymeric materials and its application. Polym. J. 2003, 35, 823–843. [Google Scholar] [CrossRef]
- Yamato, M.; Aoki, H.; Kimura, T.; Yamamoto, I.; Ishikawa, F.; Yamaguchi, M.; Tobita, M. Determination of anisotropic diamagnetic susceptibility of polymeric fibers suspended in liquid. Jpn. J. Appl. Phys. 2001, 40, 2237–2240. [Google Scholar] [CrossRef]
- Song, G.; Kimura, F.; Kimura, T.; Piao, G. Orientational Distribution of Cellulose Nanocrystals in a Cellulose Whisker as Studied by Diamagnetic Anisotropy. Macromolecules 2013, 46, 8957–8963. [Google Scholar] [CrossRef]
- Zaric, S.; Ostojic, G.N.; Kono, J.; Shaver, J.; Moore, V.C.; Strano, M.S.; Hauge, R.H.; Smalley, R.E.; Wei, X. Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes. Science 2004, 304, 1129–1131. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Chen, F.; Hu, L.; Zhang, K.; Dai, J.; Zhang, F. Effective Controlling of Film Texture and Carrier Transport of a High-Performance Polymeric Semiconductor by Magnetic Alignment. Adv. Funct. Mater. 2015, 25, 5126–5133. [Google Scholar] [CrossRef]
- Pan, G.; Hu, L.; Su, S.; Yuan, J.; Li, T.; Xiao, X.; Chen, Q.; Zhang, F. Solvent Vapor-Assisted Magnetic Manipulation of Molecular Orientation and Carrier Transport of Semiconducting Polymers. ACS Appl. Mater. Interfaces 2020, 12, 29487–29496. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.; Hu, Y.; Guo, C.; Qian, H.; Zhang, F.; Lou, X.W. Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment. J. Mater. Chem. 2011, 21, 18359–18364. [Google Scholar] [CrossRef]
- Erb, R.M.; Libanori, R.; Rothfuchs, N.; Studart, A.R. Composites reinforced in three dimensions by using low magnetic fields. Science 2012, 335, 199–204. [Google Scholar] [CrossRef]
- Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A.R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy. 2016, 1, 16097. [Google Scholar] [CrossRef]
- Genorio, B.; Peng, Z.W.; Lu, W.; Hoelscher, B.K.P.; Novosel, B.; Tour, J.M. Synthesis of Dispersible Ferromagnetic Graphene Nanoribbon Stacks with Enhanced Electrical Percolation Properties in a Magnetic Field. Acs Nano 2012, 6, 10396–10404. [Google Scholar] [CrossRef] [PubMed]
- Hekmatara, H.; Seifi, M.; Forooraghi, K. Microwave absorption property of aligned MWCNT/Fe3O4. J. Magn. Mater. 2013, 346, 186–191. [Google Scholar] [CrossRef]
- Hu, H.; Chen, Q.-W.; Cheng, K.; Tang, J. Visually readable and highly stable self-display photonic humidity sensor. J. Mater. Chem. 2012, 22, 1021–1027. [Google Scholar] [CrossRef]
- Hu, H.; Chen, Q.-W.; Wang, H.; Li, R.; Zhong, W. Reusable photonic wordpad with water as ink prepared by radical polymerization. J. Mater. Chem. 2011, 21, 13062–13067. [Google Scholar] [CrossRef]
- Liu, J.; Dong, S.; He, Q.; Yang, S.; Xie, M.; Deng, P.; Xia, Y.; Li, G. Facile Preparation of Fe3O4/C Nanocomposite and Its Application for Cost-Effective and Sensitive Detection of Tryptophan. Biomolecules 2019, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.V.; Phan, T.-Q.T.; Nguyen, D.T.C.; Nguyen, T.T.; Nguyen, D.H.; Vo, D.-V.N.; Bach, L.G.; Nguyen, T.D. Recyclable Fe3O4@C nanocomposite as potential adsorbent for a wide range of organic dyes and simulated hospital effluents. Environ. Technol. Innov. 2020, 20, 101122. [Google Scholar] [CrossRef]
- Ghereghlou, M.; Esmaeili, A.A.; Darroudi, M. Preparation of Fe3O4@C-dots as a recyclable magnetic nanocatalyst using Elaeagnus angustifolia and its application for the green synthesis of formamidines. Appl. Organomet. Chem. 2021, 35, e6387. [Google Scholar] [CrossRef]
- Soeda, J.; Matsui, H.; Okamoto, T.; Osaka, I.; Takimiya, K.; Takeya, J. Highly oriented polymer semiconductor films compressed at the surface of ionic liquids for high-performance polymeric organic field-effect transistors. Adv. Mater. 2014, 26, 6430–6435. [Google Scholar] [CrossRef]
- Biniek, L.; Leclerc, N.; Heiser, T.; Bechara, R.; Brinkmann, M. Large Scale Alignment and Charge Transport Anisotropy of pBTTT Films Oriented by High Temperature Rubbing. Macromolecules 2013, 46, 4014–4023. [Google Scholar] [CrossRef]
- Lee, M.J.; Gupta, D.; Zhao, N.; Heeney, M.; McCulloch, I.; Sirringhaus, H. Anisotropy of Charge Transport in a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated Polymer Semiconductor. Adv. Funct. Mater. 2011, 21, 932–940. [Google Scholar] [CrossRef]
- Schott, S.; Gann, E.; Thomsen, L.; Jung, S.H.; Lee, J.K.; McNeill, C.R.; Sirringhaus, H. Charge-Transport Anisotropy in a Uniaxially Aligned Diketopyrrolopyrrole-Based Copolymer. Adv. Mater. 2015, 27, 7356–7364. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Lu, W.; Wei, G.; Jiang, L.; Yu, Y.; Hu, Y. Formation of 1D chain-like Fe3O4@C/Pt sandwich nanocomposites and their magnetically recyclable catalytic property. Appl. Surf. Sci. 2018, 457, 1136–1141. [Google Scholar] [CrossRef]
- Shang, S.; Liu, Z.; Zhang, Q.; Wang, H.; Li, Y. Facile fabrication of a magnetically induced structurally colored fiber and its strain-responsive properties. J. Mater. Chem. A. Mater. 2015, 3, 11093–11097. [Google Scholar] [CrossRef]
- Pishehvarz, G.; Erfan-Niya, H.; Zaminpayma, E. The role of hydrogen bonding in interaction energy at the interface of conductive polymers and modified graphene-based nanosheets: A reactive molecular dynamics study. Comput. Mater. Sci. 2018, 155, 499–523. [Google Scholar] [CrossRef]
- Wu, L.; Sitamraju, S.; Xiao, J.; Liu, B.; Li, Z.; Janik, M.J.; Song, C. Effect of liquid-phase O3 oxidation of activated carbon on the adsorption of thiophene. Chem. Eng. J. 2014, 242, 211–219. [Google Scholar] [CrossRef]
- Lane, J.R.; Hansen, A.S.; Mackeprang, K.; Kjaergaard, H.G. Kinetic Energy Density as a Predictor of Hydrogen-Bonded OH-Stretching Frequencies. J. Phys. Chem. A 2017, 121, 3452–3460. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, D.; Li, T.; Ye, C.; Pan, G. Control of Molecular Orientation and Carrier Transport of Thiophene-Based Semiconducting Polymer via Superparamagnetic Nanoparticles Fe3O4@C-Assisted Magnetic Alignment Method. Magnetochemistry 2022, 8, 64. https://doi.org/10.3390/magnetochemistry8060064
Hui D, Li T, Ye C, Pan G. Control of Molecular Orientation and Carrier Transport of Thiophene-Based Semiconducting Polymer via Superparamagnetic Nanoparticles Fe3O4@C-Assisted Magnetic Alignment Method. Magnetochemistry. 2022; 8(6):64. https://doi.org/10.3390/magnetochemistry8060064
Chicago/Turabian StyleHui, Di, Tian Li, Chun Ye, and Guoxing Pan. 2022. "Control of Molecular Orientation and Carrier Transport of Thiophene-Based Semiconducting Polymer via Superparamagnetic Nanoparticles Fe3O4@C-Assisted Magnetic Alignment Method" Magnetochemistry 8, no. 6: 64. https://doi.org/10.3390/magnetochemistry8060064
APA StyleHui, D., Li, T., Ye, C., & Pan, G. (2022). Control of Molecular Orientation and Carrier Transport of Thiophene-Based Semiconducting Polymer via Superparamagnetic Nanoparticles Fe3O4@C-Assisted Magnetic Alignment Method. Magnetochemistry, 8(6), 64. https://doi.org/10.3390/magnetochemistry8060064